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Abstract This paper presents a continuous adjoint approach for topology optimization of
a coupled heat transfer and laminar fluid flow system under tangential thermal gradient
(TTG) constraints. In this system, the thermal gradient along the boundary of multiple
heat sources needs to be controlled. The design goals are to minimize the temperature of the
domain, the fluid power dissipation and the TTG along the boundary of the heat sources.
The first two goals are combined into a single cost function with weight variables. The TTG
is constrained in one of two forms, an integral form where the integral of TTG squares along
the boundaries of heat sources is constrained, or a point-wise form where TTG is constrained
point-wise. A gradient-based approach is developed to obtain the optimized designs.

A salient feature of our approach is the use of the continuous adjoint approach to derive
gradients of both the cost function and two forms of TTG constraints.

Numerical examples demonstrate that the continuous adjoint approach leads to successful
topological optimization of the constrained thermal-fluid system. The use of TTG constraint
is effective in lowering the TTG along the heat source boundaries. The resulting designs
exhibit clear black/white contrast.

Keywords Topology optimization, Thermal fluid system, Continuous adjoint

1 Introduction

Topology optimization is a computational design method for optimally distributing materials
in a design domain under governing physics. It originated as a structural optimization
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method [1] and has since been applied in problems in fluids, heat transfer, electromagnetic
and multiphysics applications [2, 3]. Various methods for topology optimization have been
developed. They include density distribution [4, 5, 6], level set [7, 8], topological derivative
[9, 10], phase field [11], and evolutionary methods [12].

In the past few years, topology optimization of coupled thermal-fluid systems has been
actively explored. For example, Dede used topology optimization to minimize weighted
sum of the fluid energy dissipation and the mean temperature of design domain [13] and
extended the method to the design of jet impingement target surfaces [14]. The use of
topology optimization to design heat dissipating structure under a constant mass flow was
studied in [15]. The optimal design of heat sink devices was studied in [16] to maximize heat
transfer and to minimize the pressure drop. A constant power input formulation is used to
maximize heat transfer in [17]. Topology optimization of the mass flow in a fully coupled
natural convection system was recently studied in [18]. A level-set based heat exchange
maximization with Tikhonov-based regularization was recently attempted in [19]. In all
these studies, finite element methods are used to solve the coupled thermal-fluid equations
and discrete adjoints are used to obtain the sensitivity of the objective function with respect
to optimization variables. Instead of density-based topology optimization and finite element
discretization of Navier-Stokes equations, a combination of a level set method and extended
finite element method has been used to solve hydrodynmic Boltzmann equation for topology
optimization of scalar transport problems [20]. Finite volume methods have also been used
in topology optimization to solve coupled thermal fluid systems. For example, in [21] a bi-
objective problem aiming at minimizing the pressure drop while maximizing the recoverable
thermal power was attempted where the sensitivity is obtained through discrete adjoint.
In [22], a finite volume based continuous adjoint approach to topology optimization of a
thermal-fluid system under the Spalart-Allmaras turbulence model was studied, where the
design objective is the weighted sum of total pressure losses and temperature rise between
inlets and outlet.

An adjoint approach, discrete or continuous, is usually used to obtain sensitivity in topol-
ogy optimization. A comprehensive review of discrete methods for computing the derivatives
of computational models is given in [23]. The continuous adjoint method has been explored
in both finite volume based methods for topology optimization, e.g. optimization of duct
flow [24] or coupled thermal-fluid systems such as [22], and finite element based topology
optimization, e.g. optimization of steady and unsteady incompressible flows [25, 26]. Dis-
cussions on the advantages and disadvantages of discrete adjoint and continuous adjoint
approaches are available in [27, 28, 29, 30].

This paper presents a continuous adjoint approach for topology optimization of a cou-
pled heat transfer and laminar fluid flow system under tangential thermal gradient (TTG)
constraints. The type of problem addressed in this paper differs from most in the literature,
as discrete embedded heat sources and thermal gradient constraints are considered. In this
system, the thermal gradient along the boundary of multiple heat sources needs to be con-
trolled. The design goals are to minimize the temperature of the domain, the fluid power
dissipation and the TTG along the boundary of the heat sources. The first two goals are
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combined into a single cost function with weight variables. The TTG is constrained in one
of the two forms, an integral form where the integral of TTG squares along the boundaries
of heat sources is constrained, or a point-wise form where TTG is constrained point-wise. In
order to make the point-wise constraints computationally tractable, they are aggregated via
the Kreisselmeier-Steinhauser (KS) function into one constraint for topology optimization.
A gradient-based approach is developed to obtain the optimized designs. The finite element
method is used to solve the coupled thermal-fluid equations with Taylor-Hood elements for
the Navier-Stokes equation and linear elements for the heat transfer equation. To avoid
checkerboards in the resulting designs, a partial differential equation based density filter
[31, 32] is used.

We use the continuous adjoint approach to derive gradients of both the cost function
and two forms of TTG constraints. Each function (either a cost function or a constraint)
leads to a set of adjoint equations. In each set of adjoint equations, the function is adjoined
with the governing state equations, leading to an adjoint heat equation and an adjoint fluid
equation. Because adjoint equations are linear with respect to adjoint variables, the cost
of solving additional set of adjoint equations is relatively low when compared to the cost of
solving non-linear state equations (i.e. Navier-Stokes equations). Our derivation of adjoint
systems and gradient expressions is general. It is applicable to any functionals of domain
integral, boundary integral or pointwise quantities under thermal-fluid governing equations.
We show that the weakly coupled momentum equation in the Navier-Stokes equation and
the energy equation for heat transfer lead to weakly coupled adjoint heat transfer equation
and adjoint fluid equations.

We use a density-based topology optimization approach [2]. For the flow optimization,
a Darcy friction force term is usually added into the Navier-Stokes equations [33]. It can
be viewed as a fictitious domain model for viscous flows inside a fluid-porous-solid system
governed by Navier-Stokes/Brinkman equations [34]. Such Brinkman penalization has since
been frequently used in topology optimization of fluid flow [16, 17, 21, 35, 36]. For the heat
transfer, a Solid Isotropic Material Penalization (SIMP) based procedure [4, 5, 6, 2] has been
used in [16]. Rational Approximation of Material Properties (RAMP) for both Brinkman
penalization parameter and thermal conductivity has been used in [37, 21]. In this paper, we
use the Brinkman penalization for fluid flow and use a power law to interpolate the thermal
conductivity and convection coefficient between the solid phase and the fluid phase. In the
interpolation for thermal conductivity, intermediate density is mapped to higher thermal
conductivity.

Numerical examples are presented to demonstrate the effects of different weights in the
thermal-fluid cost function on the optimized designs. A system energy balance and power
analysis provides further quantitative insight into the performance of the designs. The
effects and benefits of the two forms of TTG constraints on the optimized designs are also
illustrated. The optimized designs exhibit a clear solid-fluid boundary making them suitable
for manufacturing.

The remainder of this paper is organized as follows. Section 2 presents the analysis prob-
lem and Section 3 presents the optimization problem. The continuous approach to obtaining
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the adjoint PDEs and gradient expressions is presented in Section 4. The continuous adjoint
based optimization approach is briefly presented in Section 5 and numerical results in Section
6. A discussion about the material interpolation for thermal conductivity and specific heat
is given in Section 7. This paper concludes in Section 8.

2 The analysis problem
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Figure 1: Design specification.

Figure 1 illustrates the dimensional specification of the design problem. The units in the
figure are centimetres. The design domain is a square of 10 cm × 10 cm with three heat
generating tubes/cylinders inside. The radius of the smaller tube is 0.7 cm and the radius
of the larger tubes is 1.4 cm. The two larger tubes are symmetrically distributed with the
center line of the design domain. The left tube is centered at (2.5 cm, 2.5 cm) with respect to
the origin of the coordinate system (low-left corner of the design domain). The smaller tube
is centered at (5 cm, 5.5 cm). Three inlets are located in the bottom of the design domain.
The inlet is of width L = 1.2 cm. The outlet at the top is of width 3.5 cm. Each inlet has

prescribed velocity uΓin
=
Reν

L
where Re is the Reynolds number and ν is the kinematic

viscosity. The outlet has a free flow boundary condition. The inlet boundary Γin, outlet
boundary Γout, small tube boundary Γsc and the boundary for large tubes Γlc are as shown
in the figure. The remaining boundary Γrem is of no-slip condition type. The generated heat
flux at the smaller tube is q̄Γsc at the boundary Γsc of the small tube and at the boundary
Γlc of the larger tubes is q̄Γlc

. The inlet temperature is held fixed at 294.15 Kelvin. The
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remaining boundary is Adiabatic. The design domain is illustrated in grey color. The areas
in blue are the fluids in the inlets and the outlet.

