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Abstract

In this paper, we formulate the generation of support structures for additive manufacturing as a
topology optimization problem. Compared with usual geometric considerations based support structure
design, this formulation affords mechanistic meaning to the computed support structures. Moreover,
our study reveals that the topology optimization formulation generally leads to self-supporting designs
without extraneous self-supporting constraints. We show the generality of the procedure by computing
supports for a variety of parts in both two and three dimensions, including a complex model of the
mascot of the University of Wisconsin-Madison. The resulting support structures have been 3D printed,
demonstrating that the computed designs can successfully be used as supports.

1 Introduction

In recent years, additive manufacturing has become increasingly important in several fields. A distinctive
feature that made additive manufacturing popular is its ability to produce complex parts easily and with
no part-specific fixturing or tooling. For this reason, additive manufacturing is attractive, for instance,
for producing parts obtained from topology optimization, which are frequently of complex shape and with
internal voids.

On the other hand, some drawbacks of additive manufacturing exist as well. Indeed, the very idea at
the basis of additive manufacturing consists in building a part layer by layer. This makes so that long
downward-facing surfaces need to be supported by some other structure which will then have to be removed
after the printing. These “support structures” are thus made of sacrificial material which is basically wasted
(recycling is limited to a few times before needing re-polymerization) and their removal adds a post-processing
step.

This problem can be handled in different ways, depending on whether we can modify the part to print or
not. In the first case, we can try to modify parts by removing all overhangs which are not self-supporting.
This is, for instance, the trend that has been recently followed by the topology optimization community. Thus,
several manufacturability constraints and filters have been introduced in topology optimization frameworks to
compute optimal designs which are free of non self-supporting surfaces. Since the first work in this direction
[1], strategies to achieve manufacturability in a topology optimization context have greatly evolved, allowing,
for instance, to compute the optimal design for arbitrary choices of the critical overhang angle. For instance,
[2] introduced an overhang constraint acting on the directional gradient of density along the build direction,
allowing an arbitrary choice of both build direction and critical overhang angle. In [3], instead, the constraint
is based on the volume of the support structures, while other approaches rely on filter-based overhang
restrictions [4, 5]. Overhang control has then also been analyzed in the framework of shape optimization by
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[6]. Finally, it is worth citing also the first real implementations of a overhang control procedure [7, 8], as
well as notable recent contributions like [9] and [10].

However, sometimes we may need to print a part with some given specifics. In this case, we cannot modify
the part to print. In this second case, we are bound to use support structures. The drawbacks associated
with the use of supports are then handled by using as little support material as possible and by making
their subsequent removal easier. In this regard, first it is important to choose a suitable orientation of part
building, so to reduce as much as possible the area of the surfaces needing a support. This can be done, for
instance, by the algorithm presented in [11]. Then, several strategies can be used to reduce the amount of
material employed in building the supports. In this regard, it is worth citing [12], where supports are made
of cellular structures, and [13], where supports are generated geometrically and are constituted by tree-like
structures which touch the surfaces to support in points chosen by sampling. Finally, the interface between
the support and the part to print can be modified so to ease the removal of the support itself. In this regard,
tips can be added at the ends of the supports, as done, for instance, also in [13].

However, the procedures currently used to generate supports are usually geometry based [14], do not
have mechanistic meaning and are likely not optimal in any sense. There are only a few exceptions in the
recent literature. For instance, in [15] supports are involved in a topology optimization framework together
with the part to build, but the aim is not to optimize supports, but to find trade-off solutions accounting
of both performance of the part and costs of support structure. Similar considerations can be made on
[16], which includes also orientation. In [17], the authors instead consider a multi-objective optimization for
support structures, introducing a repulsion index which is used to ease the removal of the computed supports.
However, the approach is analyzed only in 2D examples, the results appear to have not self-supporting parts
and the actual printability of the computed structures is not verified.

We, on the other hand, present a simpler procedure which does not rely on multi-objective optimization.
Indeed, since easy removal acts only at the interfaces between the support and the part to print, we can
simply modify these interfaces adding tips at the ends of the supports, as mentioned above. We nonetheless
formulate the generation of self-supporting support structures as a topology optimization problem, giving
mechanistic meaning to the computed supports and exploiting all the advantages associated with the use of
topology optimization. We analyze the computed supports in both 2D and 3D examples and we actually
3D-print several computed structures, thus demonstrating their printability. Moreover, we notice that the
optimized supports usually present the remarkable characteristic of being directly self-supporting, without
needing any extraneous overhang control. In rare cases where this is not true, we can instead use the overhang
constraints previously outlined to ensure that the optimized supports are self-supporting, thus bridging, in a
way, the two approaches for handling overhangs that we outlined above.

Thus, we compute supports that

• have direct mechanistic meaning. In particular, they are characterized by maximum stiffness for a given
volume fraction;

• theoretically use less material than support structures generated by the geometric approaches for
achieving the same stiffness. In actual computations, we may fall in a local minimum, but the
optimization procedure generally ensures better results than geometric-based methods;

• are usually directly self-supporting, without extraneous self-supporting constraints. In case the supports
present critical overhangs, manufacturability can nonetheless be ensured by overhang control strategies
recently introduced in topology optimization;

• have features compatible with the 3D printer’s resolution by the use of length-scale control.

We remark that, throughout the paper, topology optimization is employed to optimize the support
structure for a given design of the end part. In the following, by “design” we then refer to the scaffold
structures generated by the topology optimization problem.

In Section 2 we outline formulate the topology optimization problem. In particular, first we outline the
reasons how we choose loading, boundary conditions and cost functional. All these choices are performed by
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trying to reproduce the exact loading and boundary conditions which occur while printing a part with some
overhangs, while the cost functional is chosen by considering what the main purpose of a support structure
is. Then, we present more rigorously the mathematical formulation of the topology optimization problem,
consisting in a volume-constrained compliance minimization problem (or, analogously, in a compliance-
constrained volume minimization problem). An interesting analogy with the topology optimization of bridges
and of roof supports can also be performed. The formulation of the problem is indeed really similar (as it can
be expected also from the similarity of the roles performed by a roof support and by a support structure)
with, however, an important difference in the location of zero-displacement boundary conditions which greatly
affects the self-support nature of the optimized designs.

We then introduce several test problems in both 2D and 3D domains to demonstrate that this topology
optimization problem can be successfully used to compute supports in a variety of situations. We do this in
Section 3, which also contains some details on the implementation of the optimization problems.

Section 4 is then devoted to a thorough analysis of a test problem in a 2D rectangular domain. Experimental
results are here presented together with mechanical considerations, including, for instance, an analogy with
transmissible loads. A remarkable feature of the computed designs are their tree-like structural shapes which
partially resemble bridges, roof supports and the supports for additive manufacturing in [13]. Interestingly,
tree-like designs similar to the ones arising from our optimization can be also commonly found in architecture
in several structures not coming from a topology optimization procedure, such as Gothic ribbed vaults in
the Medieval period or, more recently, branched pillars like those of the Sagrada Familia in Barcelona or of
many other structures (e.g. see [18]). In this context, it is also worth to mention the work on the structural
meaning of tree-like structures by the architect Frei Otto [18, 19]. We also analyze self-support (discussing
also when it may not hold and the remedies), the influence of the maximum volume fraction and of the aspect
ratio of the domain, the effect of vertical zero-displacement boundary conditions and cases with non-uniform
loads. Some remarks on length-scale control are given as well, noticing how we can use minimum length-scale
control to match the fineness of the feature of the optimized design with the resolution of 3D printers.

