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The determination of molecular interaction forces, e.g., van der Waals force, between macroscopic bodies
is of fundamental importance for understanding sintering, adhesion and fracture processes. In this paper,
we develop an accurate, general procedure for van der Waals force calculation.

This approach extends a surface formulation that converts a six-dimensional (6D) volume integral into
a 4D surface integral for the force calculation. It uses non-uniform rational B-spline (NURBS) surfaces to
represent object surfaces. Surface integrals are then done on the parametric domain of the NURBS sur-
faces. It has combined advantages of NURBS surface representation and surface formulation, including
(1) molecular interactions between arbitrary-shaped objects can be represented and evaluated by the
NURBS model further common geometries such as spheres, cones, planes can be represented exactly
and interaction forces are thus calculated accurately; (2) calculation efficiency is improved by converting
the volume integral to the surface integral.

This approach is implemented and validated via its comparison with analytical solutions for simple
geometries. Calculation of van der Waals force between complex geometries with surface roughness is
also demonstrated. A tutorial on the NURBS approach is given in Appendix A.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The determination of molecular interaction forces, e.g., van der
Waals force, between macroscopic bodies is of fundamental impor-
tance to many scientific fields, e.g., surface, interface and colloidal
sciences for understanding sintering, adhesion and fracture pro-
cesses, and for diverse applications such as precise manipulation of
micro/nano objects in nanotechnology, resolving stiction in MEMS
and semiconductor industry, and in pharmaceutical manufacturing.
This paper focuses on the calculation of van der Waals interactions.

The van der Waals forces calculation has been investigated
extensively since early last century. However, the analysis and dis-
cussion of modeling and simulation of the van der Waals force are
thus far limited to objects with simple geometries or those that can
be simplified to simple geometries under some assumptions. For
example, analytical formulae for computing molecular interactions
exist between sphere–sphere [5], sphere–half space [4,6,7] and
cone–half space [2]. Numerical simulation based on a double vol-
ume integral has been conducted for interactions between
sphere–block [6] and sphere–needle tip [9]. However, all these
analytical and numerical solutions are valid only for their specific
and simple geometries. The fundamental challenge in extending
these solutions to more general geometries is due to the six-
dimensional (6D), double volume integral (Eq. (3)), which is very
difficult to compute either analytically or numerically. Analytically,
ll rights reserved.
the 6D double volume integral makes it difficult to evaluate van
der Waals forces beyond simple geometries. Numerically, the dou-
ble volume integral makes its difficult to track the solution accu-
racy and the computing efficiency.

Consequently, these shape-specific solutions are thus far re-
stricted to simple geometric shapes and not applicable to general
object geometry. It severely restricts the applicability of these
methods since real nanoscale objects may not be of simple geom-
etry and they contain surface roughness. Previous researches have
shown that even a relatively small surface roughness would have a
large impact on the van der Waals force [12,14]. Therefore a meth-
od that can calculate the van der Waals force accurately and is
applicable to general shape is desirable for many applications.

In this paper, we present a procedure for calculating van der
Waals force that is both accurate and applicable to general shapes
including both common geometries and freeform shapes. Our
approach extends a recent surface formulation approach [3] that
converts a 6D volume integral into a 4D surface integral for the
force calculation. Our approach uses non-uniform rational B-spline
(NURBS) surfaces to represent object surfaces. Surface integrals are
then done on the parametric domain of the NURBS surfaces. When
compared with existing approaches, our calculation procedure has
the following advantages:

� Applicable to general shapes. NURBS surface representation, the
standard surface representation used in computer-aided design
(CAD) systems, can represent common geometries such as
spheres in nano-particles, cylinders in nano-rods, disk-swept
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Nomenclature

A Hamaker constant
C London–van der Waals constant
qi atomic density of body i
wvdw energy potential between two atoms/molecules
E van der Waals energy between an atom/molecule and a

body
f van der Waals force between two atoms/molecules

F/F van der Waals force between two bodies
s distance between the two atoms/molecules
S NURBS surface
pi,j control points of NURBS surfaces
wi,j weights of NURBS surfaces
U,V knot vectors of NURBS surfaces
n surface normal
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shape in nano-wires, and other shapes such as cone, torus, ellip-
soid, and plane exactly. It can also conveniently represent free-
form geometry e.g., objects with surface roughness.

� High accuracy. Since molecular interactions fall off rapidly (at a
rate of inverse power of six) over the separation distance, any
small discrepancy between Gaussian quadrature points used in
the surface integration and the underling surface would lead
to a significant bias in the resulting force. NURBS surfaces can
represent common geometry exactly and the Gaussian quadra-
ture points used in our surface integration lie exactly on the sur-
face, i.e., without any geometric approximation error. NURBS
surfaces can also be subdivided to produce more Gaussian quad-
rature points lying exactly on the surface to further improve the
accuracy of the numerical integration. Our approach thus leads
to far better accuracy than those based on the approximated
geometry e.g., in mesh based approach [13].

� Computing efficiency. Due to the use of 4D surface integration
instead of 6D volume integration, the calculation efficiency has
been improved.

Fig. 1 compares the proposed NURBS surface based approach
with the analytical solution to van der Waals force calculation
where the first and second numerical simulations refer to the cal-
culation for the patches before and after the subdivisions. It shows
NURBS surface based approach, with patch refinement, produces
accurate results. For details of this sphere–sphere interaction force
calculation, please refer to Section 5.1.2.

The remainder of the paper is organized as follows. Section 2
briefly introduces the van der Waals force calculation. In Section 3,
we introduce the NURBS surface as our underlying representation
of 3D object surfaces and discuss its salient features, which are ben-
eficial for the van der Waals force calculation. In Section 4, we
explain our van der Waals force calculation approach in details,
which is based on the NURBS surface formulation. In Section 5, we
present experimental examples to illustrate the accuracy and gen-
eral applicability of this approach. In Section 6, we discuss its com-
parison with the triangular mesh based approach and the use of
adaptive NURBS surface subdivision, and its error estimation and
convergence analysis. We conclude this paper in Section 7.