The type of problem illustrated in Fig. 1 differs from most in the literature, as discrete
embedded heat sources are considered [20]. Specifically, the problem represents a 2-D sim-
plification of a standard benchmark shell and tube heat exchanger [38] found in numerous
industry applications. In the context of TTG constraints, the tubes may be considered a
heat generating passage, chamber, or cylinder, where the control of the surface temperature
is of prime importance from a heat transfer perspective. The design of the surrounding water
jackets then becomes a key consideration. A water jacket is a cooling structure commonly
used for thermal management of internal combustion engines (ICE)[39] or motors. Temper-
ature at the combustion chamber is linked to engine friction which is then related to overall
engine emissions (an important performance criteria). Ideally, we might like to design the
combustion process to have a uniform temperature in the circumferential direction of each
cylinder with a varying profile in the axial direction since this might impart specific perfor-
mance advantages. In reality, the flow in a water jacket structure is three dimensional with
possible temperature constraints both along the circumference of each combustion chamber
as well as the axial direction of each cylinder. There are many interesting design problems
that can stem from this topic. However, for simplification in our present study, we focus pri-
marily on a 2-D representation. It should be noted that, beside heat transfer consideration,
controlling the surface temperature profile such as temperature uniformity may be beneficial
for other applications, e.g. in the reduction of thermal-stress.

2.1 Steady Navier-Stokes equations

The strong form of the boundary value problem for steady flow is stated as follows [40]: find
the velocity field u and the pressure field p, such that

−∇ · µ(∇u +∇uT ) + ρ(u · ∇)u +∇p = ρb in Ω (1a)

∇ · u = 0 in Ω (1b)

u = uΓin
on Γin (1c)

u = 0 on Γsc ∪ Γlc ∪ Γrem (1d)

µ∂nu− pn = 0 on Γout (1e)

where Γin ∪ Γout ∪ Γsc ∪ Γlc ∪ Γrem = ∂Ω and Γin ∩ Γout ∩ Γsc ∩ Γlc ∩ Γrem = ∅, µ is the fluid
dynamic viscosity, ρ fluid density, b the volume force per unit mass of fluid (equal to 0 in this
paper) and p denoting the pressure while n is the outward unit normal. We have Γin and Γout

as the boundary of the inlets and the outlet, Γlc and Γsc are boundaries of the larger tubes
and the smaller tube, respectively, and Γrem represents the remainder of the boundary of
the domain. Equation (1a) shows the convection and diffusion of momentum and Equation
(1b) shows the flow is incompressible and divergence free. Equation (1e) represents the
‘do-nothing’ boundary condition and represents a free outflow condition where ∂n = n · ∇.
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2.2 Conjugate heat transfer model

The domain is under steady-state heat transfer with heat generated from the tubes. The
governing equation is

ρc(u · ∇)T = kf∇2T, in fluid domain (2a)

0 = ks∇2T +Q, in solid domain (2b)

T = T0, Γin (2c)

−kn · ∂T
∂x

= q̄sc, Γsc (2d)

−kn · ∂T
∂x

= q̄lc, Γlc (2e)

−kn · ∂T
∂x

= 0, Γout ∪ Γrem (2f)

where Q is the heat generation per unit volume, ks and kf are, respectively, the thermal
conductivity of solid and fluid, ρ is the material density, c specific heat, and u is the fluid
velocity vector. The equation (2) also includes the usual boundary conditions including
Dirichlet and Neumann boundary conditions. Equations (2d) and (2e) represent the specified
heat flux at the tubes.

Although (2) includes the heat transfer equations for both the fluid domain and the
structure domain, the precise separation of the design domain into fluid and solid regions is
the goal of the topology optimization.

3 The optimization problem

The goal of our topology optimization problem is to seek an optimal distribution of material
density γ(x),x ∈ Ω in the design domain Ω where γ = 1 represents fluid and γ = 0
represents solid. We describe below the governing fluid and heat transfer equations for
topology optimization, the objective function and the TTG constraints.

3.1 Material interpolations in governing state equations for topol-
ogy optimization

3.1.1 Governing equations for the Navier Stokes flow

In this paper, we adopt a density-based approach [4, 5, 6, 2] to topology optimization. To
incorporate density γ into the governing fluid equation, we follow [33] by introducing a Darcy
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flow term. Then (1) becomes

−∇ · µ(∇u +∇uT ) + ρ(u · ∇)u +∇p = −α(γ)u in Ω (3a)

∇ · u = 0 in Ω (3b)

u = uΓin
on Γin (3c)

u = 0 on Γsc ∪ Γlc ∪ Γrem (3d)

µ∂nu− pn = 0 on Γout (3e)

where α represents the inverse permeability. The equation is valid for porous media where we
assume the fluid flowing in a porous media is subject to a friction force which is proportional
to fluid velocity, c.f. Darcy’s law.

The inverse permeability between the solid and the fluid regions are interpolated as

α(γ) = αmin + (αmax − αmin)q
1− γ
q + γ

, (4)

and q serves as the penalty parameter tuning the shape of α(γ). The above equation
originates from [33] and has been frequently used in topology optimization of fluid flow
[16, 17, 21, 35, 36] . It interpolates the following two permeability conditions for the fluid
and the solid

αf = α(1) = αmin, αs = α(0) = αmax.

This way, the governing equation in the fluid regions works as if there is no influence from
α in the governing equation and in the sold region with zero velocity. In this paper, αmin =
0, αmax = (1 + 1/Re)/Da [17] , and q = 0.1, Da = 1.0e-4.

Before we show the weak form of the Navier-Stokes equations, we first define its trial
function space and test space. First, the trial solution space V containing the approximating
functions for the velocity is characterized as follows

V = {u ∈ H1(Ω)|u = uD on ΓD}.

The space of admissible weight (test) functions of the velocity, ũ, can be noted as

V0 = {ũ ∈ H1(Ω)|ũ = 0 on ΓD}.

The space of functions for pressure is denoted as P

P = L2(Ω).

Note in this paper we use (·, ·)Ω and (·, ·)Γ to refer to the L2 inner product of two items
over the domain Ω and boundary Γ. In this notation, we do not distinguish between scalar-,
vector-, tensor- and matrix-valued functions.

By applying integration by parts to (3), we can obtain the weak form of the steady NS
equation for topology optimization as follows: find (u, p) ∈ V × P , such that

µ(∇u+∇uT ,∇ũ)Ω+ρ(u·∇(u), ũ)Ω−(∇·ũ, p)Ω+(α(γ)u, ũ)Ω−(∇·u, p̃)Ω = 0, ∀(ũ, p̃) ∈ V0×P
(5)
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where ũ and p̃ are the test function and the negative sign ahead of (∇·u, p̃)Ω is to ensure the
symmetry of the problem. The boundary terms after applying the integration by part to the
strong form (3) disappear in the above equation. It is because the test function ũ vanishes in
the Dirichlet boundary Γin,Γsc,Γlc and Γrem and due to the free Neumann boundary condition
in (3e) on Γout. The outflow natural boundary condition leads to vanishing of the boundary
terms from the application of Green’s formula to the Laplace operator for u and the gradient
of p.

3.1.2 Governing equations for the heat transfer

Through the material interpolation, the heat transfer equations for the fluid (2a) and the
solid (2b) domains can be combined as

C(γ)
1

a
(u · ∇)T = ∇ · (K(γ)∇T ) , (6)

where thermal diffusivity a =
kf
ρc

and K0 = ks/kf . The material interpolation for relative

thermal conductivity and convection are as follows

K(γ) = (1− γpk)K0 + γpk , (7)

C(γ) = γpC , (8)

where the power coefficients pk and pC are used to control the non-linearity of the mapping of
density to thermal conductivity and convection coefficient. In this paper pk = pC = 3 is used
throughout all examples unless otherwise noted. It should be noted that this interpolation
leads to higher (than linear) thermal conductivity. With the material interpolation, the
unified equation (6) represents the fluid when γ = 1 and the solid when γ = 0.