In Section 5 we instead consider more complex examples, starting from 2D curved domains. We then
compute the optimized supports for popular structures, such as the MBB beam and the cantilever beam.
Finally, we pass to analogous 3D examples, where particular attention is devoted to extending this approach
to the optimization of practical 3D support structures where large-scale computing is used. This allows to
compute supports characterized by fine features. We also 3D print the computed results to demonstrate that
the designs are self-supporting and that they can indeed acts as support structures. We then also compare
the amount of material used for building the supports with our strategy and with existing software.

In Section 6 we then optimize the support for a complex model of the mascot of the University of
Wisconsin-Madison. We use this as a test-problem to show the ability of our procedure to compute support
structures for complex geometries. Here large scale optimization is particularly relevant: some of the presented
results have been obtained performing the optimization with more than 1 billion variables.

Lastly, Section 7 concludes this work.

2 The topology optimization problem

To formulate the generation of support structures as a topology optimization problem we must define:

• the design domain where the topology optimization is conducted;

• loading and boundary conditions;

• a cost functional.

In this section, we show how domain and loading/boundary conditions can be deduced by the analysis of
the structure that we want to print. The cost functional, instead, must be a measure that tells us in which
sense the computed structure is “optimal”. Thus, it must have a physical meaning which is consistent with
the purpose of our optimization. After identifying all these components, we finally present a more rigorous
formulation of the topology optimization problem of our interest.
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2.1 Outline of loading and boundary conditions

We now define loading and boundary conditions of the topology optimization problem of our interest referring
to a simplified setting, which can then be easily generalized. Consider Figure 1, which represents a simple
overhanging part that we may want to print. Suppose that the orientation is provided and that the part
must be printed along a given build direction.

Build direction

Part to print

Support zone Design domain

Figure 1: Given a part to be printed (in green), a support structure will be built in the “support zone” between the
downward-facing surfaces and the printing plate. This is also the domain where the optimization will take
place. The printing plate gives zero-displacement boundary conditions along all the bottom of the domain,
while the surface to support gives a distributed load along the top.

The supports will evidently be built in the zone underlying the part to support. Thus, this “support zone”
gives us directly the design domain.

Limiting ourselves to a purely mechanical optimization, the only load which the support must withstand
is given by the weight of the part which must be supported. This is represented by a distributed load on the
top of the design domain.

Lastly, supposing, for simplicity, that the support structures can be built only from the base where the
part is being built, the boundary conditions are given by a zero-displacement condition on the entire bottom
part of the domain.

The resulting design domain, together with loading and boundary conditions, is represented on the right
of Figure 1.

As mentioned earlier, this simplified setting can be easily generalized. For instance, support structures
may be built not only from the printing plate, but also from non-overhanging regions which have already
been printed. This could help to further reduce the amount of material employed in the supports and it is
also what happens, for instance, every time the supports are located inside a hole of the part to print. These
cases can be easily reproduced simply by introducing a zero-displacement boundary condition along all those
boundaries where the supports can be generated.

For instance, in the example in Figure 1, supports may be generated from the entire left side of the
domain as well, attached to the vertical boundary of the part in green. All this area is indeed printed before
the zone which needs the supports. If we want to allow this situation, we can then add a zero-displacement
boundary condition along the entire left boundary.

2.2 Formulation of the problem

To choose suitable cost and constraints, we must consider that limiting the amount of used material is of the
utmost importance in the design of support structures. Indeed, the supports are removed after printing is
complete and the material we employ in their construction is, thus, ultimately wasted. Volume fraction must
then be involved in the formulation of the problem, as the cost functional or as a constraint.

Furthermore, we also need a mechanistic meaning consistent with the purpose of sustaining the weight of
overhanging regions. In particular, it is certainly desirable that the support structure is sufficiently stiff to
support the overhang without excessive deformations.

Taking into account these considerations, we can formulate two optimization problems, depending on
whether a maximum volume fraction or a maximum compliance is given:

• if a maximum volume fraction is given, it is suitable to choose a volume-constrained compliance
minimization problem;
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• conversely, if we are given a minimum required stiffness, we can directly minimize the amount of wasted
material by a compliance-constrained volume minimization problem.

More formally, let Ω be the domain identified by the support zone (e.g. the area bounded in blue in
Figure 1) and let Γ be its boundary. Furthermore, let ΓD be the part of the boundary where the supports
can be built and let ΓN be the rest of the boundary. Given a prescribed maximum volume fraction V̄ or a
prescribed maximum compliance C̄, we can consider the following optimization problems:

Volume constrained compliance minimization

minimize JC =

∫
Ω

∇u · E(γ)s(u)dΩ

s.t. −∇ · E(γ)s(u) = f on Ω

1

V

∫
Ω

γdΩ ≤ V̄

(1)

Compliance constrained volume minimization

minimize JV =
1

V

∫
Ω

γdΩ

s.t. −∇ · E(γ)s(u) = f on Ω∫
Ω

∇u · E(γ)s(u)dΩ ≤ C̄

(2)

where γ is the density, V denotes the volume, u is the displacement vector and E(γ) is the Young’s modulus
expressed by the SIMP method [20, 21]

E(γ) = Emin + (Emax − Emin)γp,

where, in this paper, we set p = 3, Emax = 1 and Emin = 10−9.
Finally,

σ(u) = 2µ∇u+ λITr(∇u) = E(γ)s(u) (3)

where I is the identity matrix, ∇u represents the symmetric gradient and µ, λ are the first and the second
Lamé’s parameters, respectively. These parameters are dependent on the Poisson’s ratio ν and on the Young
modulus E(γ), which is collected for clearness.

In both optimization problems, the state equation is provided with the boundary conditions{
u = 0 on ΓD

E(γ)s(u) · n = uN on ΓN ,
(4)

representing the loads and the zero-displacement conditions introduced at the beginning of this section.
In the following, the cost is chosen to be the compliance and we thus consider the problem (1). Indeed,

volume-constrained compliance minimization problems are vastly studied and comparisons with other results
in the literature are straightforward. Nonetheless, this does not affect the generality of our analysis. Indeed,
under mild hypotheses, we can pass from the solution of a compliance minimization problem to that of
a volume minimization problem simply by a scaling [22, p.88]. Thus, the presented results are equally
applicable to a compliance-constrained volume minimization problem as well.

Therefore, topology optimization of support structures can be formulated by a well-known topology
optimization problem, which is nonetheless rich in mechanical meaning.

