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Abstract

The paper presents a Bézier triangle based isogeometric shape optimization method.
Bézier triangles are used to represent both the geometry and physical fields. For a
given physical domain defined by B-spline boundary, a coarse Bézier triangular pa-
rameterization is automatically generated. This coarse mesh is used to maintain
parameterization quality and move mesh by solving a pseudo linear elasticity prob-
lem. Then a fine mesh for isogeometric analysis is generated from the coarse mesh
through degree elevation and refinement. As the fine mesh retains the same geomet-
ric map as the coarse mesh, we can guarantee mesh validity with the coarse mesh
only. This bi-level mesh allows us to achieve high numerical accuracy of isogeo-
metric analysis and lower computational cost on mesh validity control and mesh
movement. Due to the use of B-spline boundary, the optimized shape can be com-
pactly represented with a relatively small number of optimization variables. Due to
the use Bézier triangles, this shape optimization method is applicable to structures
of complex topology and allows for local refinement for analysis. By representing
the squared distance between two Bézier curves as a Bézier form, a distance check
scheme is also introduced to prevent intersections of design boundaries and control
the thickness of structural connections. Numerical examples on minimal compli-
ance design and design of negative Poisson ratios are presented to demonstrate the
efficacy of the proposed method.

Keywords Isogeometric analysis, Bézier triangles, Jacobian ordinates, Distance con-
straints, Coarse and fine mesh, Material design, Negative Poisson's ratio

1 Introduction

Shape optimization is a classic discipline that seeks to find optimal shape to improve
structural performances under certain physical constraints [1, 2, 3]. Both moving mesh
[4, 5] and fixed grid based shape optimization methods [6, 7] have been proposed. The
goal of this paper is to present a Bézier triangle based isogeometric shape optimization
method.

∗An earlier version of this paper appeared in 2016 ASME International Design Engineering Technical
Conferences.
†Corresponding author. Email: qian@engr.wisc.edu
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Isogeometric analysis (IGA) is a numerical method for solving partial differential
equations (PDEs) in which same basis functions are used both to represent the geometric
models and to approximate the state fields. It enjoys many numerical advantages, such as
computational efficiency on a per-node basis, over traditional finite element analysis[8].
Due to the same geometry being used in design and analysis, it thus alleviates the usual
burden of model conversion, approximation and discretization in preparing the analysis
model from the design geometry. Isogeometric shape optimization [9, 10, 11] is a shape
optimization method where the same basis are also used to parameterize the shape,
in addition to being used for analysis. It thus inherits the advantages of isogeometric
analysis and the resulting shape can be directly imported into CAD systems, leading to
closer integration of design and analysis.

Non-uniform rational B-spline (NURBS) is the de facto standard representation of
geometries in CAD systems. It has been widely used in IGA [8] and in isogeometric
shape optimization. Usually, the coordinates of NURBS control points are selected as
optimization variables [9, 10]. The weights of NURBS control points are first considered
as design variables in [11]. An approach of shape optimization based on the isogeometric
boundary element is also proposed in [12]. The semi-analytical sensitivity analysis and
sensitivity weighting techniques are proposed recently in [13] to avoid the effects of the
chosen discretization on the design update. In [14], the discretization-dependency of the
shape gradient is investigated and normalization approaches are proposed to obtain a
discretization-independent normalized descent search direction. In the last few years,
the applications of isogeometric shape optimization have expanded from elasticity to
vibrating membranes[15], photonic crystals [16], electromagnetic scatterers [17] and fluid
mechanics [18]. Isogeometric shape optimization has also been successfully integrated
with sizing optimization [19] and material distribution optimization [20, 21].

Due to the tensor-product nature of NURBS surfaces, NURBS-based isogeometric
shape optimization only works well for quadrilateral design domains. A number of meth-
ods have been proposed to overcome the limitation. A natural solution is to subdivide
the design domain of complex topology into multiple quadrilateral patches. Qian and
Sigmund [16] used a collection of Coons patches to represent the topologically complex
geometries. The interior control points are determined for each Coons patch and their
nodal sensitivities with respect to the boundary control points are analytically calculated.
Similarly, Manh et al [15] utilized multiple quadrilateral patches to represent the vibrat-
ing membranes whose shapes could be allowed to change freely. Another way to handle
the limitation of tensor product characteristic is using trimmed surfaces [22]. Although
these methods can handle the complex topology issue to some extent, how to automati-
cally construct NURBS parameterization of a given design domain of complex topology
remains a challenging research issue.