Note, if one uses Prandtl number Pr =
µ

ρa
=
ν

a
, the above equation becomes

C(γ)
Pr

ν
(u · ∇)T = ∇ · (K(γ)∇T ) . (9)

We thus have the following strong form of the heat transfer equation for topology opti-
mization

C(γ)
Pr

ν
(u · ∇)T = ∇ · (K(γ)∇T ) , in Ω (10a)

T = T0, Γin (10b)

−kn · ∂T
∂x

= q̄sc, Γsc (10c)

−kn · ∂T
∂x

= q̄lc, Γlc (10d)

−kn · ∂T
∂x

= 0, Γout ∪ Γrem (10e)
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With the following definitions of trial solution space Q and test space Q0,

Q = {T ∈ H1(Ω)|T = T on ΓT},

Q0 = {T̃ ∈ H1(Ω)|T̃ = 0 on ΓT},

we can define the weak form. The weak form of (10) is: Find T ∈ Q such that(
K(γ)∇T,∇T̃

)
Ω

+
Pr

ν
(C(γ)u · ∇T, T̃ )Ω + (K(γ)q̄, T̃ )Γq = 0, ∀T̃ ∈ Q0, (11)

where Γq = Γsc ∪ Γlc.

3.2 Weighted objective function

The objective function has two parts: the heat transfer objective and the fluid power dissi-
pation objective. The heat objective function Φh is to minimize the average temperature in
the solid region as

Φh ≡ (1− γ, T )Ω. (12)

In this equation, when γ = 1, the phase is fluid and the term 1 − γ goes to zero. Thus it
represents the average temperature of the solid phase. The objective function for the fluid
is to minimize the power dissipation and it can be represented as

Φf ≡ α(γ)(u,u)Ω +
1

2
µ(∇u +∇uT ,∇u +∇uT )Ω. (13)

It also reduces to pressure drop between the inlets and the outlet [33]. The heat and fluid
objectives can be combined into one objective function via different weights as follows

Φ ≡ wf log(Φf + ∆f ) + wh log(Φh + ∆h), (14)

where wf and wh are the weights for the fluid and heat objective, respectively. The use
of log(·) over the fluid and heat objectives is to scale the objective values to facilitate the
convergence in numerical optimization. The parameters ∆f and ∆h are set to ensure the
entries in log(·) are not too small during optimization. In our numerical implementation,
both are set to 100.

3.3 Tangential thermal gradient constraints

We can constrain the tangential thermal gradient (TTG) along the boundary via the follow-
ing integral form as

ΨI ≡ (t · ∇T, t · ∇T )Γsc∪Γlc
≤ θIΨI

0, (15)

where t is the tangent along the boundary and t ·∇T gives us the TTG. θIΨI
0 is some allowed

threshold and ΨI
0 is an initial integral of squared TTG and θI is the allowed integral TTG
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(a) Boundary nodes of the tubes

vea
veb

e

(b) Nodes for computing ge

Figure 2: Boundary nodes for computing TTG along the boundary.

ratio. We integrate TTG squares over the boundaries of the small circular tube and the two
large circular tubes since t · ∇T can be either positive or negative.

The integral form of the TTG constraint controlls the overall TTG globally (or in the
average sense), but may lead to large TTG locally. An alternative to overcome such poten-
tially high local TTG is to ensure the maximum TTG along the boundary is smaller than a
threshold. That is, we can develop a pointwise constraint as

(t · ∇T, t · ∇T )x ≤ θPΨP
0 , x ∈ Γsc ∪ Γlc, (16)

where θPΨP
0 is some allowed threshold, and ΨP

0 is the initial maximum pointwise squared
TTG along the boundaries and θP is the allowed pointwise TTG ratio. Since such a pointwise
TTG constraint is difficult to implement in numerical optimization, we adopt a discretized
form of the point-wise TTG constraint. We assume the design is discretized so that the
tube boundaries contain neb elements. The TTG of each element ge should be smaller than
a threshold g0 as

(ge) ≤ g0, e = 1, ...neb ,

where ge represents the square of TTG at the edge of boundary element e and neb represents
the number of boundary elements, and g0 is some allowed squared TTG threshold on each
point. Because this would lead to a substantial number (neb) of TTG constraints, we then
propose to aggregate multiple TTG constraints into one constraint through the Kreisselmeier-
Steinhauser (K-S) function.

As shown in a coarse linear triangular discretization of the design domain in Fig. 2, we

have TTG for element e as ∇tTe =
T eb − T ea
Lab

where T ea and T eb represent the temperature at

node a and b of element e, respectively, and Lab = ||vea−veb||2 represents the length between
the node a and b and vea and veb are their vertex coordinates. The squared TTG of an
element can be computed as follows,

ge ≡
(T eb − T ea )2

L2
ab

. (17)
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We can use the KS function below to aggregate multiple element-based constraints into
one composite function

ΨP (T ) ≡ 1

ε
log

[∑
e

exp(εge)

]
≤ θPΨP

0 (18)

where ΨP is an upper bound of all ge and ε controls the level of approximation during the
aggregation.

Note, we are using linear triangular elements for heat transfer analysis. Therefore, point-
wise TTG is the same as element-wise TTG in each element. The aggregated constraint is
a function of nodal temperatures where the nodes are boundary nodes along the tubes.

3.4 The optimization problem

With the above defined objective function, the two forms of TTG constraints, and weak
form of state equations, we have the following optimization problem.

min
γ

Φ = wf log(Φf + ∆f ) + wh log(Φh + ∆h) (19a)

s.t. µ(∇u +∇uT ,∇ũ)Ω + ρ(u · ∇(u), ũ)Ω − (∇ · ũ, p)Ω (19b)

+ (α(γ)u, ũ)Ω − (∇ · u, p̃)Ω = 0, ∀(ũ, p̃) ∈ V0 × P(
K(γ)∇T,∇T̃

)
Ω

+
Pr

ν
(C(γ)u · ∇T, T̃ )Ω + (K(γ)q̄, T̃ )Γq = 0, ∀T̃ ∈ Q0. (19c)

(15) or(18) (19d)

V (γ)/V0 ≤ θV (19e)

where θV is the volume fraction of the allowed fluid material over the entire design domain.
(19)(a) represents the cost function defined from a weighted combination of the fluid objective
Φf and the heat objective Φh. (19)(b) and (c), respectively, represent the weak form of the
Navier-Stokes equations and the thermal equation. (19)(d) refers to the TTG constraint,
either the integral form (15) or the pointwise form (18). (19)(e) represents the volume
fraction constraint of the design (the density field) γ.

4 Adjoint systems and gradients from the Lagrangian

approach

In order to obtain the gradient of the cost function and the TTG constraints with respect
to design γ, we use the formal Lagrangian approach [41] to obtain the adjoint systems and
the gradient expressions.

We first present a general form of using Lagrangian approach to obtain the adjoint system
and the gradient. We then extend the general form to our coupled thermal-fluid state
equations.
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4.1 First-order optimality condition for general PDE-based opti-
mal design

We give below a general description of the first-order optimality condition for PDE-constrained
optimization and show how to obtain the gradient representation through an adjoint system.
It should be pointed out that the derivation in this paper follows the formal Lagrangian ap-
proach [41]. For rigorous mathematical investigations, readers are referred to [41, 42, 30].
For tutorial introduction on deriving the optimality condition, see [43, 44] .

The general form of a PDE-constrained optimization problem can be stated as follows.
Let U ,A be Hilbert spaces. Our goal is to minimize a functional J (u, a) : U ×A → R under
the PDE constraint

e(u, a) = 0, e : U ×A → Z,

where u ∈ U represents the state and a ∈ A represents a design. We introduce a Lagrange
functional L for the functional J associated with the constraint e(u, a) as

L : U ×A×Z∗ → R, L(u, a, v) ≡ J (u, a)+ < v, e(u, a) >Z∗,Z , (20)

where v is the Lagrange multiplier (adjoint variable) and Z∗, Z represents the duality pairing.
We thus have the following first order optimality condition

L′u(u, a, v; ũ) =J ′u(u, a, v; ũ)+ < v, e′u(u, a, v; ũ) >Z∗,Z= 0 ∀ũ ∈ U (21a)

L′a(u, a, v; ã) =J ′a(u, a, v; ã)+ < v, e′a(u, a, v; ã) >Z∗,Z= 0 ∀ã ∈ A (21b)

L′v(u, a, v; ṽ) = < ṽ, e(u, a) >Z∗,Z= 0 ∀ṽ ∈ Z∗ (21c)

where the notation L′u(u, a, v; ũ) denotes the direction derivative of L with respect to u
along ũ. The first equation in (21) is the so-called adjoint equation and it represents the
Lagrangian’s variation with respect to the state variable u. The second equation describes
the relationship between the adjoint variable v and design a, and the third one is just the
state equation.