It is also worth noticing the similarity of this problem with compliance minimization for bridges and of
roof supports. As a consequence, the support structures computed with our approach all present tree-like
structures resembling the famous roof supports computed by topology optimization for the Qatar Convention
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Center [23], the structures arising in topology optimized bridges (see, for instance, the bridge problem
analyzed in [24]) and other roof supports (e.g. see also [25, 26]). An important difference is however given by
the position of zero-displacement boundary conditions, which in bridges and roof support typically involve
only a few points of the boundary. On the other hand, we here have zero-displacement boundary conditions
on large parts of the boundary. This means that in our case the pillars of the “bridges” which support the
overhangs can be placed everywhere on the printing plate. This freedom in choosing the position of the
pillars, in turn, fosters an analogy with transmissible loads, which helps explain why the computed supports
are generally self-supporting, as analyzed in the following.

In this context, it is also worth highlighting that we here limited ourselves to the mechanical aspect of the
problem: i.e. supporting the weight of the build part. Indeed, it is indispensable that a support structure
successfully bears the overhanging layers of material before their solidification. Nonetheless, non-mechanical
factors, such as considering thermally conductive pathways to conduct heat in e.g. laser-based processes, and
for limiting deformations due to the build-up of residual stress in the printed part, are also important in the
design of support structures. These additional factors will be studied in future work.

2.3 Sensitivity analysis

For completeness, we now report also the sensitivity analysis of the compliance minimization problem
formulated above. In this regard, let us introduce the spaces of trial and test functions, which, in a
two-dimensional case, are defined by

Trial space: V = {u ∈
[
H1(Ω)

]2
: u = u0 on ΓD} (5)

Test space: Ṽ = {ũ ∈
[
H1(Ω)

]2
: ũ = 0 on ΓD}. (6)

We then multiply the state equation by ũ ∈ Ṽ and integrate applying the given boundary conditions. In
this way, we get the weak form of the problem:

J = 〈∇u, E(γ)s(u)〉Ω (7a)

〈∇ũ, E(γ)s(u)〉Ω = 〈ũ,f〉Ω + 〈uN , ũ〉ΓN
∀ũ ∈ Ṽ (7b)

〈γ, 1〉Ω /V ≤ V̄ . (7c)

Here 〈·, ·〉Ω and 〈·, ·〉ΓN
denote the l2-inner product on the domain and on the Neumann boundary, respectively.

We can now define the optimality conditions of the problem. The Lagrangian function L for the problem
of minimizing the compliance (7a) under the PDE constraint (7b) can be written as

L = 〈∇u, E(γ)s(u)〉Ω + 〈∇v, E(γ)s(u)〉Ω − 〈v,f〉Ω − 〈uN ,v〉ΓN
, (8)

where v ∈ Ṽ is the Lagrange multiplier for the elastic equilibrium equation (7b).
Imposing the first order optimality conditions, we then get the adjoint equation

Lu;ũ = 〈∇ũ, E(γ)s(u)〉Ω + 〈∇u, E(γ)s(ũ)〉Ω + 〈∇v, E(γ)s(ũ)〉Ω = 0 ∀ũ ∈ Ṽ, (9)

where Lu;ũ denotes the directional derivative of L with respect to u along ũ. Solving the adjoint equation

for v ∈ Ṽ, we thus find the adjoint variable.
It is then easy to compute the directional derivative of the Lagrangian and of the integral constraints

with respect to the design variable γ along the test function γ̃t. Indeed, calling E′(γ) = p(Emax −Emin)γp−1,
we find

Lγ;γ̃t = 〈∇u, E′(γ)s(u)γ̃t〉Ω + 〈∇v, E′(γ)s(u)〉Ω Cost sensitivity (10a)

Vγ;γ̃t = 〈γ̃t, 1〉Ω /V Volume sensitivity. (10b)
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2.4 Formulation with PUP constraint

As already stated, in the problems of our interest usually we do not need any extraneous overhang constraint
to compute self-supporting structures. Thus, the optimization problems introduced in the previous subsections
are sufficient to compute self-supporting support structures.

If this is not true, we can rely on one of the overhang constraints or filters existing in the literature. In
these cases, in this paper we use the PUP constraint. Therefore, we here summarily describe the optimization
problem with this additional constraint. For details, the reader is referred to [2].

The PUP formulation requires density filtering, here performed with an Helmholtz PDE filter [27, 28],
and Heaviside filtering [29]. We denote the filtered density field by γ̃. The PUP constraint is then defined as∫

Ω

H
(
b · ∇γ̃
‖∇γ̃‖2

− cos ᾱ
)
b · ∇γ̃dΩ ≤ P̄ᾱ (11)

where b is the build direction, ᾱ is the critical overhang angle, H
(
b · ∇γ̃‖∇γ̃‖2 − cos ᾱ

)
is a shifted Heaviside

projection of the undercut perimeter and P̄ᾱ is the maximum allowed projected perimeter.
Finally, the PUP formulation also includes a grayness constraint

1

V̄

∫
Ω

4γ̃(1− γ̃)dΩ ≤ ε̄ (12)

where ε̄ is the threshold to intermediate densities. This constraint is needed to mitigate intermediate densities
associated with the large filter radius which is often required to avoid oscillations.

3 Implementation of the topology optimization problem

In the previous sections, we showed how topology optimization of support structures can be formulated as a
compliance minimization problem. In order to demonstrate that the computed optimized designs can indeed
be used as supports, we now need to implement the topology optimization problem. In this context, we here
present a variety of overhang situations, which we use to show the generality of our approach. Lastly, we also
present some details on the implementation of the problems themselves.

3.1 Description of the test problems

We show the applicability of our approach to computing the support structures for several different overhangs.
In this regard, both 2D and 3D examples are considered.

Some relevant 2D problems are represented in Figure 2. In particular, Figure 2a represents a simple 2D
test problem in a rectangular domain. Conceptually, it represents the situation already introduced in Figure
1 and we use it in the next section to validate the procedure. Then, we pass to more complex geometries.
So, Figure 2b represents a problem with a curved overhanging boundary, where the arc is assumed to be
self-supporting up to an height of 0.3 times its radius (the boundary is indeed almost vertical in that zone).
Finally, Figure 2c represents a problem corresponding to computing supports of a triangular hole such as the
one which arises in the MBB beam.

We perform 3D topology optimization of support structures as well. Analogously to the 2D cases, we
again consider various situations. In particular, first we analyze optimized supports for a dome and for a
3D MBB-beam. Then, we compute the support structures for a complex 3D model of “Bucky Badger”, the
mascot of the University of Wisconsin-Madison. This complex part is represented in Figure 3. This example
in meant to demonstrate the generality of our approach and its applicability to printing complex real-world
structures. Regarding orientation, the model is meant to be printed on its back, as in Figure 3b. The surface
which needs to be supported is thus characterized by curved and tilted regions one next to the other. In
order to simplify the definition of these forms, with no lack of generality we approximated the back of Bucky
by elementary functions, such as the surfaces of cylinders, planes and spheres, as in Figure 3c. Then, we
defined the loads on these surfaces and run the optimization.
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(a) Topology optimization of support struc-
tures in a rectangular design domain

(b) Design domain with curved
overhang. Boundary in
green is self-supporting

(c) Topology optimization of sup-
port structures in a triangular
hole

Figure 2: Loading, boundary conditions and design domains of some 2D topology optimization examples

Loads are uniform and set equal to one. Operatively, we integrate a unitary, downward-facing load over
the loaded boundaries represented in Figure 2. The Young’s modulus of the material is set to 1 (and it is set
to 10−9 in the void) and the Poisson’s ratio is set to 0.3 for all problems. In this context, it is nonetheless
also worth remarking that the absolute values of load and Youngs modulus are not important for generating
the support designs.