2. van der Waals force computing

van der Waals force is an intermolecular force that arises from a
fluctuating electromagnetic field resulting in instantaneous (elec-
trical and magnetic) polarizations between atoms/molecules. van
der Waals force has been studied extensively [8,10]. Here, we
briefly present some basic concepts and formulas, upon which
we have developed the NURBS surface based approach for van
der Waals force computing.

The London equation is the first basic equation used to calculate
the energy potential, wvdw, between two atoms/molecules:

wvdwðsÞ ¼ �
C
s6 ð1Þ
where s is the distance between the two atoms/molecules and C is
the London–van der Waals constant, a material-dependant interac-
tion constant between the two atoms/molecules. To account for the
retardation effect, a corrected London equation is introduced [1]:

wvdwðsÞ ¼ �
C

s6ðsþ cÞ

where is c a constant value proportional to the ‘‘characteristic
wavelength” of the interaction.

In order to validate our numerical simulation result with exist-
ing analytical solutions, we focus on calculation based on the origi-
nal London equation, i.e., Eq. (1), for computing atoms/molecules
energy potential since currently analytical solutions only exist for
the original London equation. However, our NURBS surface based
approach is applicable to both equations since both can be directly
numerically evaluated with the Gaussian quadrature method.

Based on Eq. (1), the van der Waals force f between the two
atoms/molecules is then given by:

f ¼ �rwvdw ð2Þ

Assuming that the two bodies have the properties of additivity, uni-
form material properties and continuous medium, the force
between two bodies of arbitrary geometry is:

F ¼ q1q2

Z
V2

Z
V1

fðsÞdV1dV2; ð3Þ

where qi, i = 1, 2 is the atomic density of body i. Eq. (3) can be
rewritten as:

F¼�C �q1q2

Z
V2

Z
V1

rwvdwdV1dV2¼C �q1q2

Z
V2

Z
V1

r 1
s6 dV1dV2 ð4Þ

Similarly, the energy of van der Waals interaction between an atom/
molecule and an arbitrarily shaped body is given by

E ¼ C � q1

Z
V1

wvdwdV1 ¼ �C � q1

Z
V1

1
s6 dV1 ð5Þ

In Eq. (4), a double volume integral is involved, which is very diffi-
cult to execute either analytically or numerically.

In this paper, to reduce the computational complexity, we ex-
tend the surface formulation [3] to objects described by NURBS
surfaces. This surface formulation reduces the 6D integral to 4D
integral. The NURBS surface also eliminates the geometric approx-
imation used in other surface formulation based schemes [13]. In
the next two sections, we briefly introduce NURBS surfaces and
then present our NURBS surface based van der Waals force com-
puting approach.

3. NURBS surface representation for 3D objects

In this paper, NURBS representation is used to represent geom-
etries of nanoscale objects and compute the van der Waals forces/
energies. We give a brief overview of NURBS surface and details are
commonly available in computer-aided design (CAD) and
computer graphics literature such as [11].



Fig. 1. NURBS representation based surface formulation for van der Waals force calculation: (a) NURBS representation of a sphere; (b) subdivided NURBS patches; (c)
comparison of analytical solution with the numerical results; (d) relative error.
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By means of tensor products, a NURBS surface can be con-
structed from a bidirectional net of (n + 1) � (m + 1) control points
and knot vectors {ui} and {vi}:

Sðu; vÞ ¼
Pn

i¼0

Pm
j¼0Ni;pðuÞNj;qðvÞwi;jpi;jPn

i¼0

Pm
j¼0Ni;pðuÞNj;qðvÞwi;j

ð6Þ

Then we can obtain a bi-variate surface over the two independent
parameters u and v, where pi,j represent control points of the NURBS
surface, wi,j are the weights and Ni,p(u) and Nj,q(v) are the pth degree
and qth degree B-spline basis functions defined in u and v direc-
tions, respectively. Basis function Ni,p(u) is defined as:

Ni;0ðuÞ ¼
1 if ui 6 u 6 uiþ1

0 otherwise

�
ð7Þ

Ni;pðuÞ ¼
u� ui

uiþp � ui
Ni;p�1ðuÞ þ

uiþpþ1 � u
uiþpþ1 � uiþ1

Niþ1;p�1ðuÞ ð8Þ

where U = {u0,u1, . . .,un+p+1} is the knot vector in u direction.
Similarly, basis function Nj,q(v) is defined as:
Fig. 2. Examples for NURBS surfaces. (a) A un
Nj;0ðvÞ ¼
1 if vj 6 v 6 vjþ1

0 otherwise

�
ð9Þ

Nj;qðvÞ ¼
v� vj

vjþp � vj
Nj;q�1ðvÞ þ

vjþqþ1 � v
vjþqþ1 � vjþ1

Njþ1;q�1ðvÞ ð10Þ

where V = {v0,v1, . . . ,vm+q+1} is the knot vector in v direction.
Two NURBS surfaces, one spherical particle and the other a free-

form surface, are illustrated in Fig. 2. The black curves on the sur-
face are the knot curves and the yellow dots and lines represent the
control points and the control polygon.

NURBS surface representation has many desirable properties
[11]. We highlight below some of them that are relevant to this work.

Property 1. It offers one common mathematical expression for both
common shapes (e.g., plane, sphere, cylinder and cone) and freeform
shapes.

For example, a unit sphere, with a center located at the origin, is
represented by a bi-quadratic NURBS surface as shown in Fig. 2a.
Table 1 gives all the necessary parameters to create this NURBS
it sphere; (b) a smooth freeform surface.



@��u @��v

Table 1
NURBS surface parameters for the unit sphere.