In this paper, we present a new isogeometric shape optimization method that is ap-
plicable to topologically complex design domain. This approach is based on isogeometric
analysis on Bézier triangulations [23, 24, 25] where the design domain and physical fields
are represented through Bézier triangles. With this approach, for a given arbitrary design
domain defined with B-splines boundary, a coarse Bézier triangular parameterization is
automatically generated following the procedure presented in [23, 24]. This coarse mesh
is then used to evaluate mesh quality and to solve a pseudo linear elasticity problem
for mesh movement during shape optimization. A fine mesh for conducting isogeometric
analysis is then constructed from the coarse mesh through refinement and/or degree ele-
vation. The resulting fine mesh retains the same geometric map as the coarse mesh. Such
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a consistent bi-level mesh makes it possible to avoid mesh self-intersection and to guaran-
tee mesh validity during shape optimization with constraints on the Jacobian ordinates
of the coarse mesh only. In this way, the number of Jacobian ordinates (or constraints)
is relatively small. This bi-level mesh also allows the use of fine Bézier triangles based
analysis for numerical accuracy.

To prevent intersections of different design boundaries and control the minimum thick-
ness of connections, a distance check scheme is also introduced. This is implemented by
representing the squared distance between two Bézier curves as a Bézier form and impos-
ing constraints on the resulting Bézier ordinates.

In this paper, the proposed isogeometric shape optimization method has been ex-
tended to classical minimal compliance design problem as well as the design of mate-
rials with negative Poisson’s ratio (NPR). Such materials(also called auxetic materials)
shrink/expand laterally when compressed/stretched axially. A comprehensive review of
auxetic materials can be found in [26]. Although topology optimization has been rou-
tinely used to design auxetic materials [27, 28, 29], shape optimization is seldomly used to
design auxetic materials. Finite-element based shape optimization is employed in [30] to
guarantee uniform member sizes. Recently, NURBS-based isogeometric shape optimiza-
tion is applied to design star-shaped auxetic materials [31]. Compared with NURBS
representation in [31], Bézier triangles allow us to design unit cells with complex topology.
Furthermore, as the unit cells of the auxetic cellular structures tend to thin connections,
the proposed bi-level meshes become especially advantageous. The coarse mesh is used to
maintain mesh validity and move mesh. The fine mesh is only used to conduct analysis.
The optimized unit cells are periodically repeated to generate cellular structures. These
cellular structures are represented by B-spline boundaries and parameterized by Bézier
triangles. The B-spline representation allows us to link directly the optimized design to
CAD systems and the Bézier triangular mesh allows us to conduct analysis and verify
the NPR behavior.

We detail our approach below after a brief review of the basics of B-splines and Bézier
triangles in Section 2. Section 3 describes the procedures to automatically generate
Bézier triangular mesh for a given design domain defined by B-splines boundary. The
Jacobian ordinates of Bézier triangles are derived in Section 4. These ordinates are used
in the optimization to guarantee mesh validity. Section 5 formulates the optimization
problem and illustrates the Bézier triangle based isogeometric shape optimization method.
Formulations for auxetic materials design are also described. The shape sensitivities of the
objective function and constraints are derived in Section 6. Section 7 provides numerical
examples to demonstrate the proposed method. Finally, conclusions are drawn in Section
8.

2 B-splines and Bézier triangles

In the present work, we use B-splines to represent the domain boundary and Bézier
triangles to parameterize the design domain and conduct isogeometric analysis.

3



2.1 B-splines

A B-spline curve of degree d and n+ 1 control points is defined as [32]

C(u) =
n∑
i=0

ciRi,d(u), (1)

where ci is the i-th control point, and Ri,d is the i-th B-spline basis function for a given
parameter u.

2.2 Bézier Triangles

A single span of a B-spline curve is a Bézier curve which can be defined by Bernstein
polynomials. The d+ 1 Bernstein polynomials of degree d read

Bi,d(ξ) =
d!

i!j!
ξi(1− ξ)j, | i |= i+ j = d. (2)

Accordingly, a Bézier patch can also be defined by bivariate Berstein polynomials.
The d-th degree bivariate Berstein polynomial can be defined as

Bi,d(ξ) =
d!

i!j!k!
ξi1ξ

j
2ξ
k
3 , | i |= i+ j + k = d, (3)

where i represents a triple index (i, j, k). Let v1,v2,v3 be the vertices of a triangle τ and
(s, t) ∈ R2 be a point in τ , then ξ ≡ (ξ1, ξ2, ξ3) is the barycentric coordinate of the point
(s, t), i.e.