3.2 Details of the implementation

The 2-dimensional problems have been solved in the FEniCS framework [30, 31] using the Method of Moving
Asymptotes (MMA) as optimizer [32] with standard parameters. The discretization has been performed by
T3 elements. In 2D problems without extraneous overhang constraints, we also controlled the minimum
length-scale by a robust filter (see [33]; for selection of filter size, the reader may instead refer to [34]). This
can be interesting since we can use length-scale control to match the fineness of the features of the optimized
support with the resolution of any 3D printer. In the following, rf denotes the filter radius characterized in
terms of the number of elements involved in the filtering, while r denotes the actual radius of the filter. The
plot of the results is provided directly by FEniCS and reported with no modification.

Three-dimensional problems have been solved using the TopOpt code in [35], which is an efficient, parallel
C++ code for solving topology optimization problems. These properties are particularly attractive for dealing
with the higher complexity of 3D problems. We adapted the code to the domains and to the boundary/loading
conditions of the problems of our interest. We ran the optimization procedures on the cluster of computers
of the UW-Madison Center For High Throughput Computing (CHTC). In this case, the discretization was
performed by hexagonal elements. The results of the optimization were stored in .vtu files. The figures here
reported and the .stl files used for printing the results have been obtained by elaborating the .vtu files in
Paraview. The resulting topologies have been extracted using the “Iso Volume” filter, filtering to solid all
densities larger than 0.2 or 0.5, depending on the problem.

4 Validation of the procedure: self-support and mechanical con-
siderations for a simple 2D example

In this section, we analyze the simple 2D problem represented in Figure 2a. For a first validation of the
procedure, we consider a 3× 1 rectangular domain and analyze how the optimized structures evolve as the
maximum volume fraction is changed. In particular, as the maximum volume fraction is reduced, tree-like
structures appear. After commenting on these structures and introducing some mechanical considerations,
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Build direction

(a) 3D model and build direction

(b) Bottom view (c) Approximation by smooth forms

Figure 3: Model of the mascot of the University of Wisconsin-Madison viewed from the side where supports will be
built (b) and approximation by smooth forms (c) to simplify the implementation in TopOpt

we consider what happens as we change the aspect ratio of the domain. In this context, we observe that
we again obtain tree-like structures (which are characteristic also of all the other design domains, as we
will see in the following) and analyze the problem of self-support. This is particularly important, since, as
mentioned earlier, the optimized support structures can be practically used only if, in turn, they do not need
other supports. We observe that, generally, self-support is ensured directly by the nature of the problem.
We substantiate this by mechanical considerations and by an analogy with transmissible loads. In case non
self-supporting parts are present, we can instead exploit existing tools for overhang constrained topology
optimization. Indeed, we can simply forbid critical overhangs by using some manufacturability constraint,
as we show later in this section. Finally, we also consider more general settings of loading and boundary
conditions, as well as the effect of length-scale control.

4.1 Effect of the volume fraction

In topology optimization of supports, the ultimate purpose is to compute the structure that optimally
transfers the load from an overhanging region to the printing plate (or to some other part that has already
been printed). Let us consider a simplified 2D case where supports can be built only starting from the
printing plate and loads are uniform. Then (considering, for simplicity and with no loss of generality, a
domain oriented along the build direction) we always have a distributed load which must be transferred from
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some upper boundary to the bottom boundary of the domain itself, where the printing plate is located. Thus,
the ideal load transfer occurs along a straight line connecting the top region where the load is applied to the
bottom of the domain. If the load is applied to the entire top boundary, the optimal support would then be a
single straight pillar covering the entire domain.

Of course, the result of the optimization cannot be a completely full structure when we impose a volume
constraint as well. In this case, some holes must appear. Let us then consider a 2D problem in a 3 × 1
rectangular domain, like the one in Figure 2a and see what happens as the maximum volume fraction Vf
is changed. The results, obtained discretizing the domain by 76,800 T3 elements, are reported in Figure 4.
Starting with Vf = 90%, we obtain the design in Figure 4a, which is almost completely full, as expected. As
the volume constraint gets tighter, more holes appear. In particular, at Vf = 60% (Figure 4c) the design is
characterized by three arcs separated by straight pillars. This design does not change dramatically when the
maximum volume fraction is further reduced: of course, the arcs get wider, but we always get exactly three
arcs for all Vf ≤ 60%. Then, in Figure 4d start appearing some branches, which become evident in Figure 4e,
corresponding to Vf = 30%. We therefore obtain tree-like support structures.

(a) Vf = 0.9 (b) Vf = 0.75 (c) Vf = 0.6

(d) Vf = 0.45 (e) Vf = 0.3 (f) Vf = 0.2

(g) Vf = 0.1

Figure 4: Optimized topology as the maximum volume fraction Vf is changed

Here, trunks and branches play two different roles. Indeed, branches connect zones at the top of the
domain to other branches and, ultimately, to a trunk, to which they transfer the load coming from a relatively
small part of the boundary. Trunks are instead pillars with a prevalently structural function, supporting the
load coming from several branches and transferring it directly to the printing plate.

Intuitively, we can already expect that the number of trunks cannot get too small also when the maximum
volume fraction gets really low. Indeed,

• we always need some trunk to support the load coming from the branches;

• structures with too few trunks would likely require more material. Indeed, branches would need be
really long to connect all the parts of the top boundary to the nearest trunk

• long branches would also transfer the load less efficiently. Indeed, if the nearest straight trunk is far,
they would be tilted more horizontally than vertically.

This gives a first, intuitive explanation of why the computed structures are generally self-supporting.
Indeed, branches efficiently transfer load only if they are not too tilted with respect to the build direction.
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In particular, if they are tilted by an angle larger than 45◦ with respect to the build direction, they are
more horizontal than vertical, while load must be transferred vertically, from top to bottom of the domain.
Therefore, since trunks can grow everywhere on the bottom boundary, it is reasonable to think that the
optimization will place them so that branches are prevalently vertical. This is a major difference with respect
to usual topology optimization of bridges and roof supports and highlights the importance of the chosen
boundary conditions.

Regarding self-support, we notice that horizontal regions can appear at the top of the arches, but they are
nonetheless short and can be considered self-supporting, as demonstrated by 3D-printed examples presented
in the following sections. This appears even more so reasonable considering that we do not need high surface
quality in supports and that additive manufacturing is typically employed for printing parts which are not
excessively large. Nonetheless, if we had a large domain and if we needed to reduce these horizontal parts, we
could always do so by increasing the volume fraction.

4.2 Effect of aspect ratio

The previous considerations apply also when the aspect ratio of the domain is changed. Indeed, repeating
the reasoning of the previous sub-section, we can intuitively expect that the optimal structures will always
have “enough” trunks (whose number depends on the aspect ratio of the domain) and relatively short, mostly
vertical branches. This is confirmed by the results in Figure 5, where the maximum volume fraction is fixed
at 30% and the aspect ratio of the design domain is changed. In the following, we denote the horizontal space
variable by x. The discretization has been performed using about the same number of T3 elements as in the
3× 1 domain (76, 800). Small variations in the number of elements were however unavoidable as the aspect
ratio was changed.