Surface type Degree Knot vector Control points pi,j Weights wi,j

u v u v

Sphere 2 2 {0, 0, 0, 0.25, 0.25, 0.5,
0.5, 0.75, 0.75, 1, 1, 1}

{0, 0, 0, 0.5,
0.5, 1, 1, 1}

p0,j = p8,j = (1,0, j � 2) wi,j = 1, i = 0, 2,4,6,8, j = 0,2,4

pi,0 = (0,0,�1), pi,3 = (0,0,1) wi;j ¼
ffiffi
2
p

2 ; i ¼ 0; 2; 4; 6; 8; j ¼ 1; 3
p1,j = (1,1, j � 2), p2,j = (0,1, j � 2) wi;j ¼

ffiffi
2
p

2 ; i ¼ 2; 4; 6; 8; j ¼ 1; 3; 5
p3,j = (�1,1, j � 2), p4,j = (�1,0, j � 2) wi;j ¼ 1

2 ; i ¼ 2; 4; 6; 8; j ¼ 2; 4
p5,j = (�1,�1, j � 2), p6,j = (0,�1, j � 2)
p7,j = (1,�1, j � 2), i = 0 . . .8, j = 1,2,3
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sphere, i.e., degrees in u/v direction, 12/8 knots in u/v direction and
9 � 5 control points and weights. All the NURBS spheres used in
this paper can be generated based on the data in Table 1 and the
NURBS surface subdivision technique.

Property 2. It is enclosed within the convex hull of its control polygon.

By applying this property, we can obtain the distance bound
between two NURBS surfaces, which can be useful for identifying
the error bound in van der Waals force/energy calculation and
may enable the development of an adaptive surface subdivision
scheme as discussed in Section 6.2.

Property 3. It is a piecewise surface composed of surface patches
defined on each knot span.

This means that an NURBS surface can be divided into several
NURBS patches, which are defined as NURBS surfaces without
inner knots. And the NURBS patch is the basic unit for van der
Waals force/energy calculation in this paper. For example, the
NURBS surface shown in Fig. 2b can be divided into 3 � 3 NURBS
patches by the four black, inner knot curves.

4. NURBS based surface formulation for van der Waals force
calculation

In Eq. (2), the interaction force between two atoms/molecules is
defined as the gradient of the interaction potential in terms of the
distance s. Now, we further define a vector field G based on the
potential field

r � G ¼ �wvdw ð11Þ

Substitution of Eqs. (2) and (11) into Eq. (3) gives a new formula for
the van der Waals force between two arbitrary-shaped bodies:

F ¼ q1q2

Z
V2

Z
V1

rðr � GÞdV1dV2: ð12Þ

Applying the divergence theorem, we obtain

F ¼ q1q2

Z
S2

Z
S1

ðG � n1Þ � n2dS1dS2 ð13Þ

where n1 and n2 represent the outward unit normal field of the
nano-bodies 1 and 2, S1 and S2 represent the boundary surfaces of
the nano-bodies 1 and 2, which are NURBS surfaces oriented by out-
ward-pointing normals.

From NURBS surface Property 3, we easily see that these two
NURBS surfaces S1 and S2 are piecewise surfaces with (n1 � p1) �
(m1 � q1) and (n2 � p2) � (m2 � q2) component NURBS patches,
respectively, where ni and mi represent the number of control points
in u and v direction, pi and qi represent the degree of the basis func-
tions in u and v direction. Hence, Eq. (13) can be rewritten as:

F¼q1q2

Xn1�p1

i1¼1

Xm1�q1

j1¼1

Xn2�p2

i2¼1

Xm2�q2

j2¼1

Z
Si2 j2

Z
Si1 j1

ðG �ni1 j1 Þ �ni2 j2 dSi1 j1 dSi2 j2 ð14Þ
In other words, the total interaction force between the two NURBS
surfaces S1 and S2 can be obtained by summarizing interaction
forces between all component NURBS patch pairs, i.e., Si1 j1

and Si2 j2 . Hence, the initial problem is reduced to sub-problems of

computing interaction forces between NURBS patch pairs. Let S

and S denote an arbitrary NURBS patch of surface S1 and S2, respec-
tively. Similar to Eq. (14), we have the interaction force between S

and S is

eF ¼ q1q2

Z
S

Z
S
ðG � �nÞ � ��n � dSdS:

From the definition of surface integral, we further have

eF ¼ q1q2

Z �umax

�umin

Z �vmax

�vmin

Z ��umax

��umin

Z ��vmax

��vmin

ðG � �nÞ � @S
@�u
� @S
@�v

�����
�����d�ud�v � ��n

� @S
@��u
� @S
@��v

�����
�����d��ud��v; ð15Þ

where �umin �umax½ � � �vmin �vmax½ � and ��umin
��umax

� �
� ��vmin

��vmax

� �
represent the parametric domains of surfaces S and S, respectively,
the expression between vertical bars on the right-hand side is the
magnitude of the cross product of the partial derivatives of S and
S, as shown in Fig. 3. Thus, there are only three terms in Eq. (15) that
need to be further expanded, i.e., G, �n and ��n. However, we know
that �n and ��n are the unit normals of S and S shown in Fig. 3. Note
that, for any parametric surface S defined as a function of parameter
pair (u,v), a unit normal vector at any regular point of this surface is
given as

n ¼ @S
@u
� @S
@v

�� �
@S
@u
� @S
@v

���� ����: ð16Þ

Meanwhile, for this NURBS patch pair, the separation distance, s,
from Eq. (1) can be written as:

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S� S

 �

� S� S

 �r

ð17Þ

This allows us to combine Eqs. (1) and (11) to obtain the solution for
the function G:

G ¼
C � S� S

 �

3 S� S

 �

� S� S

 �
 �3 ð18Þ

Hence, substituting Eqs. (16) and (18) into Eq. (15), we obtain:

eF¼q1q2

Z �umax

�umin

Z �vmax

�vmin

Z ��umax

��umin

Z ��vmax

��vmin

C � ðS�SÞ

3 S�S

 �

� S�S

 �
 �3 �

@S
@�u
�@S
@�v

 !0B@
1CA

� @S�@S
 !

d�ud�vd��ud��v ð19Þ
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Fig. 3. Graphical illustration of a pair of NURBS patches and the terms used in
calculating their interaction.
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Finally, by summarizing the interaction force between each pair
of NURBS patches, we can obtain the total interaction force
between the two NURBS surfaces S1 and S2.