(s, t) = ξ1v1 + ξ2v2 + ξ3v3, ξ1 + ξ2 + ξ3 = 1. (4)

A triangular Bézier patch is defined as

x(ξ) =
∑
|i|=d

piBi,d(ξ), (5)

where pi represent control points of the patch. The number of control points is nc =
(d+1)(d+2)

2
. In the context of isogeometric analysis, Eq. (5) can be rewritten as

x(ξ) = NTp =
nc∑
l=1

Nlpl, (6)

where N represents the shape function matrix. Hence, each isogeometric element has nc
control points.

For isogeometric analysis, the same bivariate Bernstein polynomials defining a triangle
τ = {v1,v2,v3} can be used to define a polynomial function f(ξ) of degree d over τ as

f(ξ) =
∑
|i|=d

biBi,d(ξ), (7)

where bi (or bijk) are Bézier ordinates of f(ξ). Their associated domain points qi,j,k in
the triangle τ are defined as

qijk =
iv1 + jv2 + kv3

d
, i+ j + k = d. (8)
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Then (qijk, bijk) denote the control points of the polynomial function f(ξ). The function
f(ξ) can be evaluated over the triangle τ through the de Casteljau algorithm [33]. f(ξ)
is equal to bd(0,0,0)(ξ) and bri (ξ) is calculated as

bri (ξ) = ξ1b
r−1
i+e1

(ξ) + ξ2b
r−1
i+e2

(ξ) + ξ3b
r−1
i+e3

(ξ), (9)

where r = 1, · · · , d, |i| = d− r and e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1).

3 Domain parameterization

Whether in IGA or in FEA, the mesh has to be generated first before performing analysis.
In our work, we need to create the Bézier triangular mesh for a given physical domain
defined by B-splines boundary. For the design domain defined with arbitrary B-splines
boundary, automatic meshing is desired in order to avoid manual meshing or re-meshing.
In the present work, the Bézier triangular mesh is automatically generated following
the procedure introduced in [23, 24]. The procedure is briefly illustrated in Fig. 1 and
described as follows.

Step 1 For a given design domain defined with B-splines boundary of degree d (Figure
1(a)), each B-splines boundary is subdivided into Bézier segments through knots
insertion (Figure 1(b)).

Step 2 Construct the polygonal parametric domain Ω̂ by connecting the end points of
the Bézier segments and triangulating the parametric domain Ω̂ using triangulation
scheme (Fig. 1(c)). The only parameter that controls the triangulation process
is the maximum mesh size, h. This procedure leads to the triangulation of the
parametric domain, T̂ .

Step 3 Generate the domain points of degree d in the parametric domain (Figure 1(d))

for each triangle in T̂ based on Eq. (8).

Step 4 Replace boundary control points of T̂ in Fig. 1(d) with the corresponding points
of Bézier segments obtained in Step 1. Fig. 1(e) uses a patch to show the re-
placement process. As shown in Fig. 1(e), the middle control point of boundary
line (blue circle) is substituted with the corresponding boundary Bézier control
point(red circle). The final Bézier triangular mesh, T , is shown in Fig. 1(f).
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Interior control points
End control points

(a) Input geometric model with
B-splines boundary

(b) Step 1: Bézier extraction (c) Step 2: Triangulation of Ω̂

(d) Step 3: Domain points gen-
eration

(e) Step 4: Boundary replace-
ment

(f) Final physical domain

Figure 1: Parameterization of a domain bounded by B-spline curves with Bézier triangles.
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4 Parameterization quality of Bézier patches via Ja-

cobian

In our work, we want to guarantee mesh validity even when design boundary deforms
significantly. This can be achieved by representing the Jacobian determinant as a Bézier
form and guaranteeing those Bézier coefficients to be positive [16, 34, 35].

The Jacobian matrix of x(ξ) given by Eq. (5) is written as

J =

[
∂x
∂ξ1

∂y
∂ξ1

∂x
∂ξ2

∂y
∂ξ2

]
. (10)

Based on the Eq. (5), the partial derivatives of a triangular Bézier patch x(ξ) read

∂x(ξ)

∂ξ1

= d
∑
|i|=d−1

pi+e1Bi,d−1(ξ),

∂x(ξ)

∂ξ2

= d
∑
|i|=d−1

pi+e2Bi,d−1(ξ),

∂x(ξ)

∂ξ3

= d
∑
|i|=d−1

pi+e3Bi,d−1(ξ).