Again, in all cases we obtain tree-like structures and they appear to be self-supporting. As the aspect
ratio is changed, the number of arcs and pillars changes, but the general design remains the same. This
substantiates the claim that the optimized structures are generally self-supporting and the number of arcs
which appear in the various cases confirms the considerations made in the previous subsection.

(a) 3 × 1 domain

(b) 2 × 1 domain (c) 1 × 1 domain (d) 0.25 × 1 domain

Figure 5: Optimized support structures in rectangular domain of different aspect ratios. All optimized designs exhibit
tree-like, self-supporting structures. The optimized supports in long domains can be regarded as a succession
of arcs like the one in Figure 1c
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Moreover, we can also perform an analogy with transmissible loads. In problems with transmissible loads,
the aim is to optimize with respect to the position of the load as well. Indeed, in these problems, the precise
location of the load is variable: only the magnitude of the load and the line along which it acts are given.
Thus, it is as if were computing an optimal structure while letting the optimization find the best position
of the load along its line of action. This case has been extensively studied, in rectangular domains, in [36].
In particular, the authors found that the optimal solution for minimum compliance of a central point-load
is a “triangle” whose sides form a 45◦ angle with the direction along which the load is applied. In case of
distributed load, more similar to the cases of our interest, the optimization leads to an analogous parabolic
arch structure.

In the problems of our concern, the load is fixed, but we have zero-displacement boundary conditions all
over the bottom boundary of the domain. This means that the supports can be built so that the load is in
an optimal position. Indeed, the number of trunks and the distance between them determines how trunks
and branches are tilted with respect to the load. Thus, by analogy with the problem of transmissible loads
and with results in [36], we expect that the optimal structure is given by arcs with a 45◦ inclination. This
is indeed what happens. So, the optimal support in a 1× 1 domain is the single arc of Figure 5c, which is,
moreover, similar to the result for transmissible loads in [36]. If the domain is 2× 1, we instead have 2 arcs as
in Figure 5b, and so on for a 3× 1 domain (Figure 5a) and for wider aspect ratios. If the domain is instead
shorter along x, it is not possible to place the trunks optimally with respect to the load. So, we have a single
arc with an inclination smaller than 45 degrees, as in Figure 5d.

The results in Figure 5 also give some important information on the scalability of the problem. Indeed,
for long, 2D rectangular domains, we may think to simply reproduce the optimal design for the 1× 1 domain
in Figure 5c as many times as needed instead of actually running the optimization process.

4.3 A non self-supporting transition case

In rare cases, however, we might still have some non self-supporting overhangs. For 2D rectangular domains,
this happens in “transition cases” between long aspect ratio (like the ones in Figures 5a-5c) and short aspect
ratio (like 5d). In these cases, x is not too small and some overhanging part can appear between the two
pillars of the only arc which is present.

These overhangs can however be easily removed by an overhang constraint [2]. For instance, in Figure 6
we report the optimal supports computed in a 0.5× 1 rectangular domain with and without an overhang
constraint. The maximum volume fraction is again Vf = 30% and the discretization is performed by 51, 200
T3 elements. In the overhang constrained case, we used the PUP overhang constraint [2] with overhang angle
ᾱ = 75◦, allowed projected overhang perimeter P̄ᾱ = 0.55, intermediate density constraint threshold ε̄ = 0.15,
maximum β of Heaviside in continuation methods βmax = 16 and filter radius rf = 10. For consistency, all
parameters not involving the PUP constraint have been kept equal in the unconstrained case.

Interestingly, the cost is smaller for the structure computed using the overhang angle constraint. Indeed,
the unconstrained design presents a cost of 8.12, while the cost of the overhang constrained design is 7.40. On
one hand, why this happens is not immediately clear, since adding a constraint reduces the space of admissible
solutions and the cost should thus be higher. On the other, the design in Figure 6b more closely resembles
the arcs noted for the other aspect ratios and is perfectly consistent with the remarks made throughout
this section. Thus, forbidding the non self-supporting design of Figure 6a can actually lead to a smaller
compliance.

4.4 Zero-displacement boundary conditions on the sides of the design domain

We generally obtain self-supporting structures also when supports are built on parts other than the base plate.
As mentioned earlier, this corresponds to adding zero-displacement boundary conditions on some vertical
boundary as well. Self-support can be justified as done above for supports built only on the printing plate.
Indeed, branches tilted more than 45◦ would arguably worsen the load transfer.

Figures 7 and 8 show that this in indeed what happens. Figures 7 represents the optimized designs
for different boundary conditions in a 1 × 1 domain and Figure 8 represents the optimized designs in a
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(a) Supports without overhang constraint (b) Supports with overhang constraint

Figure 6: Comparison of the computed supports in a 0.5 × 1 rectangular domain with and without an overhang
constraint [2].

3 × 1 domain when supports can be built on both vertical boundaries. In both cases, Vf = 20% and the
discretization is performed by T3 elements.

In Figure 7 we observe how the optimized design changes as zero-displacement boundary conditions are
placed only at the bottom of the domain or on one or on both sides of the domain as well. All these situations
are represented in Figures 7a, 7b and 7c respectively.

All solutions appear self-supporting: zones with angles flatter than 45◦ are indeed always short. Moreover,
it is interesting to notice how the final value of the compliance gets smaller as the zero-displacement boundary
conditions involve more boundaries. This was to be expected by the very fact that the design changes: the
final design of Figure 7a is indeed admissible also when we add vertical boundary conditions. Therefore, if it
were optimal also when zero-displacement boundary conditions are placed on the sides of the domain as well,
we would get the same result also in Figures 7b and 7c.

We also observe that vertical boundary conditions act as additional trunks placed along the sides of the
domain. This is ultimately the reason why the cost is reduced: indeed, vertical boundary conditions behave
as additional trunks which do not use any material and are characterized by zero displacement. So, branches
can connect directly to the sides of the domain. In the extreme case of Figure 7c, we no longer have any
trunk: since the domain is short, it is indeed enough to have a single arc made of branches directly connected
with the sides of the domain.

In Figure 8 the final design changes in a similar way. The fact that the domain is longer, however, makes
so that trunks appear in the middle of the domain and the usual tree-like structure is more apparent. Only the
branches near the sides are directly linked to the vertical boundaries, tilted of about 45◦. This is consistent
with the previous analysis and compatible with self-support. Also in this case, the cost is reduced with
respect to the case where supports can be built only on the printing plate.

4.5 Length-scale and other considerations

A further difference between using topology optimization to produce support structures and other strategies
in the literature is that here we do not perform a sampling of the surface to be supported. Indeed, we do not
have a set of points where supports will be built, but branches can touch the overhanging region everywhere.
In particular, branches get more numerous and thinner as we approach the top boundary of the domain,
where the load is applied. Indeed, ideally, we need one branch for every point where the load is applied. This
originates several branches, each needing to transfer a small load (hence their thinness).