The optimality condition (21) suggests that, at an optimal design, variations of the La-
grangian functional with respect to all variables must vanish. If (21) is solved directly,
it leads to the so-called one-shot approach. In this paper, we use a gradient based itera-
tive approach. After solutions of the state equation (21c) and the adjoint equation (21a),
L′a(u, a, v; ã) = J ′a(u, a, v; ã)+ < v, e′a(u, a, v; ã) >Z∗,Z in (21b) gives us the gradient and can
be used in an iterative optimization approach.

4.2 General optimality conditions under the coupled thermal and
fluid PDE constraints

Denote J (u, p, T, γ) as a functional that can be either the cost functional Φ (14) or the
integral form of TTG ΨI (15) or point-wise TTG ΨP (18), we have the Lagrange functional
L adjoining the functional J and the governing Navier-Stokes and heat transfer equations
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as follows

L = J (u, p, T, γ)
+µ(∇u +∇uT ,∇v)Ω + ρ(u · ∇(u),v)Ω − (∇ · v, p)Ω + (α(γ)u,v)Ω − (∇ · u, q)Ω

+ (K(γ)∇T,∇S)Ω +
Pr

ν
(C(γ)u · ∇T, S)Ω + (K(γ)q̄, S)Γq ,

(22)

where (v × q) ∈ V0 × P are the adjoint variable (Lagrange multiplier) for the fluid state
equation (5) and S ∈ Q0 is the adjoint variable (Lagrange multiplier) for the heat state
equation (11). The Lagrangian’s directional derivatives with respect to adjoint variables
leads to the primal state equations, i.e. Navier-Stokes equation (5) and heat transfer equation
(11).

The adjoint equations are obtained from setting the directional derivatives with regard
to state variables u, p, T in directions ũ, p̃, T̃ as zero. We thus have the following adjoint
equations: find (v, q) ∈ (V0,P) such that

J ′u(u, p, T, γ; ũ) + J ′p(u, p, T, γ; p̃)

+µ(∇ũ +∇ũT ,∇v)Ω + ρ(ũ · ∇u + u · ∇ũ,v)Ω

+(α(γ)ũ,v)Ω − (∇ · ũ, q)Ω − (∇ · v, p̃)Ω

+
Pr

ν
(C(γ)ũ · ∇T, S)Ω


= 0, ∀(ũ, p̃) ∈ (V0,P), (23)

and find S ∈ Q0 such that

J ′T (u, p, T ; T̃ ) +
(
K(γ)∇T̃ ,∇S

)
Ω

+
Pr

ν
(C(γ)u · ∇T̃ , S)Ω = 0, ∀T̃ ∈ Q0.

(24)
The above two equations corresponds to the weak form of the adjoint fluid equation and

the adjoint heat transfer equation. Comparing (23) and (24), it is clear that the adjoint
temperature S appears in the adjoint fluid equations (23). On the other hand, the adjoint
fluid variables v and q do not appear in the adjoint heat equation (24). Therefore, we have
the following remark.

Remark 1 When the thermal-fluid system is weakly coupled, its adjoint system is also
weakly coupled. The adjoint heat equation can be solved first to obtain S. With the solved
S, the adjoint fluid equation is then solved to obtain v and q.

This suggests that the solution sequence for the adjoint system is reversed from that for
the primal system where the Navier-Stokes equations are solved first to obtain velocity u and
then use it to solve the heat transfer equation. Because the adjoint system is weakly coupled,
the adjoint heat equations and adjoint fluid equations can therefore be solved sequentially
and separately, instead of in a monolithic manner or a staggered fashion as in a strongly
coupled system. Similar observation has been reported with the discrete adjoint approach
[35].
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The gradient representation can be obtained from the Lagrangian’s directional derivative
with respect to design functional γ and it leads to

L′γ(u, p, T, γ; γ̃) = J ′γ(u, p, T, γ; γ̃)

+(α′γ(γ)u,vγ̃)Ω

+
(
K ′γ(γ)∇T,∇Sγ̃

)
Ω

+
Pr

ν
(C ′γ(γ)u · ∇T, Sγ̃)Ω + (K ′γ(γ)q̄, Sγ̃)Γq

(25)
where γ̃ represents the variation of γ. The gradient expression has three components, con-
sisting of the gradients of the cost function, of the weak form of the Navier-Stokes equation,
and of the weak form of the heat transfer equation.

It should be noted that the boundary term due to heat flux q̄ does not appear in the
adjoint system. It only appears in the weak form of the primal heat transfer equation and
the gradient expression of L(u, p, T, γ) with respect to design γ.

4.3 Specific forms of adjoint systems

Equations (23), (24) and (25) represent the adjoint system and gradient expression that are
applicable to any functional J under the coupled thermal fluid constraint. These equations
can be customized to specific forms of the adjoint equations and gradient expressions for the
cost functional and TTG constraints.

For the cost functional Φ (14), we have the following directional derivatives with respect
to state variable u, p, and T

Φ′u(u, p, T, γ; ũ) =wf
1

Φf + ∆f

(
2α(γ)(u, ũ)Ω + µ(∇u +∇uT ,∇ũ +∇ũT )Ω

)
, (26a)

Φ′p(u, p, T, γ; p̃) =0, (26b)

Φ′T (u, p, T, γ; T̃ ) =wh
1

Φh + ∆h
(1− γ, T̃ )Ω. (26c)

Plugging the above equations into (23) and (24), we have the following adjoint fluid equation
and adjoint heat transfer equation for the cost functional Φ: find (vΦ, qΦ) ∈ (V0,P) such
that

wf
1

Φf + ∆f

(
2α(γ)(u, T̃)Ω + µ(∇u +∇uT ,∇T̃ +∇T̃T )Ω

)
+µ(∇ũ +∇ũT ,∇vΦ)Ω + ρ(ũ · ∇u + u · ∇ũ,vΦ)Ω

+(α(γ)ũ,vΦ)Ω − (∇ · ũ, qΦ)Ω − (∇ · vΦ, p̃)Ω

+
Pr

ν
(C(γ)ũ · ∇T, SΦ)Ω


= 0, ∀(ũ, p̃) ∈ (V0,P).

(27)
and find SΦ ∈ Q0 such that

wh
1

Φh + ∆h
(1− γ, T̃ )Ω +

(
K(γ)∇T̃ ,∇SΦ

)
Ω

+
Pr

ν
(C(γ)u · ∇T̃ , SΦ)Ω = 0, ∀T̃ ∈ Q0.

(28)
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where vΦ, qΦ, SΦ are adjoint velocity, adjoint pressure, and adjoint temperature for the cost
functional Φ.

For the integral form of TTG constraint(15), we have the following directional derivatives

ΨI ′
u(u, p, T, γ; ũ) =0, (29a)

ΨI ′
p(u, p, T, γ; p̃) =0, (29b)

ΨI ′
T (u, p, T, γ; T̃ ) =2(t · ∇T, t · ∇T̃ )Γlc∪Γsc . (29c)

Plugging the above equations into (23) and (24), we have the following adjoint fluid equation
and adjoint heat transfer equation for the TTG constraint ΨI : find (vΨI , qΨI ) ∈ (V0,P) such
that

µ(∇ũ +∇ũT ,∇vΨI )Ω + ρ(ũ · ∇u + u · ∇ũ,vΨI )Ω

+(α(γ)ũ,vΨI )Ω − (∇ · ũ, qΨI )Ω − (∇ · vΨI , p̃)Ω

+
Pr

ν
(C(γ)ũ · ∇T, SΨI )Ω

 = 0, ∀(ũ, p̃) ∈ (V0,P). (30)

and find SΨI ∈ Q0 such that

2(t · ∇T, t · ∇T̃ )Γlc∪Γsc +
(
K(γ)∇T̃ ,∇SΨI

)
Ω

+
Pr

ν

(
C(γ)u · ∇T̃ , SΨI

)
Ω

= 0, ∀T̃0 ∈ Q.