Then the determinant of Jacobian, |J|, can be written as

|J| = det[
∂x(ξ)

∂ξ1

− ∂x(ξ)

∂ξ3

,
∂x(ξ)

∂ξ2

− ∂x(ξ)

∂ξ3

]

= d2
∑

|s|=2d−2

Bs,2d−2(ξ)Js,
(11)

where Js are the coefficients of the Jacobian determinant and are called Jacobian ordinates
in our work. The Js read

Js =
∑

i1+i2=s

|i1|=d−1

|i2|=d−1

(
d−1
i1

)(
d−1
i2

)(
2d−2
i1+i2

) det[pi1+e1 − pi1+e3 ,pi2+e2 − pi2+e3 ]. (12)

From Eq. (11) we can know that if all Js are positive, so is the determinant |J|.

5 Shape optimization

This section describes details of the isogeometric shape optimization based on Bézier
triangles. The 2D elasticity problem is studied first to validate the proposed method.
Then the method is also applied to design materials with negative Poisson's ratio.

5.1 2D elasticity analysis

The governing equations for 2D elasticity with linear isotropic materials reads
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∇ · σ + f = 0 in Ω (13a)

u = ū on Γu, (13b)

t ≡ σ · n = t̄ on Γt (13c)

where f is the body force vector, t is the traction, and u is the displacement vector. Γt
and Γu are the boundary where the traction and displacement are specified. σ is the
stress tensor. In analysis, Eq. (13) leads to the following discrete governing equilibrium
equation

Ku = F, (14)

where K, u, and F are the global stiffness matrix, displacement vector, and force vector,
respectively. The stiffness matrix K and the force vector F can be assembled from the
element stiffness matrix Ke and the element load vector Fe. Ke and Fe read

Ke =

∫
Ω̂e

BTDB|J|tedΩ̂0, (15)

Fe =

∫
Ω̂e

NTf |J|tedΩ̂0 +

∫
Γ̂t

NTt|J|dΓ̂0, (16)

where D is the stress strain matrix, B is the strain displacement matrix, te is the plate
element thickness, Ω̂0 is the integration parent cell, and Γ̂0 is the traction boundary in Ω̂0.
The above integrals can be evaluated numerically by applying the Gaussian quadrature
rule on the element level.

5.2 Structural shape optimization

In our work, we focus on the development of the optimization method and study a simple
structural optimization problem, the minimization of the compliance under a volume
constraint. The corresponding optimization formulation reads

min
α

C(α,u(α)) = FTu (17a)

s.t. Ku = F (17b)

g(α) = V/V ? ≤ 1, (17c)

αlb ≤ α ≤ αub (17d)

where V ? is the maximum volume constraint. αlb and αub are the lower and upper bounds
of optimization variables. In our implementation, α represents the B-spline control points
of design boundaries, and contains the geometric information of the CAD model. Then it
is straightforward to link the bounds αlb and αub to dimensions of the CAD model. Based
on the convex property of B-spline curves, the bounds αlb and αub can be prescribed based
on the moving range of design boundaries.

In the work, the coordinates of the B-splines control points of design boundary are
chosen as optimization variables. Choosing the control points of B-splines rather than
the control points of Bézier curves as optimization variables has many advantages. First,
the number of optimization variables would be very small in the first case and the opti-
mization variables would remain the same during the optimization process. Second, the
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remeshing process becomes very convenient when choosing the control points of B-splines
as optimization variables. In this way, we just need to change control points of B-splines
and repeat the mesh generation procedure described in Fig. 1. Finally, choosing the
control points of B-splines as optimization variables can successfully obviate the need for
extraneous filtering [36, 37, 38]. It is because the control points of B-splines themselves
can be seen as averages of the Bézier control points for the same boundary [39].

The optimization process will be elaborated in the following through the optimal
design of a plate with a hole. The design problem is illustrated in Fig. 15.