In order to avoid having features too fine to be printed, we can use length-scale control. In this way,
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Part

Design domain

(a) Supports only from print-
ing plate. Cost: 24.68

Part

Design domain

(b) Supports from printing
plate and left boundary.
Cost: 14.15

Part

Design domain

45◦

(c) Supports from printing plate
and vertical boundaries. Cost:
6.26

Figure 7: Optimized supports in a 1 × 1 rectangular domain with 0-displacement boundary conditions on different
parts of the boundary. In all cases, the optimized designs are self-supporting

Figure 8: Optimized self-supporting structure in a 3 × 1 rectangular domain with 0-displacement boundary conditions
on the bottom and on the sides of the domain.

minimum length-scale can be chosen so to match the resolution of the printer. For instance, for a rectangular
domain we obtain the results in Figure 9.

When we do not use any length-scale control, as in Figure 9a, we have several thin branches. If these
features are too small to be printed successfully, we need to impose a minimum length-scale. Figure 9b
introduces length-scale control, but the filter radius is small and fine features persist. Starting from rf = 3
(Figure 9c), we have designs more compatible with the resolution of a 3D printer. Considering yet larger
values of rf , features get even larger. For instance, in Figure 9e we set rf = 7 and we only have a few, large
branches which should be easily printable with most 3D printers commonly used.

5 Results and analysis in more complex domains

In this section, we present and analyze the results of experiments in non-rectangular domains. First, we
analyze the results obtained in 2D domains. After applying a linear extrusion to the optimized support
structures thus obtained, we then actually print them, in order to show that the computed structures are

14



(a) Heaviside filter (rf = 1), no length-
scale control

(b) Length-scale rf = 1 (c) Length-scale rf = 3

(d) Length-scale rf = 5 (e) Length-scale rf = 7

Figure 9: Comparison between no length-scale control and different choices of minimum length-scale. Length-scale
control can be used to ensure that the optimized support does not present features so small to be incompatible
with the resolution of the 3D printer

indeed self-supporting. We then pass to 3D optimization, in particular considering supports for the MBB
beam and for domes of various heights. Again, we print all the optimized structures, so to demonstrate
self-support. We also compare our results with the support structures computed by existing software and
consider ways to ease the removal of the supports after printing.

5.1 2D supports in various domains

Let us consider the curved domain in Figure 2b. Choosing, for instance, V̄ = 0.15 and r = 0.009, we get the
design in Figure 10. The load is supposed uniform and the discretization has been performed by 112,510 T3
elements.

Figure 10: Optimized support for curved domain

Figure 10 shows that curved boundaries do not dramatically affect the result of the optimization. Indeed,
we obtain arcs and tree-like structures as in the cases in rectangular domains. Moreover, the design is
self-supporting, since there are no long, horizontal regions which may collapse during the printing process.

Let us then compute supports for non self-supporting holes occurring in some popular structures, such as
the MBB beam (see for instance Figure 2c) and the cantilever beam. The results are reported in Figure 11.
Here, the design in light gray represents the part that we want to print. The structure in red is the computed
optimized support. The parts in blue represent zones which are included in the domain but where no material
is placed by the optimization.

The supports for MBB beam have been computed in a discretization made of 210, 234 T3 elements,
choosing a maximum volume fraction V̄ = 0.2 (relative to only the two triangles needing supports) and
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r = 0.008. Regarding the cantilever beam, the domain has been discretized by 167, 591 T3 elements with
V̄ = 0.2 and r = 0.01.

(a) Optimized support for MBB beam.

(b) Optimized support for cantilever beam

Figure 11: Optimized supports for holes and overhangs of popular structures

The optimized supports are tree-like and self-supporting, as we better demonstrate in the next sub-section.
Moreover, as in previous cases, the structure is made by a series of arcs. Finally, we also notice that the
pillars between two arcs are nearer and nearer as the height of the part to support is smaller. In this regard,
see, for instance, the sides of the top triangle of the cantilever beam. This happens because the “cost” (in
terms of used material) for adding a new vertical pillar (which optimally transfers the load from the top
to the bottom of the domain) gets smaller as the height of the pillar itself is reduced. Thus, supports in
short zones are made of several short pillars, while in high zones we have less, taller pillars to which multiple
branches are connected. Also in these last areas, however, we do not have so few pillars as to have branches
tilted more than 45◦ with respect to the build direction. Consistently with the analysis performed in Section
4, this can be again explained by the fact that such a structure would be arguably characterized by worse
loading transfer.

The presence of arcs in all these examples is also one of the features that differentiate our results from
tree-like supports present in the literature. Indeed, supports in [13] are generated starting from a sampling of
the surface of the overhanging part and each branch touches exactly one sample point. At the tip of arcs, on
the other hand, the two branches making up the arc touch the same points, which, moreover, do not come
from a sampling but from the result of an optimization, provided with mechanistic meaning.

5.2 2D extruded optimized designs

In order to demonstrate that the support structures computed by a topology optimization procedure are
indeed self-supporting, we here show that it is possible to actually print them without any additional support.

First, let us consider some supports computed in the previous subsection, apply a linear extrusion to
the computed results and try to print them. For instance, the designs in Figure 12 have been obtained by
applying a linear extrusion to the supports represented in Figure 9d and those for the MBB beam in Figure
11a.

We can then print the extruded designs. For instance, let us first print a simple example in a rectangular
domain. Applying a linear extrusion to the design in Figure 9d and 3D-printing the resulting structure using
Autodesk Ember, we obtain the structure in Figure 13a.

The structure has been printed along a build direction going from the bottom of the structure represented
in Figure 12a to the top. This reproduces the direction along which the structure would be printed if it had
to support an overhanging part. The fact that we were able to print this structure without further supports
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(a) Extruded design of Figure 9d (b) Extruded MBB beam (gray) and supports (red)

Figure 12: Linear extrusions of the optimized supports in Figures 9d and 11a

(a) 3D printed extruded solution for uniform distributed load in
a rectangular 3 × 1 domain. Printed in an Autodesk Ember.

(b) 3D printed detail of a support for part of a hole of
the MBB beam. Printed in an Ultimaker 3.

Figure 13: Linear extrusions of the optimized supports in Figures 9d and 11a

demonstrates that self-support holds. Indeed, the overhanging parts of the structure are small enough to be
self-supporting.

We can then pass to a more complex example and consider, for instance, the design in Figure 12b. In this
case, we print a detail of both the computed support structure and the MBB beam. In this way, we evaluate
not only self support, but also the ability of the optimized structure to indeed behave as a support. For
clearness, the part and the support are printed in two different colors. The results, printed in an Ultimaker 3,
are reported in Figure 13b.

The printed part shows that the computed structures successfully behave as supports. Indeed, they allow
us to print a design that would otherwise be impossible to print along the chosen orientation. Simultaneously,
they do not require further supports to be printed.

We highlight that the printed supports did not go through any post-processing (other than linear extrusion)
before printing. They are directly the result of the topology optimization performed with loading and boundary
conditions described in Section 2 with numerical data as in 3.1. Therefore, this analysis confirms that in
general the optimization leads to self-supporting designs. We thus have the remarkable feature that the
results of the topology optimization can be printed directly.