The four-dimensional (4D) integral in Eq. (19) is still difficult for
analytical evaluation. Therefore, a numerical integration method,
i.e., Gaussian quadrature method, is used to approximate such a
4D integral. By implementing the Gaussian quadrature method, eF
could be approximated as

eF ¼ q1q2

X�n

�i¼1

X�m

�j¼1

X��n

��i¼1

X��m

��j¼1

�wð�u�i; �v�jÞ � ��wð��u��i;
��v��jÞ � ~fð�u�i; �v�j;

��u��i;
��v��jÞ ð20Þ

where �n and �m (respectively, ��n and ��m) represent the number of Gauss-
ian quadrature points in u and v direction for surface S (respectively,
S), ð�u�i; �v�jÞ and ð��u��i;

��v��jÞ are the Gaussian quadrature points of surfaces S
and S; �w and ��w are the corresponding weights. In this paper, we eval-
uate the Gaussian quadrature points and corresponding weights by
the Legendre polynomials, which are defined in the interval of [�1,
1] and hence a changing of interval must be used before applying
the Gaussian quadrature. And function ~f is defined as

~fð�u;�v;��u;��vÞ¼
C � S �u;�vð Þ�S ��u;��v

� 
 �
3 Sð�u;�vÞ�S ��u;��v

� 
 �
� Sð�u;�vÞ�Sð��u;��vÞ

 �
 �3 �

@Sð�u;�vÞ
@�u

�@Sð�u;�vÞ
@�v

 !0B@
1CA

� @Sð��u;��vÞ
@��u

�@Sð��u;��vÞ
@��v

 !
ð21Þ

where Sð�u; �vÞ and Sð��u; ��vÞ are the expressions for NURBS surfaces,
which can be evaluated by Eq. (6) with given NURBS parameters.

Similarly, for van der Waals energy between an atom/molecule
and any NURBS patch S of surface S1, we have
Fig. 4. Geometric configurations for four experiments. (a) Sphere–poin
eE ¼ q1

Z �umax

�umin

Z �vmax

�vmin

C � ðS� qÞ
3ððS� qÞ � ðS� qÞÞ3

� @S
@�u
� @S
@�v

 !
� d�ud�v

This equation can be numerically evaluated as

eE ¼ q1

X�n

�i¼1

X�m

�j¼1

�wð�u�i; �v�jÞ �
C � Sð�u�i; �v�jÞ � q

 �

3 Sð�u�i; �v�jÞ � q

 �

� Sð�u�i; �v�jÞ � q

 �
 �3

�
@Sð�u�i; �v�jÞ

@�u
�
@Sð�u�i; �v�jÞ

@�v

 !
ð22Þ

Such element interaction energies are then combined together as the
total interaction energy between an atom/molecule and surface S1.

5. Results

In this section, we validate our van der Waals force/energy cal-
culation with four experiments where the analytical solutions are
available. We then extend our approach to calculate the ellip-
soid/cube interaction force, which has no reported analytical solu-
tion. Finally, we finish this section with a more complex example,
which involves a flared tip in Atomic Force Microscopes (AFM) and
a rough surface containing hundreds of small features. Note, in all
these experiments, we adopt the physical constants from [6,7] for
copper, i.e., atomic density q = 8.49 � 1028 m-3 and London–van
der Waals constant C = 4.5639 � 10-78 J m6.

5.1. Validation of the proposed approach

To verify the validity of the van der Waals force/energy calcu-
lation approach, we select four experiments: sphere–point van
der Waals energy calculation, sphere–sphere, sphere–half space
and cone–half space van der Waals force calculation, as shown
in Fig. 4.

5.1.1. Sphere/point
It was shown in [6,7] that the van der Waals energy between a

sphere and a single molecule/atom q is determined by integrating
van der Waals energy (Eq. (1)) inside the volume of the sphere with
respect to the coordinates of q:

ESphere=Point ¼�
p �C �q

12 � ðdþRÞ
2R

ðdþ2RÞ3
þ2R

d3 þ
1

ðdþ2RÞ2
� 1

d2

 !
ð23Þ

where C is the London–van der Waals constant, q is the atomic den-
sity of the sphere body, d is the closest separation between the
sphere and the molecule/atom q and R is the radius of the sphere,
as shown in Fig. 4a. From Eq. (23), we find that two geometric
parameters, i.e., separation distance d and sphere radius R, are
required for calculating the van der Waals energies for sphere–point
interaction. In this experiment, the sphere radius is fixed as
R = 100 nm, twenty different separation distance d are used to cal-
t. (b) Sphere–sphere. (c) Sphere–half space. (d) Cone–half space.



Fig. 5. Analytical and numerical results for sphere–point interaction energy calculation. In the first group of numerical simulation, the sphere has 32 bi-quadratic NURBS
patches; In the second group, the number of surface patches is refined to 128. (a) van der Waals energy vs. separation distance. (b) Absolute relative error of our simulation
results vs. separation distance.
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culate the van der Waals energies, which are non-uniformly distrib-
uted from 5 nm to 200 nm.

In Fig. 5a, the analytical energy distance relation (black dot,
solid line) is compared to two groups of results from the numerical
integration. In the first group (green triangle, dotted line), the
sphere surface consists of 32 (4 � 8) bi-quadratic NURBS patches
(shown in Fig. 1a) and each patch is evaluated with 36 (6 � 6)
Gaussian-Legendre quadrature points. As we can see in Fig. 5a,
the values obtained by our approach follow quite well with the
analytical solution. When we further examine the absolute relative
errors (i.e., the difference between the nominal value and the
calculated value divided by the nominal value) in Fig. 5b, we
observe a downward trend as the separation distance increases.
We also find a relative large error (>5%) as the separation distance
d falls under 10 nm. This suggests closer separation may require
finer patches.