Fixed B-splines control points
Movable B-splines control points
Control points of Bézier triangles

Control points of design boundary

(a) Design domain with B-splines
bounday

(b) Coarse Bézier triangular mesh T

(c) Fine mesh T ∗ with refinement (d) Fine mesh T ∗ with refinement
and degree elevation

Figure 2: Bézier triangular mesh generation for a plate with a hole. Only a quarter of
the plate is shown.

Mesh generation For a given design problem, the design domain will be defined by
B-splines boundary. For the design of a plate with a hole, the B-splines boundary for
a quarter of plate is shown in Fig. 2(a). Then a coarse Bézier triangular mesh T (Fig.
2(b)) is generated following the procedures as illustrated in Fig. 1. As the coarse mesh
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is just used to represent the geometry and check the mesh quality, a small number of
Bézier triangles with low degree are created. For the fine mesh T ∗, we generally use
a large number of triangles of higher degree in order to achieve high analysis accuracy.
For Bézier triangles, the fine mesh can be easily generated with refinement and degree
elevation from the coarse mesh. Fig. 2(c) shows the fine mesh T ∗ with once refinement
from the coarse mesh in Fig. 2(b) and Fig. 2(d) shows the fine mesh T ∗ with both
refinement and degree elevation.

(a) Initial mesh

(b) Locally refined mesh

Figure 3: Local refinement of thin connections. For better analysis accuracy, single-
element connections are refined.

In practice, if overly thin connections develop during the optimization process, the
generated coarse mesh may contain only one layer of triangles between different design
boundaries. This kind of connections are very stiff and may lead to numerical inaccuracy
in the analysis. Therefore, we require that at least two layers elements exist in the
thin connections. This can be implemented by uniform refinement as discussed above
or by applying very small element size. Both methods will lead to a large number of
elements and thus extremely increase the computational cost. Due to the use of Bézier
triangulation, we can instead just locally refine those triangles that singly connect multiple
boundaries. Figure 3(a) shows the initial coarse mesh of an intermediate design of a
cantilever with six holes. We can observe that only one layer of triangles exist between
holes. If we try to guarantee two layers of triangles in every thin connections, the mesh
size has to be extremely small. There exist only two types of this kind of single triangles.
For the type I (cyan), all the three vertices of the triangles are on the boundary; for
the type II (red), only two vertices are on the boundary and another vertex is in the
interior domain. For the type I, we perform uniform h-refinement by connecting edge
midpoints to subdivide each triangle into four triangles. For the type II, each triangle
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Γopt

Ω

Figure 4: Boundary conditions for the mesh movement problem. The problem is solved
based on the coarse mesh T as shown in Fig. 2(b).

is bisected across the edge that connects two different boundaries. The locally refined
triangular mesh is shown in 3(b). In this way, two layers of triangles are guaranteed in the
thin connections, and the total number of triangles hasn’t been dramatically increased.
It should be noted that any number of layers of elements can be generated within thin
connections by local refinement or uniform refinement. In our implementation, two layers
of elements are guaranteed in the thin connections for the coarse mesh through local
refinement, and four layers of elements are guaranteed for the fine mesh through further
uniform refinement.

Mesh movement As design boundary moves, the movements of the internal control
points are determined by solving a pseudo linear elasticity problem [40] based on the
coarse mesh T as shown in Fig. 2(b). The boundary conditions for the mesh movement
problem are shown in Fig. 4. Compared with the original design problem defined in
Fig. 15, only essential boundary conditions are applied in this case and the variation of
Bézier control points of the design boundary are imposed as prescribed displacements.
The pseudo linear elasticity problem then can be defined as

∇ · σ = 0 in Ω (18a)

u = δp̃B on Γopt , (18b)

u = 0 on ∂Ω\Γopt (18c)

where δp̃B defines the variation of control points of the design boundary in the coarse
mesh. By solving Eq. (18), the variation of the internal control points in the coarse mesh
T is calculated as

δp̃I = Aδp̃B, (19)

where A is a linear matrix and is computed in the preprocessing step. In our work, every
time a new coarse mesh is generated, the matrix A will be recalculated.