5.3 Large scale 3D optimization

It is now interesting to see whether this holds also when a 3D optimization is run. 3D problems have been
run on a cluster of computers, as detailed in Section 3.1. The results obtained here and in the following
Section have been computed by recurring to large-scale computing so to demonstrate that we can effectively
compute high-resolution optimized supports. In practice, however, lower resolutions may be acceptable and
can lead to a significantly smaller computational effort. Analogously, computational effort may be reduced
also by stopping the optimization procedure before its complete convergence. Depending on the problem, on
the desired resolution and on the available computational power it is, then, possible to find different trade-offs
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between the support optimization effort and the material usage reduction.
Considering, for instance, the MBB beam, the results of the optimization are reported in Figure 14 and the

subsequent 3D-printed structure are reported in Figure 15. The discretization has been performed using 33
million hexagonal elements, corresponding to more than 100 million variables. Volume fraction is Vf = 10%.

(a) Computed support (front)

(b) Computed support (bottom view) (c) Computed support (turquoise colored) inside
the overhang to support of the MBB beam
(in gray)

Figure 14: Optimized support structure for a 3D MBB beam

The first thing we notice is that we obtain tree-like structures also when we consider a 3-dimensional
domain. In a way, the results are, thus, similar to those obtained by performing a linear extrusion of 2D
results. Both, indeed, present structures characterized by arcs and branches. However, in extruded 2D
examples, we can have arc and pillars only along one direction (which is, along the length), while the linear
extrusion simply replicates the 2D design along the width. In 3D results, on the other hand, we have several
pillars, all separated from one another, on both length and width. The fineness of the features is evident not
only in the computed results of Figure 14, but also in the 3D printed sample in 15a, which has been printed
in a Form 2 V3 (FLTOTL03) 3D printer with SLA process (using tough resin with layer thickness at 0.1 mm.
Slicing was performed in PreForm software).

We also see that the computed supports are, again, mostly vertical. Critical overhangs are sufficiently
short and can be printed with no additional supports. This is demonstrated by Figure 15b, which also shows
that the computed structure can indeed act as a support. Indeed, both the green and the gray parts have
been printed together on an Ultimaker 3 3D printed (using PLA plastic, AA 0.4 print core, with 0.1 mm
layer height and 20% infill. Slicing conducted in Cura software). The fact that we were able to print the
green part (which is evidently not self-supporting) without structural failures and without supports other
than the results of our optimization testifies the applicability of the results of our approach for computing
real supports to real 3-dimensional structures. In the following, we also show how the supports computed by
a topology optimization process compare to those computed by existing software.
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(a) 3D-printed support

(b) MBB beam (in green) printed using the computed structures as supports (in
gray)

Figure 15: 3D-printed supports of the optimized 3D MBB beam

We remark that all the represented structures have been obtained with no post-processing. The results in
Figure 14 are directly the result of the optimization (extracted by a .vtu file using Paraview, as described in
Section 3).

We then consider the supports for a curved overhang. For example, we can assume we need to print a
dome. We consider domes of different heights. Figure 16 represents the results of the optimization for a “tall”
dome (whose elevation from the baseplate is equal to the diameter of the dome itself), for a “short” one
(whose elevation is now equal to 20% of the diameter) and for a dome which touches the printing plate.

The supports for the tall dome have been obtained by discretizing the domain by 132 million hexagonal
elements (corresponding to more than 400 million variables), volume fraction is Vf = 5% and the filter radius
is r = 0.02. The other domes have instead been reported for comparison and they have been obtained with
looser discretizations (amounting to just a few million hexagonal elements).

It is interesting to notice that more pillars appear as the dome gets shorter. This is reasonable and
consistent to what previously noticed. Indeed, the best way to transfer the load from the part to support (at
the top of the domain) to the base plate is by a straight pillar. A single, large pillar is however incompatible
with any reasonable volume constraint. Therefore, we get also branches, which connect the points of the
overhanging part to a pillar or to another branch. Clearly, when the structure is shorter, adding a new pillar
in less “expensive” in terms of volume fraction, while it improves the load transfer to the printing plate.
Therefore, shorter structures tend to have more pillars and, in general, more vertical parts. Nonetheless, as
explained earlier, also tall structures require pillars ensuring the load transfer, making so that also in these
cases the computed supports are mostly vertical and, thus, self-supporting.

Let us now 3D print the tall dome, whose optimized supports are reported in Figure 16a. The structure in
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(a) Tall dome (b) Short dome (c) Dome on printing
plate

Figure 16: Optimized support for domes of different heights

Figure 17 demonstrates that we are indeed able to print the curve surface (in red) using the computed supports
(black), which are, once again, tree-like and self-supporting. The reported design has been again printed by a
Ultimaker 3 3D printer using PLA plastic (AA 0.4 print core) with 0.1 mm layer height setting and 20%
infill. The support materials and dome were printed in separate color filament to aid with visualization of the
final print.

Figure 17: 3D printed optimized supports for a tall dome (printed in an Ultimaker 3)

5.4 Comparison with supports generated by existing software

After having established that the computed structures can successfully act as supports in a variety of situations,
it is now interesting to see how they compare to supports created by existing software. This analysis was
conducted through the Cura slicer, which simulates the print itself. Cura can then be also used to estimate
print time and filament length and to approximate the mass of filament used by each nozzle. In this regard,
Cura simulated a print in a Ultimaker 3 3D printer with dual extruders both printing in ABS plastic using AA
0.4 standard printing cores and with recommended settings at a fine print profile specifying a layer thickness
of 0.1 mm.
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First, let us compare graphically the renders of the support structures computed by our approach with
those recommended by Cura software. For instance, Figure 18 refers to the supports for the MBB beam.
Analogous results can be obtained by considering other situations, such as the domes we previously analyzed

(a) MBB beam with supports generated by
topology optimization

(b) Section of supports generated by
topology optimization

(c) MBB beam with supports generated by Cura
software

(d) Section of supports generated by Cura
software

Figure 18: Comparison of the supports for the MBB beam: supports computed by topology optimization vs supports
generated by Cura software

More precisely, in Table 1 we compare numerically the amount of material used by the two approaches.
In the table, “TO” denotes our strategy of computing the support structures by topology optimization.

Table 1: Numerical comparison of support structures computed by topology optimization and by Cura software

Print time Filament length Mass supports Mass reduction (%) with TO
MBB TO 1d 3h 50min 1.18m 9g

43.8
MBB Cura 0d 22h 47 min 2.07m 16g

Tall dome TO 0d 16h 59min 3.97m 23g
37.8

Tall dome Cura 0d 14h 25min 5.71m 37g

Short dome TO 0d 17h 47min 2.75m 21g
36.4

Short dome Cura 0d 18h 29min 4.27m 33g

This comparison shows that the structures computed by a topology optimization procedure greatly reduce
the amount of material used for the support. This is particularly remarkable since in the optimization we did
not choose the strictest volume constraint possible: indeed, we simply chose a priori a reasonable value for
the maximum volume fraction. It is therefore possible to further reduce the amount of used material.
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On the other hand, printing supports generated by topology optimization may require more time. This
is caused by the more complex shapes involved and by the fact that the printing of several columns and
branches makes so that the flux of material is started and stopped repeatedly, and the filament is hence less
continuous. Times are nonetheless comparable and support structures generated by topology optimization
can be printed faster in some cases, as in that of a short dome.