(31)
where vΨI , qΨI , SΨI are adjoint velocity, adjoint pressure, and adjoint temperature for the
integral TTG constraint ΨI .

In order to obtain the directional derivatives of the aggregated point-wise TTG constraint
(18), we first obtain the directional derivative of its element constraint (17). Each constraint
ge consists of functions of some nodal temperature T ea and T eb (Fig. 2(b)). Its directional

derivative with respect to T along T̃ is a linear function of T̃ . That is

ge
′
T (T ; T̃ ) =

2(T eb − T ea )

L2
ab

[
−1 1

] [T̃ ea
T̃ eb

]
, (32)

where e refers to e-th element’s boundary, and T̃ ea and T̃ eb represent the test function for
the adjoint system (or the variation of T ) evaluated at node ea and eb, respectively. Thus
g′e corresponds to two point sources at nodes ea and eb. That is, we have point sources
2(T eb − T ea )/L2

ab at node ea and −2(T eb − T ea )/L2
ab at node eb. This is equivalent to the source

distribution, 2(T eb − T ea )/L2
abδ(x − vea), over the problem domain where δ(x) represents the

Dirac delta function defined over the problem domain. Note the gradient is constant for all
boundary points in each element edge due to the use of linear elements.

For aggregated point-wise TTG constraint (18), we thus have the following directional
derivatives:

ΨP ′
u(T ; ũ) = 0, (33)
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ΨP ′
p(T ; p̃) = 0, (34)

ΨP ′
T (T ; T̃ ) =

1∑
e

exp(pge)

∑
e

exp(pge)ge
′
T (T ; T̃ ). (35)

Plugging the above equations into (23) and (24), we have the following adjoint fluid equation
and adjoint heat transfer equation for the TTG constraint ΨP (18): find (vΨP , qΨP ) ∈ (V0,P)
such that

µ(∇ũ +∇ũT ,∇vΨP )Ω + ρ(ũ · ∇u + u · ∇ũ,vΨP )Ω

+(α(γ)ũ,vΨP )Ω − (∇ · ũ, qΨP )Ω − (∇ · vΨP , p̃)Ω

+
Pr

ν
(C(γ)ũ · ∇T, SΨP )Ω

 = 0, ∀(ũ, p̃) ∈ (V0,P). (36)

and find SΨP ∈ Q0 such that

1∑
e

exp(pge)

∑
e

exp(pge)ge
′
T (T ; T̃ )

+
(
K(γ)∇T̃ ,∇SΨP

)
Ω

+
Pr

ν
(C(γ)u · ∇T̃ , SΨP )Ω

 = 0, ∀T̃ ∈ Q0. (37)

where vΨP , qΨP and SΨP are adjoint velocity, adjoint pressure and adjoint temperature for the
point-wise TTG constraint. The adjoint temperature SΨP also appears in the adjoint fluid
equation. In (37), the constraint ΨP ’s derivative with regard to the temperature T would be
used in the adjoint heat equation. This leads to point sources at nodes of boundary triangles
containing each boundary facet.

4.4 Gradient representation

The directional derivative of the cost functional Φ with respect to design γ is

Φ′γ(u, p, T ; γ̃) = wf
1

Φf + ∆f
α′γ(γ)(u,uγ̃)Ω − wh

1

Φh + ∆h
(T, γ̃)Ω.

Plugging this equation into (25), we have the total gradient as

Φ
′
γ(u, p, T, γ; γ̃) = wf

1

Φf + ∆f
α′γ(γ)(u,uγ̃)Ω − wh

1

Φh + ∆h
(T, γ̃)Ω

+(α′γ(γ)u,vΦγ̃)Ω

+
(
K ′γ(γ)∇T,∇SΦγ̃

)
Ω

+
Pr

ν
(C ′γ(γ)u · ∇T, SΦγ̃)Ω + (K ′γ(γ)q̄, SΦγ̃)Γq ,

(38)
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where we have used the symbol Φ
′
γ(u, p, T, γ; γ̃) to indicate the cost functional Φ’s total

gradient with respect to design γ.
The directional derivative of the integral form TTG ΨI (15) and point-wise TTG ΨP

(18) with respect to design γ are

ΨI ′
γ(u, p, T ; γ̃) = 0,

and
ΨP ′

γ(u, p, T ; γ̃) = 0.

Thus, the total gradient of the integral form TTG with respect to design γ is

ΨI
′
γ(u, p, T, γ; γ̃) = (α′γ(γ)u,vΨI γ̃)Ω

+
(
K ′γ(γ)∇T,∇SΨI γ̃

)
Ω

+
Pr

ν
(c′γ(γ)u · ∇T, SΨI γ̃)Ω + (K ′γ(γ)q̄, SΨI γ̃)Γq .

(39)
Likewise, the total gradient of the point-wise TTG with respect to design γ is

ΨP
′
γ(u, p, T, γ; γ̃) = (α′γ(γ)u,vΨP γ̃)Ω

+
(
K ′γ(γ)∇T,∇SΨP γ̃

)
Ω

+
Pr

ν
(C ′γ(γ)u · ∇T, SΨP γ̃)Ω + (K ′γ(γ)q̄, SΨP γ̃)Γq .

(40)

5 Optimization algorithm

We use a gradient-based optimization algorithm to numerically seek an optimal design.
During each iteration of the optimization process, the gradient of the cost function with
respect to the design γ and the gradient of a TTG constraint with respect to the design are
needed. Algorithm 1 illustrates the sequence for solving the primal PDEs, adjoint PDEs and
the gradients during the optimization iteration. In each iteration, it needs to solve three sets
of PDEs.

The first step in the algorithm is to solve the primal PDEs, including the fluid equation
(5) to obtain u, p, and the heat equation (11) to obtain T . The cost function (14) and a
TTG constraint (15) or (18) can then be computed.

The next step is to then solve the adjoint PDEs for the cost function, including solving
the adjoint heat problem (28) for SΦ and the adjoint fluid problem (27) for vΦ, qΦ. The cost
function’s gradient can be computed from (38) based on the computed SΦ, vΦ, and qΦ.

The third set of PDEs are the adjoint PDEs for a TTG constraint, including the adjoint
heat problem (31) for SΨI in the case of integral TTG (or (37) for SΨP in the case of point-
wise TTG), and the adjoint fluid problem (30) for vΨI , qΨI (or (36) for vΨP , qΨP ). The TTG
constraint’s gradient (39) (or (40)) is then computed.

The two sets of adjoint PDEs, one for the cost function and the other for TTG constraint,
can be solved in any order. Within each set of adjoint PDEs, the sequence for solving the
adjoint heat problem and the adjoint fluid equation is reversed from that for solving the
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primal fluid equation and the primal heat equation. Among all the primal and adjoint
equations, only the weak form of the primal Navier-Stokes equation (5) leads to non-linear
equations of u and all other PDEs leads to linear equations.

Algorithm 1 Algorithm for solving the primal PDEs, adjoint PDEs and the gradients in
optimization

1: for iter ≤ MaxIter & |∆γ|∞ > 0.01 do
2: Solve the fluid problem (5) to obtain u, p . Primal PDEs
3: Solve the heat problem (11) to obtain T
4: Compute cost function Φ from (14)
5: Compute TTG ΨI from (15) or ΨP from (18)
6: Solve the adjoint heat problem (28) for SΦ . Adjoint PDEs for Φ
7: Solve the adjoint fluid problem (27) for vΦ, qΦ

8: Compute cost function’s gradient (38)
9: Solve the adjoint heat problem (31) for SΨI . Adjoint PDEs for Ψ

10: or (37) for SΨP

11: Solve the adjoint fluid problem (30) for vΨI , qΨI

12: or (36) for vΨP , qΨP

13: Compute TTG constraint’s gradient (39) or (40)
14: Optimize to obtain updated design variables γ
15: Compute ∆γ
16: iter +=1
17: end for

6 Numerical implementation and results

We present our numerical results based on optimized designs obtained under Re = 50 and
Re = 250, i.e. laminar flow assumption. The domain is discretized with 10709 triangular
elements, and the number of corner nodes are 5579, as shown in Fig. 3. For the Navier-
Stokes equation and the two sets of adjoint fluid systems, Taylor-Hood elements are used.
They are second order in velocity and first order in pressure. For temperature and density,
linear elements are used. The solution of the PDEs is based on the open source finite element
solver FEniCS [45]. The density is parameterized with 5579 nodal variables. The volume
constraint is that the fluid should consume no more than 50% of the design domain. All the
initial design variables are set to 0.5 so the initial volume constraint is active. The optimizer
is the method of moving asymptotes [46]. In all examples below, the convergence criteria
is the maximum change of nodal density γ should be smaller than 0.01 or the number of
iterations reach 350. The ε in (18) starts with 1.2. It increases itself by 1.5 times after every
25 iterations until it reaches 10.