Mesh quality maintaining As the design boundary is allowed to largely deform, self-
intersections of boundary or meshes may occur. As illustrated in Fig. 5(a), as the design
boundary moves, self-intersection occurs in the coarse mesh. The corresponding Jacobian
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Jacobian ordinates
Control points of Bézier triangles
Control points of design boundary

(a) Coarse mesh T (b) Jacobian contour and ordinates for (a)

(c) Fine mesh T ∗ (d) Jacobian contour and ordinates for (c)

Figure 5: Jacobian of the coarse mesh and the fine mesh with self-intersections.

contour and the Jacobian ordinates are shown in Fig. 5(b). For the same geometry model,
the fine mesh and the corresponding Jacobian contour and ordinates are shown in Fig.
5(c) and (d), respectively. The number of the Jacobian ordinates of the coarse mesh
(Figure 5(b)) and the fine mesh (Figure 5(d)) are 75 and 560 separately. As control
points of the fine mesh are linear combinations of those of the coarse mesh, the Jacobian
ordinates of the fine mesh also linearly depend on those of the coarse mesh. That is
to say, as we have positive Jacobian ordinates of the coarse mesh, the non-negativity
of Jacobian ordinates of the fine mesh is automatically guaranteed. Therefore, only the
Jacobian ordinates of the coarse mesh can be used to guarantee mesh validity.

If negative Jacobian ordinates appear, the internal control points of the coarse mesh
are moved to guarantee a valid parameterization. This can be implemented by solving
the following bound problem [16]

max
p̃I,γ

γ (20a)

s.t. γ − Js ≤ 0, (20b)

where p̃I represent the internal control points of the coarse mesh, γ is an auxiliary op-
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(a) Rectified coarse mesh T (b) Jacobian contour and ordinates for (a)

Figure 6: Mesh rectification of the invalid mesh in Fig. 5(a).

timization variable and Js represent the Jacobian ordinates given by Eq. (12). The
optimization terminates as soon as γ becomes positive, i.e. a valid parameterization is
obtained. The mesh quality obtained in this way does not have to be very high [41].
Despite this drawback, the method provides a simple way to obtain a valid mesh. Fur-
thermore, the optimization problem can converge in a few iterations due to its convexity.
This is important to shape optimization as we need to optimize parameterization several
times. Figure 6 shows the rectified mesh of the invalid mesh in Fig. 5(a) and correspond-
ing Jacobian contour. The optimization takes only two iterations.

Based on the coarse mesh rather than the fine mesh, the mesh optimization problem
Eq. (20) would have less number of optimization variables and constraints, and thus save
the computational time. Plus, evaluation of Jacobian ordinates of the coarse mesh is also
computationally cheaper. This way to guarantee mesh validity makes a lot sense in the
shape optimization. Because we can ensure the mesh quality using the coarse mesh with
less computational cost, and simultaneously achieve higher analysis accuracy using the
fine mesh.

Although Eq. (20) can rectify the invalid mesh, it cannot avoid sliver elements (i.e.
long ”thin” elements). The presence of such elements can affect analysis results, and
even lead to inaccurate solutions. In order to remove sliver elements in a mesh, another
optimization formulation is introduced here to improve mesh quality. First, three criteria
are specified to define a sliver element. They are the ratio of the maximum side length to
the minimum side length, the minimum interior angle, and the maximum interior angle.
In our implementation, the threshold values for these three criteria are 20, 5 degrees and
175 degrees, respectively. If any of these three criteria are violated, an element will be
determined as a sliver element.

The interior angles of Bézier triangles can be explicitly controlled. As shown in Fig.
7, the interior angle between two Bézier edges can be represented by their control points.
The relationship between θ and the vectors P0P1 and Q0Q1 reads

cos θ =
P0P1 ·Q0Q1

||P0P1||||Q0Q1||
. (21)

Then the angle constraints can be imposed as

cos θ ≤ cos θl, cos θ ≥ cos θu, (22)
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P0;Q0

P1

P2 P3

Q1

Q2 Q3

3

Figure 7: Angle between two Bézier curves.

where θ represents the interior angles for every element, and θl and θu are the prescribed
lower and upper bounds, respectively.

For Bézier triangles, only the angle constraints Eq. (22) can not suppress large aspect
ratio of elements, i.e. long ’thin’ elements. In practice, it turns out these elements can be
suppressed by approximating a conformal map. Therefore, in our implementation, the
Winslow functional [42] is minimized to further improve the parameterization quality.
The Winslow functional is defined as

W =
tr((J)TJ)√

det(JTJ)
. (23)

As W is minimized, JTJ would be ”as identically diagonal as possible” [43], and J would
be almost a combination of scaling and rotation transformations.