5.5 Easy removal of supports

Finally, it is interesting to give a few remarks about the possibility of coupling our approach with techniques
that make the removal of the supports easier after printing is complete. Indeed, the removal of the supports
is crucial in order to reduce the cost of post-processing and to enhance surface quality. Moreover, it makes
the comparison in the previous subsection more consistent, since supports generated by Cura software include
easy removal.

Easy removal is not included in the optimization procedure. Indeed, the optimization produces a structure
which, ideally, touches every point where the load is applied. Therefore, the computed support would be
hard to remove, since it would be connected to the part to print in large zones.

This can however be solved easily by considering some existing techniques for achieving an easy removal
of supports. Indeed, we can compute the support structure with a topology optimization procedure exactly
as done before. Then, we simply need to modify the structure at the interfaces between support and part to
print. In this regard, we can simply replace the continuous connections between support and part to print by
“comb-like” structures, where the part to print is connected to the support by several “teeth” which are easy
to detach.

Figure 19 represents a render of the support computed by our approach for the MBB beam “corrected”
at the interfaces so that it is easily removable after the printing is complete. Since these changes involve
only the interfaces between part and support, the amount of used material varies only slightly. Thus, the
comparison in Table 1 holds with no relevant modifications.

(a) Supports modified for easy removal (b) Detail of the interface between
support and part to print

Figure 19: Render of the optimized support for the MBB beam modified for easy support removal

6 Application to a real structure

After analyzing several domains characterized by loading and boundary conditions defined on different kinds
of boundaries, we aim at computing the optimized support for a more complicated, “real” structure. In this
regard, we chose to print a representation of the mascot of the University of Wisconsin-Madison, which is
called Bucky Badger. The model .stl file is represented in Figure 3b and approximated be the forms in Figure
3c.
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We considered two different approaches: conducting the optimization in the entire domain at once or
dividing it in some sub-domains. This last idea is particularly interesting for two reasons. First, running
the optimization in more separate processes allows us to use finer discretizations more easily. Indeed, if we
can split the domain and run the program separately in the various zones, we have great advantages in the
scalability of the problem. The second reason is that in a real structure it can definitely happen that we
have self-supporting zones alternated with other zones which instead need a support. Considering various
subdomains instead of running the optimization all at once over the entire domain can thus be easier and it
can also lead to supports which are easier to 3D print. On the other hand, the division of the domain can
be not banal and volume fraction, filter radius, etc of the optimization in the various subdomains must be
chosen consistently.

(a) Bottom view (b) Top view

(c) Side view and build direction

Figure 20: Optimized design with the entire volume as design domain

Figure 20 shows the results obtained conducting the optimization in the entire domain using 82, 944, 000
hexagonal elements (250, 737, 123 DOFs) and choosing a volume fraction Vf = 0.05 and filter radius r = 0.04.
The computation has been performed using 300 cores (distributed in 15 nodes, each containing 20 cores and
provided with 128 GB of RAM). Total computational time was 11 hours and 43 minutes.

We again notice that optimized supports are characterized by tree-like structures. Indeed, in Figures 20a
and 20c we can easily observe that the design is again made of branches connected to main pillars. Moreover,
although the overhang situation appears more critical than in previous examples, the optimized structure
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appears self-supporting. We will better demonstrate self-support in the following with an actual 3D print of
an analogous result.

We also notice that the we can divide the optimized structure in regions which are one independent from
the others. This is particularly evident in Figure 20b. We see, for instance, that the structure supporting
the head of Bucky is not connected to any other support by structurally important elements. We can easily
identify four similar “independent” regions: head, body and arms, left leg and, finally, right leg.

Exploiting that the supports of these regions are connected to other parts only by thin branches with
no evident structural purpose, we can run the optimization separately in these four areas. Running the
optimization in subdomains, we thus achieve the advantages described earlier. Moreover, this subdivision
domain is consistent with the results obtained running the optimization all at once and arguably leads to
similar results.

The optimized structure obtained from this subdomain-based optimization is reported in Figure 21.
Table 2 reports the data regarding the discretization, the choice of volume fraction and filter radius and the
computation for each subdomain.

The first thing we notice is that the design in Figure 20 and that in Figure 21 are really similar. Not
only they are both characterized by a tree-like structure, but also the disposition of pillars and branches is
analogous. This confirms that we could indeed run the optimization separately in the chosen subdomains.

A difference is instead that the resolution of the designs in Figure 21 is evidently higher. The total number
of elements used in the discretization is in fact larger, as we can see in Table 2. Indeed, the total number of
DOFs of the discretization exceeds 1.2 billion, almost five times as many as the DOFs of the discretization
used for computing the structure in Figure 20.

Lastly, we observe the flexibility of subdomains. Indeed, we can locally modify volume fraction (for
instance, to make some zones less bulky or, on the contrary, to use more material only where needed) and
filter radius. For instance, Table 2 shows that in the region containing body and arms we used a larger filter
radius, so do avoid thin branches which can easily form in this zone.

(a) Bottom view (b) Side view and build direction

Figure 21: Optimized support with 4 different subdomains: one for the head, one for the body and the arms and two
for the two legs

Lastly, the optimized support has been used to actually 3D print the model of Bucky. Figure 22a represents
a render of the optimized support applied to the model. Figures 22a, 22c and 22d then show the 3D printed
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Table 2: Numerical data of discretizations, optimization parameters and computational times in the subdomains

Sub-domain Elements DOFs Vol. frac. Filter rad. Number of cores Computational time
Head 132,217,728 405,017,091 0.05 0.02 300 12h 40m

Body and arms 130,842,624 394,948,755 0.04 0.05 300 16h 52m
Left leg 65,421,312 198,033,795 0.05 0.02 160 14h 28m

Right leg 67,108,864 202,903,299 0.05 0.02 160 12h 58m

Total 395,590,528 1,200,902,940 - - - -

part (in red) supported by the optimized structure (in black) from various viewpoints. Printing was performed
in PLA plastic on Ultimaker 3 printer using an AA 0.4 core. The fact that we were able to print the computed
design without additional support structures demonstrates that self-support of the optimized structure indeed
hold. Furthermore, Figure 22 also demonstrates that the computed structure can act as a support. Indeed, it
has been able to successfully support the model of Bucky that we printed along with the support itself.

7 Conclusions

We have presented a framework for generating self-supporting support structures for additive manufacturing
by a topology optimization procedure. We have formulated the problem as a compliance minimization
problem that exhibits analogies with compliance minimization of bridges and of roof supports, with, however,
a difference in zero-displacement boundary conditions. This difference fosters a comparison with transmissible
loads which, together with other mechanical considerations, helps explaining why the optimized structures
are usually self-supporting. Manufacturability constraints and length-scale control can moreover be used as
needed.

Numerical experiments demonstrate that the procedure is general and applicable to support parts of
various shapes, including those describing a complex model of the mascot of the University of Wisconsin-
Madison. Moreover, a comparison with supports generated by existing software shows that the computed
structures indeed employ less material than other approaches currently used. Finally, we actually printed
some designs, showing that the computed structures are indeed printable and can self-support.
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