A Helmholtz partial differential equation based filtering is used. The Helmholtz filtering
approach [31, 32] is a PDE-based realization of the common density filtering for ensuring
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Figure 3: Total 10,709 triangular elements are used for the solution of PDEs.

length-scale control in topology optimization and it can be conveniently implemented [47]
in generic finite element based software such as COMSOL and FEniCS. Isotropic Helmholtz
PDE filtering can be described as

− r2∇2γ + γ = γ, (41)

where r controls the size of the integral kernel and γ is the input design variable field and
γ is the filtered density. In this paper, we have chosen r = 0.1. When the weight for the
fluid objective is much larger than the weight for the heat, a stable optimized design can be
obtained without extraneous filtering. This is consistent with the results from [33]. However,
when the weight for the heat objective becomes dominant, filtering becomes necessary to
avoid checkerboards. This is also consistent with [48].

In our implementation, the fluid is water with density ρ = 998.21 kg/m3, viscosity
µ = 1.002e-3 kg/(m.s), thermal conductivity k = 598.4 × 10−3 W/(m.K), specific heat
c = 4.1818× 103 J/(kg. K) and Prandtl number Pr = 7.01. The heat flux at the small tube
is q̄Γsc = 1000 W/m and at the large tubes is q̄Γsc = 10000 W/m . The solid is Aluminium
with thermal conductivity k = 205 W/(m.K). The initial temperature is room temperature
at T0 = 294.15K.

6.1 Optimized designs at Re = 50

Figure 4 shows optimized designs and corresponding velocity and temperature distributions
from different weights for fluid and heat objectives, under no TTG constraint and Re = 50.
In the first row, the weights for the fluid and heat objectives are wf=1e8 and wh=1e-9,
respectively. Due to the negligible weight for the heat objective, the combined optimiza-
tion effectively reduces to the minimization of fluid power dissipation. Thus a very simple
branching structure is obtained that consists of two “Y” structures to merge the flows from
three inlets into one outlet. Due to the negligible weight for the heat objective, the resulting
temperature is very high (up to 1.2e3). In the second row, the weights for the fluid and heat
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(a) Design, wf=1e8, wh=1e-9 (b) Velocity (c) Temperature

(d) Design, wf=1e7, wh=1e3 (e) Velocity (f) Temperature

(g) Design, wf=1e8, wh=1e3 (h) Velocity (i) Temperature

Figure 4: Optimized designs and corresponding velocity and temperature distributions from
different weights for fluid and heat objectives, under no TTG constraint and Re = 50.

20



objectives are wf=1e7, wh=1e3. Due to the relatively high weight for the heat objective,
large circular fluid paths are obtained around the full circumference of each heat-generating
tube. In the third row, the weights for the fluid and heat objectives are wf=1e8, wh=1e3.
This leads to improved heat transfer and reduced fluid power dissipation in the optimized
designs. However, in all three designs, due to the lack of TTG constraints, there is substan-
tial TTG that are visible along the tube boundary. For example, in the left tube in Fig.
4(f), there is sharp transition between high temperature and lower temperature along the
boundary of the left tube.

In order to overcome high TTG along the tube boundary, TTG constraints, either the
integral form or the point-wise form, have been imposed. Figure 5 compares the design in
Fig. 4(g) without TTG constraints with the designs with TTG constraints, and displays
the corresponding detailed TTG profiles along the three tubes in each design. In the TTG
profiles (right column) in Fig. 5, the x-axes represents the degree counter-clock-wise along
each tube, starting from right most point in each tube. Each point in the profile represents
the TTG of one element. Comparing subfigures in the second column and the third column,
the temperature in the first row (w/o TTG constraint) has high TTG around the small tube
and two large tubes. With the TTG constraints, high TTGs have been suppressed. Figure
5(c) shows the highest pointwise TTG (-7235) at 151◦ of the small tube. By invoking the
integral TTG constraint (2nd row) of θI = 0.0043, the TTGs of all three tubes have been
reduced, with maximum TTG (2987) at the 137◦ of the right large tube. By invoking the
pointwise TTG constraint (3rd row) of θP = 0.65, the pointwise TTG has been reduced
to about one fourth of that in Fig. 5(c), with the largest pointwise TTG (1856) occurring
at elements of both left and right large tubes. Comparing Fig. 5(f) and (i), although the
integrals of squared TTG along the boundaries are the same, the pointwise TTG constraint
avoids local spike in TTG.

Table 1: Fluid and thermal performances for various optimized designs with Re = 50

Fluid power Temperature TTG t · ∇T
dissipation Φf Φh ΨI (max)

wf = 1e8, wh = 1e-9 0.237 0.4764 3.2634 4.855
wf = 1e7,wh = 1e3 0.308 0.2293 0.0131 0.766
wf = 1e8, wh = 1e3 0.280 0.2308 0.0133 0.260

wf = 1e8, wh = 1e3 θI =0.0043 0.252 0.2327 0.0043 0.107
wf = 1e8, wh = 1e3, θP = 0.65 0.299 0.2308 0.0043 0.066

Table 1 quantitatively compares the fluid and thermal objectives in the above optimized
designs as well as the corresponding integral TTG quantity and pointwise the maximum
TTG quantity along the boundary. All numerical values in the table are relative to the
initial design. At the initial design where γ = 0.5 throughout the design domain, the fluid
power dissipation is Φf

0 = 1.061e − 5, the overall temperature is Φh
0 = 5.5105, the integral

form of TTG is ΨI
0 = 3.90e7, and point-wise maximum TTG is ΨP

0 = 2.78e4. With the large
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weight for the fluid objective (1st row), the fluid objective is small (only 23.7% of initial
design). However the overall temperature is 47.64% of the initial design. More importantly,
the TTG is several (3 ∼ 4) times larger than the initial design. This is because the flow path
does not circle around the heating tubes, as shown in Fig. 4(a). With the large weight for
the heat objective (2nd row), the temperature is only 22.93% of the initial design with much
smaller TTG than the design in the 1st row. However, the fluid power dissipation becomes
30.8% of the initial design. A compromise is made when the weights are wf = 1e8, wh = 1e3.
In this case, the fluid power dissipation is 28.0% of the initial design and the temperature
is 23.08%. The TTG is also smaller. In order to further control the TTG, both forms of
TTG constraints can be imposed. In order to compare the effects of the two forms of TTG
constraints, we have chosen θP and θI so that the integrals of squared TTGs are the same
in both cases. The integral constraint θI = 0.0043 leads to the optimized design with
maximum pointwise TTG 10.7% of the initial design. The pointwise constraint θP = 0.65
leads to the optimized design with 6.6% TTG of the initial design. Thus, the two ways of
constraining TTG are both effective and they make the integral TTG to be 0.43% of the
initial design and pointwise TTG to be below 11%. This can also be seen from Fig. 5(e)
and (h), the temperature along the tube boundaries transition smoothly. In addition, the
pointwise TTG constraint leads to smaller maximum pointwise TTG than the integral TTG
constraint.

Figure 6 also shows the convergence history of the optimized design in Fig. 5(g). It takes
202 iterations for this particular design. The fluid power dissipation, the temperature over
the design domain and the TTG (pointwise) and the volume of the fluid are plotted with
respect to the iteration.