Hence, the optimization problem to eliminate sliver elements can be defined as

min
p̃I

∫ 1

0

∫ 1

0

W (p̃)dξ1dξ2 (24a)

s.t. cos(θ) ≤ cos(θl) (24b)

cos(θ) ≥ cos(θu) (24c)

Js ≥ 0. (24d)

It should be noted that the angle constraints in Eq. (24) are imposed based on the
assumption that the mesh is valid. Therefore, Jacobian constraints Eq. (24d) are also
applied to obtain a valid parameterization. The Winslow functional is widely used to
improve parameterization quality in isogeometric analysis, e.g. [35, 15]. More information
on parameterization quality in isogeometric analysis can also be found in [44].

Figure 8 illustrates the elimination of sliver elements in a mesh without highly dis-
torted edges. Figure 8(a) shows a mesh with sliver elements, i.e. I,II and III. The
element I has the minimum angle 3.7 degrees. The elements II and III have the mini-
mum angle 3.0 degrees, and the ratio of the maximum side length to the minimum side
length 23.57. We solve Eq. (24) to remove these sliver elements. The optimized mesh is
shown in Fig. 8(b), for which the minimum angle is 19.66 degrees. It can be also observed
that there are no long ”thin” elements in the optimized mesh.

Then we investigate another mesh as shown in Fig. 9(a). This time the design
boundary is highly distorted. The minimum interior angle happens in the element I,
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(a) (b)

Figure 8: Elimination of sliver elements in a mesh without highly distorted boundaries.
(a) A mesh with sliver elements, (b) optimized mesh.

I

IV

V

(a)

IV

V

I

(b)

Figure 9: Elimination of sliver elements in a mesh with highly distorted boundaries. (a)
A mesh with sliver elements, (b) optimized mesh.

and it is 1.78 degrees. The optimized mesh with Eq. (24) is shown in Fig. 9(b). Angle
constraints are not satisfied in this case. For mesh in Fig. 9(b), the minimum angle
happens in the element I, and it is 4 degrees, which is still smaller than the given
lower bound θl = 5◦. The optimization problem Eq. (24) can not find solution in this
case. It is because the intersection angle between the boundary of the internal hole and
the adjacent boundaries are just 9 degrees, but there are two elements at the corners.
Therefore, as design boundaries are highly distorted, solving the optimization problem
Eq. (24) may not guarantee angle constraints. In this case, we resort to remeshing to
improve parameterization.

The regenerated mesh for the highly-distored mesh in Fig. 9(a) is shown in Fig. 10(a).
The Jacobian contour of Fig. 10(a) is shown in Fig. 10(b). It can be observed that after
remeshing, the mesh is valid, and there are no sliver elements. The minimum interior
angle is 9 degrees, which just equals to the intersection angle between the internal hole
and the adjacent boundaries. In practice, for the regenerated mesh, if there are a couple
of elements at the sharp corners, we just locally modify the mesh so that angle constraints
can be satisfied.
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(a) Regenerated coarse mesh T (b) Jacobian contour and ordinates for (c)

Figure 10: Remeshing a distorted mesh.

In our implementation, if Eq. (24) can not obtain high quality mesh in the given
iterations, e.g. 30, we do remeshing to improve parameterization. The criteria used to
evaluate mesh quality are the positivity of Jacobian ordinates and those criteria used
for judging sliver elements. It should be noted that, in order to impose interior angle
constraints, the angle between the adjacent B-splines boundaries should satisfy angle
constraints first. The intersection angles between the adjacent B-splines boundaries can
also be explicitly derived as in Eq. (21), and added to the optimization formulation Eq.
(17) as constraints. The number of these angle constraints are at the same level as the
number of B-spline boundaries. Therefore, only a few angle constraints are added into
the optimization formulation Eq. (17), and they have little effect on computational cost.

Boundary distance control In shape optimization, as design boundaries move, inter-
section may happen. Also, to make the optimized design manufacturable or avoid stress
concentration, the minimum thickness of connections should be controlled. In our work,
the distance between two design boundaries is explicitly controlled. The idea is to repre-
sent the distance function between two curves as a B-spline or Bézier form and directly
operate on the corresponding coefficients. In our implementation, we first extract Bézier
segments from B-splines boundary and then represent the squared distance between each
pair of Bézier curves as a Bézier form.