Therefore, in order to improve the simulation accuracy, in the
second group (red circle, dashed line), we refine the sphere surface
into 128 (8 � 16) NURBS patches and the number of quadrature
points per patch remains the same. In Fig. 5b, we can see that by
increasing the number of NURBS patches, an average of one order
of magnitude better accuracy is achieved in comparison with the
first group. However, increasing patch number also results in
increased computational complexity and thus the time (four times
as the first group).

5.1.2. Sphere/sphere
In a system of two nano spherical particles 1 and 2 of radii R1

and R2 (shown in Fig. 4b), with a separation of d, the non-retarded
van der Waals force between two spheres is [5]:
Fig. 6. Analytical and numerical results for sphere–sphere interaction force calculation.
NURBS patches. In the second group, the number of surface patches is refined to 128.
simulation results vs. separation distance.
FSphere=Sphere ¼�
A � ðdþ R1 þ R2Þ

3
� 1

2d � ðR1 þ R2Þ

�
þ 1

4R1R2
þ 1

4d2 � ðR1 þ R2Þ2
þ R1R2

8R1R2

!
ð24Þ

From Eq. (24), we find that three geometric parameters, i.e.,
separation distance d and sphere radii R1 and R2, are required
to calculate the van der Waals forces for sphere–sphere interac-
tion. In this experiment, we adopt the same separation distance
d as the previous experiment and fix the sphere radii as
R1 = R2 = 100 nm.

Similar to the previous experiment, the analytical solution
(black dot, solid line) is compared to two groups of numerical
results: in the first group (green triangle, dotted line), the two
sphere surfaces are composed of 32 (4 � 8) bi-quadratic NURBS
patches (shown in Fig. 1a) and each patch is evaluated with 36
(6 � 6) quadrature points; in the second group (red circle, dashed
line), the number of NURBS patches in each sphere is increased
to 128 (8 � 16), as shown in Fig. 1b. The experimental results in
Fig. 6 demonstrate that (a) the NURBS surface based approach
yields accurate results, and (b) patch refinements improves the cal-
culation accuracy.
5.1.3. Sphere/half space
It was given in [6,7] that the non-retarded van der Waals force

between a sphere and a half space is

FSphere=Plane ¼ �
2A � R3

3d2 � ðdþ 2RÞ2
ð25Þ
In the first group of numerical results, each of the two spheres has 32 bi-quadratic
(a) van der Waals force vs. separation distance. (b) Absolute relative error of our
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where d is the closest separation between the sphere and the half
space and R is the radius of the sphere, shown in Fig. 4(c).

In the experiment for sphere–half space interaction force calcu-
lation, the sphere, with a radius of R = 100 nm, is composed of 32
(4 � 8) bi-quadratic NURBS patches (shown in Fig. 1a) and each
patch is evaluated with 36 (6 � 6) quadrature points. To represent
the boundary plane of a half apace, a plane with a dimension of
400 nm � 400 nm, i.e., far from being infinite, is adopted, which
consists of 36 (6 � 6) bi-linear NURBS patches and each patch is
evaluated with 36 (6 � 6) quadrature points. The results are shown
in Fig. 7.

From Fig. 7b, we can observe that the error decreases initially
with the increased separation distance. However, after a turning
point, the error increases with the separation distance (green trian-
gle, dotted line), when the separation is around 25 nm. We believe
that this turning point is due to the dimension of the plane. When
the separation d is comparable to the plane edge length, the chosen
plane cannot approximate an infinite plane well and hence pro-
duce a large error.

To verify this, we enlarge the plane to a dimension of
800 nm � 800 nm. Meanwhile, we have to increase the number
of patches to 144, in order to maintain the size of each surface
patch. Using this enlarged plane, we generate the second group
of results (red circle, dashed line). In Fig. 7b, we can find that the
original large errors at the separations larger than 50 nm are
reduced significantly and an average of two order of magnitude
better accuracy is achieved.

5.1.4. Cone/half space
In [2], Argento and French constructed a parametric tip model

with a cone-shape and derived the interaction force between a
cone and a half space as

FCone=Plane ¼ �
A � r2 � sinðcÞ

6d � cosðcÞ � cotðcÞ � ðr þ d � tanðcÞÞ2
ð26Þ

where d is the closest separation between the cone and the half
space, r is the radius of cone base and c is the cone angle, as shown
in Fig. 4(d).

In the experiment for cone–half space interaction force calcula-
tion and comparison, we adopt the same original and enlarged
planes as in the previous experiment. The cone surface has a base
radius of r = 150 nm and a cone angle of c = 45�. This NURBS sur-
face, which is linear in u direction and quadratic in v direction, is
composed of 64 (4 � 16) NURBS patches and each patch is evalu-
ated with 36 (6 � 6) quadrature points.

The results shown in Fig. 8 demonstrate that the NURBS surface
based approach produces results consistent with the analytical
Fig. 7. Analytical and numerical results for sphere–half space interaction force calculatio
group, its dimension is extended to 800 nm � 800 nm. (a) van der Waals force vs. sepa
distance.
solution. When the separation distance becomes larger, the corre-
sponding plane size for the half space should be enlarged accord-
ingly to ensure the accuracy.

5.2. Example for simple geometries with no known analytical solution

Close form formulas of van der Waals energies/forces are still
not yet possible for many simple object geometries. In this sub-
section, we calculate the interaction force between an ellipsoid
and a cube, which has no reported analytical solution.

In Fig. 9a, an ellipsoid is defined by two geometry parameters,
i.e., major radius Rma = 100 nm and minor radius Rmi = 100 nm; a
cube is defined by the edge length, i.e.,l = 400 nm. In this example,
the ellipsoid is composed of 128 (8 � 16) bi-quadratic NURBS
patches and the cube is composed of 216 (6 � 6 � 6) bi-linear
NURBS patches. These two objects are placed at 20 different sepa-
ration distance d, which are identical to the separation in the pre-
vious experiments. Note that the center of the cube is located on
the major axis of the ellipsoid and one pair of the cube faces are
perpendicular to this axis, as shown in Fig. 9a. The results are plot-
ted in Fig. 9b, where the x axis represents the separation distance
and y axis represents the van der Waals force.