6.2 Optimized designs at Re = 250

Figure 7 shows a set of optimized designs at Re = 250 without any TTG constraint with
varying weights for the fluid objective and the same weight for the heat objective (wh = 1e3).
The second and third row in Fig. 7 display the corresponding velocity and temperature
distribution. It is clear that with the decrease of weight for fluid objectives, the optimized
designs become more complex and larger circular flow paths along the tubes appear. When
wf = 1e8, an optimized design that connects the inlets directly with the outlet, without
circling around the tubes, appears. Comparing this design with a similar design in Fig. 4(a)
where Re = 50, it can be seen that flow paths from different inlets merge further away from
the tubes at Re=250. This is due to the increase of the flow speed and fluid momentum.
A more quantitative analysis of the fluid and heat objectives, along with the integral and
pointwise TTG is detailed in Table 2. It can be seen from this table that, with the decrease
of wf , the rate of fluid power dissipation with respect to the initial design increases and the
overall temperature decreases along with the TTG about the tubes.

For the design in Fig. 7(g), we plot the temperature distribution and its TTG along the
tubes in the 1st row of Fig. 8. The next two rows of Fig. 8 display the optimized designs
under TTG constraints. The 2nd row shows the design under integral TTG constraint
θI = 0.0086 and the 3rd row under pointwise TTG constraint θP = 0.65. Without TTG
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(a) Design w/o TTG constraint (b) Temperature (c) TTG (t · ∇T ) profile

(d) Design with ΨI = 0.0043 (e) Temperature
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(f) TTG (t · ∇T ) profile

(g) Design with Ψp = 0.65 (h) Temperature
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Figure 5: Optimized designs and temperature distributions at Re = 50 and wf = 1e8, wh =
1e3, without TTG constraint (1st row), with integral TTG constraint θI = 0.0043 (2nd row)
and with pointwise TTG constraint θP = 0.65 (3rd row).
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Figure 6: Convergence history for the optimization in Fig. 5(g)

constraint, the maximum TTG (6735) occurs at 51◦ of the right tube in Fig. 8(c). With
integral TTG constraint θI = 0.0086, the maximum TTG (-2862) occurs at 325◦ of the
right tube. With pointwise TTG constraint θP = 0.65, the maximum TTG (1291) occurs
along many elements of the right and left tubes. Comparing Fig. 8(f) and (i), although
the integrals of the squared TTG along the boundaries are the same, the pointwise TTG
constraint avoids local spike in TTG and produces near uniform pointwise TTG.

The performances in fluid and heat objectives as well as TTGs in four designs without
TTG constraints and the two designs with TTG constraints are summarized in Table 2. All
numerical values in the table are relative to the initial design. At the initial design where
γ = 0.5 throughout the design domain, the fluid power dissipation is Φf

0 = 4.61e − 4, the
overall temperature is Φh

0 = 2.95, the integral form of TTG is ΨI
0 = 1.64e7, and point-wise

maximum TTG along the tube boundaries is ΨP
0 = 1.65e4. Again, it is clear that lower

weights for the fluid objective lead to higher percentage of fluid power dissipation and lower
temperature in the design domain. The TTG constraints are effective in controlling the TTG
along the tubes.

6.3 Geometric effects of the TTG constraint

The previous examples at Re=50 and Re=250 demonstrate that, with and without TTG
constraints, optimized designs have very different shapes and topologies when initial designs
are represented with uniform density γ = 0.5. This is due to the existence of multiple local
minimums for the optimization problem. During the first few iterations, the designs usually
do not satisfy the TTG constraints. Thus, optimization, with and without TTG constraints,
leads to different evolution of density distributions during the optimization process, thus
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(a) wf = 1e8 (b) wf = 1e8 (c) wf = 1e8

(d) wf = 1e7 (e) wf = 1e7 (f) wf = 1e7

(g) wf = 1e6 (h) wf = 1e6 (i) wf = 1e6

(j) wf = 5e4 (k) wf = 5e4 (l) wf = 5e4

Figure 7: Optimized designs from different weight for fluid wf and same weight for heat
wh = 1e3 under no TTG constraint and Re = 250.
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(a) Design w/o TTG constraint (b) Temperature
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(d) Design with ΨI = 0.0086 (e) Temperature
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(g) Design with Ψp = 0.65 (h) Temperature
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Figure 8: Optimized designs and temperature distributions at Re = 250, wf = 1e6, wh = 1e3
without TTG constraint, with integral TTG constraint θI = 0.0086 (2nd row) and pointwise
TTG constraint θP = 0.65 (3rd row).
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Table 2: Fluid and thermal performances for various optimized designs with Re = 250,
wh = 1e3

Fluid power Temperature TTG t · ∇T
dissipation Φf Φh ΨI (max)

wf = 1e8 0.208 0.6255 1.4885 2.534
wf = 1e7 0.234 0.4506 0.0678 0.781
wf = 1e6 0.278 0.4320 0.0303 0.408
wf = 5e4 0.380 0.4286 0.0281 0.356

wf = 1e6,θI = 0.0086 0.299 0.4336 0.0086 0.173
wf = 1e6,θP = 0.65 0.275 0.4309 0.0086 0.078

different optimized designs after convergence. In order to further understand the geometric
effects of TTG constraints on the designs, we choose the optimized designs obtained without
TTG constraints as initial designs for optimization with TTG constraints. The results are
shown in Fig. 9 and Fig. 10, respectively, for Re = 50 and Re = 250.

Figure 9 shows three sets of designs obtained with Re=50, wf = 1e8 and wh = 1e-9, 5e1
and 1e3, respectively. These three sets of designs are shown in three rows, respectively. In
the first column are the initial designs obtained from optimization without TTG constraints.
They are then optimized under integral form TTG constraint (0.2%) and the optimized
designs are shown in the 2nd column. The density differences between the optimized designs
(2nd column) and the initial designs (1st column) are shown in the 3rd column. Figure 9(a)
shows an initial design obtained with extremely small weight for the heat objective, thus
leading to no flow at the back of large tubes. After optimization with TTG constraint, flows
appear at the back of the large tubes shown in Fig. 9(b). As we increase the heat weight for
the initial design shown in Fig. 9(d), more flow appears around the large tubes. However,
there is still solid near the back of the large right tube, leading to large TTG at the back
of the large right tube. With the TTG constraint, a closed flow path around the right tube
is formed. With the further increase of the heat objective for the initial design (Fig. 9(g)),
full circular flows occur for two large tubes and a small solid spot occurs at the back of the
small tube. Optimization with the TTG constraint leads to more fluid added at the original
solid spot and forms full flow path around the small tube. On the other hand, for the large
tubes, very little change occurs in the flow path shape. This is because, with the high heat
weight and the resulting full flow path, the TTG is already relatively small around the large
tubes.

Figure 10 shows three sets of designs obtained with Re=250, wh = 1e3 and wf =
1e8, 1.8e7 and 1e6, respectively. These three sets of designs are shown in three rows, respec-
tively. The initial designs (1st column) obtained without TTG constraints are optimized
under integral form of TTG constraints (0.3%). The results are shown in the 2nd column
and the density differences in the 3rd column. When the initial design is obtained with high
weight for the fluid objective, Fig. 10(a), there is no flow circling around the tubes and high
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(a) Initial design, wh = 1e-9 (b) Optimized design (c) Density difference

(d) Initial design, wh = 5e1 (e) Optimized design (f) Density difference

(g) Initial design, wh = 1e3 (h) Optimized design (i) Density difference

Figure 9: Optimized designs without any TTG constraint (1st column) are used as ini-
tial designs for optimization under integral TTG constraint. The results are shown in the
2nd column and the density difference between the designs are shown in the 3rd column,
respectively, wf = 1e8 and Re=50 in all cases.
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(a) Initial design, wf = 1e8 (b) Optimized design (c) Density difference

(d) Initial design, wf = 1.8e7 (e) Optimized design (f) Density difference

(g) Initial design, wf = 1e6 (h) Optimized design (i) Density difference

Figure 10: Optimized designs without any TTG constraint (1st column) are used as ini-
tial designs for optimization under integral TTG constraint. The results are shown in the
2nd column and the density difference between the designs are shown in the 3rd column,
respectively. wh = 1e3 and Re=250 in all cases.
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TTG occurs at the back of the large tubes. After the TTG constraint is imposed, circular
flow paths at the back of the large tubes appear. In Fig. 10(d), high TTG exists at the back
of the left, large tube. The TTG constraint leads to full flow around the left, large tube,
shown in Fig. 10(e). In Fig. 10(g), the initial design is obtained with relatively small fluid
weight, full flow paths exist in all three tubes. As a result, the TTG is relatively small. With
the TTG constraint, there is very little change in flows near the tubes.