5.3. Example for complex geometries

We finish this section with an example on complex geometries.
In this example, we calculate the interaction energy between a
rough surface and a flared tip (Fig. 10). The flared tip is composed
of 34 bi-cubic NURBS patches. The rough surface consists of 900
(30 � 30) bi-quadratic NURBS patches. The resulting interaction
force is 3.2107e-14N and the energy distribution is shown in
Fig. 10b as a color map.

6. Discussion

In this section, we compare our NURBS surface based numerical
integration approach with triangle mesh based approach. We also
examine further the influence of patch size over calculation accu-
racy and its implication.

6.1. Comparison with triangular mesh based numerical integration

The London equation (Eq. (1)) shows an inverse sixth-power
law relationship between distance the s and energy potential of
two atoms/molecules. Thus the energy potential is very sensitive
to the distance. A small deviation in distance may result in a large
error in the resulting energy/force calculation. To illustrate this, we
n. In the first group, the plane has a dimension of 400 nm � 400 nm. In the second
ration distance. (b) Absolute relative error of our simulation results vs. separation



Fig. 8. Analytical and numerical results for cone–half space interaction force calculation. In the first group, the plane has a dimension of 400 nm � 400 nm. In the second
group, its dimension is extended to 800 nm � 800 nm. (a) van der Waals force vs. separation distance. (b) Absolute relative error of our simulation results vs. separation
distance.

Fig. 9. Example of ellipsoid–cube interaction force calculation. (a) Geometry
configuration. (b) van der Waals force vs. separation distance.
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compare our NURBS surface based approach where the geometry is
represented exactly with triangulate mesh based approach where
curved object geometry is approximated with planar triangles.

The comparison is based on the sphere–sphere van der Waals
force calculation. In the NURBS based approach, we adopt all the
parameters of the first group of numerical results in Section
5.1.2, that is, the sphere (shown in Fig. 11a) is composed of 128
(8 � 16) bi-quadratic NURBS patches and each patch is evaluated
with 36 (6 � 6) quadrature points. To set up a fair comparison,
the triangle mesh (shown in Fig. 11b) was generated by dividing
each of the NURBS patches in the first group into two triangles,
where the triangle vertexes are given by the patch vertexes and
the two triangles share two diagonal points of the patch. Mean-
while, we set the number of quadrature points for each triangle
Fig. 10. Interaction energy between a flared AFM tip and rough surface. (a
as 6 � 3, which would keep the total number of quadrature points
the same as in the NURBS based approach, i.e., same amount of
computation.

The results show that the NURBS based approach is much more
accurate than the triangular mesh based approach. Fig. 11(c) illus-
trates a gap between the triangular mesh based results (green tri-
angle, dotted line) and the analytical solutions (black dot, solid
line) but the results of the NURBS based approach (red circle,
dashed line) fit the analytical solutions very well. Fig. 11d shows
an order of magnitude better accuracy is achieved with the NURBS
based approach over the triangle mesh based approach.

6.2. Efficiency improvement with adaptive surface subdivision

In Section 5, we showed that, by refining (subdividing) NURBS
surfaces, the force calculation accuracy is improved. However,
the increase of the NURBS surface patches increases the computa-
tion time. In this section, we discuss how to improve the calcula-
tion accuracy without increasing the number of patches. The
basic insight is that not all the surface patches have the same
contribution to the calculation result. By using finer surface
patches (via more subdivisions) at regions with high contributions
and using coarse surface patches (i.e., fewer subdivisions) at
regions with the low contributions, we can achieve both high accu-
racy and high efficiency in van der Waals force/energy calculation.
More specifically, the distance s can be used as a criterion to deter-
mine patch subdivision since the distance s and the energy poten-
tial of two atoms/molecules have an inverse sixth-power law
relationship.

To illustrate this, we adopt the sphere and atom/molecule inter-
act energy calculation as an example. As shown in Fig. 12, two
cases of van der Waals energy calculation are shown here, where
the two spherical surfaces are identical but the relative position
) Geometry configuration. (b) Distribution of van der Waals energies.



Fig. 11. Comparing triangular mesh based approach and NURBS surface based approach on sphere–sphere van der Waals force calculation. (a) An NURBS surface represents
the sphere exactly. (b) A triangular mesh approximates the sphere. (c) van der Waals force vs. separation distance. (d) Absolute relative error of our simulation results vs.
separation distance.

Table 2
Error estimation and convergence analysis for the plane/cone interaction force
calculation.

Number of patches Number of
quadrature
points for
each patch

Interaction
force (N)

Error estimation
with the
posteriori
approach (%)

Plane Cone

1 (1 � 1) 4 (4 � 1) 2 � 2 1.0212 � 10�13 24.86
1 (1 � 1) 4 (4 � 1) 4 � 4 1.3591 � 10�13 2.08
4 (2 � 2) 16 (8 � 2) 4 � 4 1.3879 � 10�13 0.0072
4 (2 � 2) 16 (8 � 2) 8 � 8 1.3880 � 10�13 –
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between the spheres and the atom/molecule are different: in Case
one (green triangle, dotted line), the atom/molecule point faced the
coarse region; in Case two (red circle, dashed line), the atom/mol-
ecule point faced the fine region. The comparison results are shown
in Fig. 12b and c, where we can find an average four orders of mag-
nitude better accuracy is achieved with Case two (9.8447e-6) over
Case one (0.1077). This suggests that a proper adaptive surface
subdivision scheme can dramatically improve the efficiency of
the van der Waals force/energy calculation without compromising
the accuracy.

6.3. Error estimation and convergence analysis

The results in Section 5 show the NURBS based approach can
provide accurate calculation. We here discuss the error estimation
in the numerical procedure. In the section, we introduce two kinds
of error estimation approaches, i.e., a priori approach and a poste-
riori approach:

� A priori approach. From Eq. (19), we find a positive relationship
between the magnitude of the interaction force jeF 12j and the
areas M1, M2 of surface S1,S2. We also find a negative relationship
between jeF 12j and the geometric distance D of two points on the
two surface S1, S2. However, the surface area M1 and M2 could be
accurately determined with an error bound; and the minimum
value of the geometric distance D can be obtained based on
the NURBS Property 2. Hence, we can determine an upper bound
of jeF 12j with the upper bound of M1,M2 and the lower bound of
D. It can be used to calculate the estimated error.

� A posteriori approach. Suppose we have a pair of initial NURBS
surface S1 and S2. Then based on the interaction force calculation
scheme introduced in this paper, we can calculate an initial
interaction force F12. To estimate the accuracy of this force, we
first generate a more precise numerical model, which can be
achieved via two steps: (1) generating a new surface pair S1; S2

by refining the initial surface S1, S2, i.e., subdividing each surface
patch into four sub-patches; (2) increasing the number of Gauss-
ian quadrature points, e.g., from n � n to 2n � 2n. For this
refined model, we can calculate a new interaction force F12. Then
the estimated computational error can be defined as

e12 ¼
F12

�� ��� F12k k
�� ��

F12

�� ��
In this paper, we adopt the second approach for error estima-

tion and convergence analysis. A brief error estimation and conver-
gence analysis is given in Table 2 for the plane/cone interaction. It
shows the convergence of this process. Note, a detailed description
of the calculation of the plane/cone interaction and the source code
is in Appendix A.
7. Conclusions

In this paper, we have developed a NURBS surface based
approach for calculating van der Waals force and energy between
macroscopic objects. The calculation is based on the surface formu-
lation where the original 6D volume integration is converted into
4D surface integration. The integration is done through the Gauss-



Fig. 12. Comparison of sphere–point interaction energies in two different cases: point facing the coarse region (Case one) and point facing the fine region (Case two). (a)
Relative position and orientation of the sphere and the atom/molecule in these two cases. (b) van der Waals energy vs. separation distance. (c) Absolute relative error of our
simulation results vs. separation distance.
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ian quadrature method where the Gaussian quadrature points lie
exactly on the object surface. The key advantages of this approach
include its applicability to various geometries and high calculation
efficiency.

We implemented the NURBS surface based approach and com-
pared the results on common geometries where analytical solu-
tions exist. The comparison validates that the NURBS surface
based approach produces accurate results.
Appendix A. Tutorial on NURBS based van Der Waals force
calculation

In this appendix, we use the calculation of Cone/Half space
interaction force as an example to explain our approach in detail.
This approach is implemented with Matlab and the source code
is available at http://www.mmae.iit.edu/cadcam/code/.
Table 3
NURBS surface parameters for the plane and the cone.

Surface type Degree Knot vector Control

u v u v

Plane 1 1 {0, 0,1,1} {0,0,1,1} p0,0 = (�
p0, 1 = (�

Cone 2 1 {0, 0,0,0.25,0.25,0.5,
0.5,0.75,0.75,1,1,1}

{0,0,1, 1} pi,0 = (0

p0,1 = p
p2,1 = (0
p4,1 = (�
p6,1 = (0
In this tutorial example, we will adopt the same geometric con-
figuration as given in Section 5.1.4, i.e., the cone base radius
r = 200 nm, the cone angle c = 45� and the length of the plane
l = 400 nm. However, to make a simpler example, we will fix the
closest separation d to 100 nm and adopt NURBS representations
for the plane and the cone, as illustrated in Table 3. Meanwhile, a
2 � 2 quadrature points will be used to evaluate the patch to patch
interaction force.

From Table 3, we find that the plane surface contains no inner
knots, which means that it is composed with a single NURBS patch
Splaneð�u; �vÞ, as shown in Fig. 13. Meanwhile, we find that the cone
surface contains three unique inner knots in u direction, i.e., 0.25,
0.5, 0.75, which, according to NURBS surface Property 3, divide
the cone surface into four parts. From the definition of basis func-
tions in Eqs. (7)–(10), we find that for each of these four patches,
there are only six basis functions are non-zero functions. For exam-
ple, for the first patch defined on [01/4] � [01] (the yellow surface
points, pi,j Weights wi,j

200,�200,�100), p1,0 = (200,�200,�100), wi,j = 1
200,200,�100), p1,1 = (200,200,�100)

,0,0), i = 0,1,2,3,4,5,6,7,8. wi,j = 1,i = 0,2,4,6,8, j = 0,1.

8,1 = (150, 0,150), p1,1 = (150,150,150), wi;j ¼
ffiffi
2
p

2 ; i ¼ 1;3;5;7; j ¼ 0; 1.
,150,150), p3,1 = (�150,150,150),
150,0,150), p5,1 = (�150,�150,150),
,�150,150), p7,1 = (150,�150,150).

http://www.mmae.iit.edu/cadcam/code/
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Fig. 13. Graphical illustration of the plane, the cone and the terms used in
calculating their interaction.
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patch shown in Fig. 13), the six non-zero basis functions are
Ni,0,N0,j,i,j = 0, 1, 2, which means that the patch is determined by
these six basis functions and corresponding control points. In this
example, without loss of generality, we will go through the calcu-

lation of the interaction force between the first patch Sconeð��u; ��vÞ and
Splaneð�u; �vÞ in details. Note, the interaction forces between the other

patches and Splaneð�u; �vÞ can be calculated with a similar procedure.
The sum of these four forces gives the total interaction force
between the plane and cone.