Therefore, the above two examples at Re=50 and Re=250 demonstrate that the geomet-
ric effect of the TTG constraint is most obvious when there is initially incomplete flow path
around the tubes. The lack of flow at the back of the tubes leads to high TTG and opti-
mization with the TTG constraint then adds fluid at the back of the tubes. When there is
initially large wide circular flow around the tubes, the TTG is already relatively low around
the tubes. Therefore the geometric change around the tubes due to the TTG constraints is
small perturbation of wall boundary. This can be seen from sporadic dots around the tubes
shown in Fig. 9(i) and Fig. 10(i).

7 Discussions

7.1 Oscillation and mesh refinement

Since the optimization in this paper concerns TTG constraints in a thermofluid system, it
is important to ensure the temperature and TTG are properly modelled. Some of analysis
results presented so far exhibit oscillation in both temperature and in gradient. For example,
the TTG profile in Fig. 5(a) exhibits oscillation. Such oscillation can be resolved through
finer boundary layer mesh or through stabilization techniques. Figure 11 shows the design
in Fig. 5(a) is reanalyzed with a denser mesh. It consists of 21736 triangular elements,
adaptively distributed with finer elements around the tubes. The resulting TTG profiles are
shown in Fig. 11(b). Comparing Fig. 5(c) and Fig. 11(b), it can be seen that the oscillation
in TTG has been removed due to the use of dense boundary layer elements around the tubes.
However, the solution from the original mesh did capture overall trend of the TTG profiles
around the tubes. If the mesh is too coarse and there is too much oscillation in TTG profiles,
the optimization may not lead to useful designs.

Figure 12 shows a set of optimized designs obtained from two meshes: mesh 1 has 10709
elements as shown in Fig. 3 and mesh 2 has 21736 adaptive elements as shown in Fig. 11.
The weights are wf = 1e8 and wh = 5e1 for all designs. Fig. 12(a) and (b) correspond
to designs in Fig. 9(d) and (e), obtained with mesh 1. If we use the design in Fig. 9(d)
as initial design for optimization with mesh 2 under the integral form of TTG constraint
(0.2%), the resulting design is shown in Fig. 12(c). Comparing Fig. 12(b) from mesh 1 and
Fig. 12(c) from mesh 2, the designs are nearly identical, except finer wall boundary near the
tubes due to the use of more elements. Figure 12(d) shows the optimized design with mesh
2, without TTG constraints. The design is then used as initial design for optimization with
TTG constraint and the result is shown in Fig. 12(e). The density difference between the
two designs is shown in Fig. 12(f). Again, the TTG constraints add fluid path around the
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(a) 21736 adaptive elements (b) TTG from design in Fig. 5(a)

Figure 11: A new mesh consisting of 21736 adaptive elements is used to reanalyze the design
in Fig. 5(a). The resulting TTG around the tubes are shown in figure (b).

(a) Initial design from mesh
1

(b) Optimized design from
mesh 1

(c) Optimized design from
Mesh 2

(d) Initial design from mesh 2(e) Optimized design from
mesh 2

(f) Density difference

Figure 12: Optimized designs from mesh 1 and 2.

31



left tube in Fig. 12(d) to reduce TTG. The difference between Fig. 12(c) and Fig. 12(e)
are likely due to the existence of multiple local minimum. This example suggests that the
optimized designs from mesh 1 are similar to designs obtained with finer mesh. This can be
ascribed to the fact that mesh 1 is dense enough to capture the overall trend of temperature
and TTG distributions.

7.2 Material interpolation

whp4 whp2 whp0 whm1 whm3whm2wfp5

(1)

(2)

(3)

wh = 1e4 wh = 1e2 wh = 1 wh = 1e-1 wh = 1e-2 wh = 1e-3

Figure 13: Optimized designs with different material interpolations for thermal conductivity.

In all designs presented so far, clear fluid/solid contrast has been obtained. We discuss
below when the contrast may fade and the effect of different forms of material interpolation
for thermal conductivity.

The material interpolation for thermal conductivity is based on (7), where pk = 3 for
all examples so far. This interpolation equation leads to higher than linearly interpolated
thermal conductivity for intermediate density, when pK > 1. Our choice of such a particular
form of material interpolation is based on analysis of our numerical results. Here we present
a set of numerical results based on different forms of interpolation. The first interpolation is

K(γ) = 1 + (1− γ)pk(K0 − 1), (42)

where pk = 3. This interpolation follows the usual SIMP procedure where thermal conduc-
tivity is penalized for intermediate density. The second form of interpolation is just linear
interpolation and has pk = 1. In this case, (7) and (42) are equivalent. The third form is the
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one presented earlier, based on (7), with pk = 3. Optimized designs under these three forms
of material interpolation functions for thermal conductivity are compared in Fig. 13 for flow
at Re=50. The designs in the first row are based on (42) with pC = pk = 3. The designs
in the second row have pC = pk = 1. The designs in the third row are based on (7) with
pC = pk = 3. In all examples, the material interpolation for Darcy friction coefficient α(γ)
still follows (4) with the same penalization parameter q = 0.1. In all designs, the weight for
the fluid objective is wf = 1e5. From the left to the right of this figure, the weight for the
heat objective decreases from 1e4 to 1e-3. This numerical experiment suggests the following:

1. When the weights are appropriate, e.g. for wh = 1 or 1e-1, good designs with clear
solid/fluid contrast are obtained for all three forms of thermal conductivity interpola-
tion. However, the thermal conductivity interpolation (42) (penalizing the intermediate
density) leads to smaller fluid flow paths around the tubes than the linear interpolation
does, and even smaller paths than the interpolation based on (7) does. It also appears
that the interpolation based on (7) has the effect of suppressing tiny flow paths around
the tubes. For example, in the 1st row and 2nd row, for wh = 1e-1, there are small
flow paths around the small tubes. However, the small flow path does not appear in
the 3rd row.

2. With the heat weight is low, at wh = 1e-3, linear interpolation (2nd row) leads to an
isolated fluid.

3. With the increase of the weight for heat objective, wh = 1e2, the clear fluid/solid
contrast begins to fade for all three forms of interpolation. A small fluid branch appears
for the first form of interpolation based on (42).

4. When the weight for the heat objective becomes even larger, i.e. wh = 1e4, all three
forms of interpolation leads to broken flow paths that fail to completely connect with
the middle inlet. The interpolation based on (42) shown in the first row leads to
unclear flow paths around the tubes. The linear interpolation of thermal conductivity
also leads to intermediate density around the outlet, as highlighted in the 2nd row.
With the interpolation of thermal conductivity based on (7), further increase of heat
weight beyond 1e4 does not change the topology.

Overall, thermal conductivity interpolation based on (7) leads to more stable designs. We
have also experimented with the penalty coefficient pC and find it has no strong effect on the
optimized designs when pC is between 1 and 3.

8 Conclusions

This paper presents a continuous adjoint approach to topology optimization of a coupled
thermal-fluid system under tangential thermal gradient constraints. We have derived three
sets of adjoint equations, adjoining a weighted sum of thermal objective (minimal temper-
ature) and fluid objective (minimal fluid power dissipation) and two TTG constraints with
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the governing Navier-Stokes equations and heat transfer equations. It leads to three sets
of adjoint PDEs and gradient expressions. Our derivation of adjoint systems and gradient
expressions is general in the sense that it is applicable to any functionals of domain integral,
boundary integral or pointwise quantities under thermal-fluid governing equations.

Numerical examples demonstrate that the continuous adjoint approach leads to successful
topological optimization of a constrained thermal-fluid system. The use of TTG constraint
is effective in lowering the TTG along the heat source boundaries. The resulting designs
exhibit clear black/white contrast. The proposed optimization formulation may be useful
in practical design of shell and tube heat exchangers or water jacket design for precise
temperature control.

Our continuous adjoint approach to handling the sensitivity of the cost function and two
forms of TTG constraints can be extended to transient problems in a way that is similar to
how continuous adjoint is used in optimizing unsteady Navier-Stokes flow [25, 26].
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