In this example, a 2 � 2 quadrature points is used to evaluate
the patch to patch interaction force. For a standard 2-nodes Gauss-
ian- Legendre quadrature for an integral over [�1, 1], we have the
quadrature nodes are �

ffiffi
3
p

3 and the corresponding weights are 1/2.
However, in this example, surface Splaneð�u; �vÞ is defined on the para-
metrical domain [01] � [01] and surface Sconeð��u; ��vÞ is defined on
[01/4] � [01]. Hence, a change of interval for Gaussian quadrature
must be applied. Suppose an integral over [ab] must be changed
into an integral over [�1,1], the change of interval can be done
in the following way:

x0 ¼ b�a
2 xþ aþb

2

� 
y0 ¼ b�a

2 y

(
ð27Þ

where x and x0 (respectively, y and y0) are the quadrate nodes
(respectively, weights) in the original domain [�1, 1] and the new
domain [ab]. Substituting these into Eq. (20), the interaction force
between Splaneð�u; �vÞ and Sconeð��u; ��vÞ can be numerically evaluated as

eF ¼ q2 � 1
64
�
X2

�i¼1

X2

�j¼1

X2

��i¼1

X2

��j¼1

�w
�u0�i þ 1

2
;
�v0�j þ 1

2

 !

� ��w
��u0��i þ 1

8
;

��v0��j þ 1

2

 !
� ~f

�u0�i þ 1
2

;
�v0�j þ 1

2
;
��u0��i þ 1

8
;

��v0��j þ 1

2

 !

¼ q2

1024
�
X2

�i¼1

X2

�j¼1

X2

��i¼1

X2

��j¼1

~f
�u0�i þ 1

2
;
�v0�j þ 1

2
;
��u0��i þ 1

8
;

��v0��j þ 1

2

 !
ð28Þ

where �u01 ¼ �v01 ¼ ��u01 ¼ ��v01 ¼
ffiffi
3
p

3 and �u02 ¼ �v02 ¼ ��u02 ¼ ��v02 ¼ �
ffiffi
3
p

3 are the
original nodes.

To evaluate function ~f with Eq. (21), we still need to know the
expressions of Splaneð�u; �vÞ; Sconeð��u; ��vÞ and their first partial deriva-
tives, which can be calculated with a fast and numerically stable
algorithm, i.e., Cox-DeBoor algorithm. Meanwhile, they can also
be evaluated based on the definition of NURBS surface. In this
example, by substituting the parameters of the plane surface into
Eqs. (6)–(10), we apply the latter method and get the parametric
representation of Splaneð�u; �vÞ as:

Splaneð�u; �vÞ ¼ ð1� �uÞð1� �vÞ � p0;0 þ �uð1� �vÞ � p1;0 þ ð1� �uÞ�v � p0;1

þ �u�v � p1;1 ¼
200ð2 � �u� 1Þ
200ð2 � �v� 1Þ
�100

0B@
1CA; �u; �v 2 ½0 1�:

ð29Þ

Similarly, we have

Sconeð��u; ��vÞ ¼
ð1� ��vÞ � ðð1� 4 � ��uÞ2 � p0;0 þ 4

ffiffiffi
2
p
� ��uð1� ��uÞ � p1;0 þ 16 � ��u2 � p2;0Þ

ð1� 4 � ��uÞ2 þ 4
ffiffiffi
2
p
� ��uð1� ��uÞ þ 16 � ��u2

þ
��v � ð1� 4 � ��uÞ2 � p0;1 þ 4

ffiffiffi
2
p
� ��uð1� ��uÞ � p1;1 þ 16 � ��u2 � p2;1


 �
ð1� 4 � ��uÞ2 þ 4

ffiffiffi
2
p
� ��uð1� ��uÞ þ 16 � ��u2

¼

��v �
150 � ð1� 4 � ��uÞ2 þ 600

ffiffiffi
2
p
� ��uð1� ��uÞ

600
ffiffiffi
2
p
� ��uð1� ��uÞ þ 2400 � ��u2

150 � ð1� 4 � ��uÞ2 þ 600
ffiffiffi
2
p
� ��uð1� ��uÞ þ 2400 � ��u2

0B@
1CA

ð1� 4 � ��uÞ2 þ 4
ffiffiffi
2
p
� ��uð1� ��uÞ þ 16 � ��u2

;

��u 2 0 1
4

� �
; ��v 2 ½0 1�:

ð30Þ

Taking partial derivatives of Eq. (29) with respect to �u and �v, we get

@Splaneð�u; �vÞ
@�u

¼
400

0
0

0B@
1CA; @Splaneð�u; �vÞ

@�v
¼

0
400

0

0B@
1CA ð31Þ

Taking partial derivatives of Eq. (30) with respect to ��u and ��v, we
get

@Sconeð��u;��vÞ
@��u

¼

v �
�4800 �u � 2

ffiffiffi
2
p
�4


 �
� ��uþ1


 �
600 � 16

ffiffiffi
2
p
�32


 �
� ��u2þ 8�8

ffiffiffi
2
p
 �
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ffiffiffi
2
p
 �

0

0BBB@
1CCCA

16
ffiffiffi
2
p
�32


 �
� ��u2þ 8�4

ffiffiffi
2
p
 �

� ��u�1

 �2

@Sconeð��u;��vÞ
@��v

¼

150 � ð1�4 � ��uÞ2þ600
ffiffiffi
2
p
� ��uð1� ��uÞ

600
ffiffiffi
2
p
� ��uð1� ��uÞþ2400 � ��u2

150 � ð1�4 � ��uÞ2þ600
ffiffiffi
2
p
� ��uð1� ��uÞþ2400 � ��u2

0B@
1CA

ð1�4 � ��uÞ2þ4
ffiffiffi
2
p
� ��uð1� ��uÞþ16 � ��u2

ð32Þ

Once we got these expressions, we are ready to calculate the

‘‘point to point” van der Waals force, i.e., ~f, with Eq. (21). Since
in this example, both surfaces are evaluated with 2 � 2 quadra-

ture points, we need to calculate the interaction force ~f for all
the point to point pairs, that is sixteen times of evaluation, whose
sum gives the total interaction force between Splaneð�u; �vÞ and

Sconeð��u; ��vÞ as F1 = 2.5529 � 10-14N. Applying a similar procedure
to calculate the interaction forces between the other three
patches of the cone surface and Splaneð�u; �vÞ and adding them to-
gether, we get the total interaction force between the plane
and the cone is Fpc = 1.0212 � 10-13N, whose accuracy can be fur-
ther improved by increasing the number of surface patches or the
number of quadrature points.
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