Given two Bézier curves, C1(u) and C2(v), of degree m and n

C1(u) =
∑
|i|=m

PiBi,m(u), u ∈ [0, 1] (25)

C2(v) =
∑
|j|=n

QjBj,n(v), v ∈ [0, 1], (26)

the squared distance between C1(u) and C2(v) reads

S(u, v) =

∑
|i|=m

PiBi,m(u)−
∑
|j|=n

QjBj,n(v)

2

=
∑
|r|=2m

∑
|s|=2n

Dr,sBr,2m(u)Bs,2n(v), (27)

where Dr,s represent the squared distance ordinates. The derivation of the Bézier form
Eq. (27) is explained in Appendix. The readers can also refer to [45, 46] for details.
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Due to the convex hull property of the Bézier representation, we can control the
minimum thickness of connections by the following constraints

Dr,s ≥ Dmin. (28)

where Dmin is the given limit of the squared distance. In practice, each knot span of a
B-spline boundary corresponds to one Bézier segment, and we need to derive the squared
distance between each pair of Bézier segments respectively on different B-splines curves.
From Eq. (27), we know that for two Bézier curves of degree m and n, there will be
(2m + 1) × (2n + 1) number of distance ordinates. Hence the number of the distance
ordinates will be huge as a large number of B-spline curves are employed to represent
the design domain. Then considering the point-wise distance constraints Eq. (28) in the
optimization will be computationally expensive.

In our implementation, instead of incorporating the constraints Eq. (28) into the
optimization formulation, we only check whether the constraints will be violated or not. If
violated, the step length of the optimization variables is reduced to satisfy the constraints
Eq. (28). Figure 11 illustrates this process. As the design boundary C1 is updated by
C1 + ∆C1, if intersection happens, then the updated C1 is moved back with a smaller
step length β∆C1. In practice, we just need to modify the optimization variables that
are related to the violated distance ordinates. This strategy to consider the distance
constraints is easy to implement and computationally cheap. It has been proved to be
efficient in distance control.

Flowchart In the end, the procedures of the proposed optimization method are briefly
summarized by the flow chart in Fig. 12. For a given geometry defined by the B-
splines boundary, the coordinates of control points of B-splines for the user-specified
design boundary are set as optimization variables, α. Each time the design boundary
is updated, the distance constraints Eq. (28) are checked first to prevent intersections
or guarantee the minimum thickness of structural connections. Then a coarse triangular
Bézier mesh, T , is automatically generated following the procedure discussed in Section
3. As the movements of boundary control points in T linearly depend on α through knots
insertion, the variation of the internal control points in T is determined by solving the

11 CC 

11 CC  

2C

1C

Figure 11: Determination of the step length after the distance constraints Eq. (28) are
violated.
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B-splines boundary

Distance constraints check

Coarse mesh T

Mesh movement by solving (18) on T

Jacobian ordinates on T

min(Js) < 0?

Fine mesh T ∗

Equilibrium equations (13) on T ∗

Sensitivity analysis

new α

Converged ?

End

min(Js) < 0?
Yes

Optimize mesh

Yes

Remesh

NoNo

No

Update

Yes

Figure 12: The flow chart of the optimization process.

pseudo linear elasticity equation Eq. (18). If the coarse mesh is invalid, the mesh would
be rectified by solving the mesh optimization problem Eq. (24). If the mesh rectification
process cannot obtain valid parameterization within 30 iterations, the coarse mesh would
be regenerated. The remeshing process just repeats the mesh generation process as
discussed in Section 3. After the coarse mesh becomes valid, a corresponding fine mesh
T ∗ is produced by elevating degree or refining mesh. The optimization variables are
updated based on the sensitivity information obtained from solving the linear equations
Eq. (13) on the fine mesh T ∗.

5.3 Auxetic materials design

The proposed shape optimization method is also used to design materials with negative
Poisson’s ratio. In the following, the strain energy based method [47] is first introduced
to predict the effective elastic tensor of a unit cell. Then, the optimization formulation
to design NPR materials is presented.

5.3.1 Prediction of effective elastic tensor of a unit cell

For a complex material with a periodic micro structure, we can use a unit cell, which
is the smallest repetitive unit of the material, to represent the material. The material
behaviors of the unit cell can be characterized by the average stress σ̄ij and the average
strain ε̄kl in a homogeneous medium. Considering linear elasticity, the constitutive law
between σ̄ij and ε̄kl is governed by the generalized Hooke’s law

σ̄ij = CH
ijklε̄kl, (29)
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where CH
ijkl is the homogenized elastic tensor. For a 2D orthotropic material, Eq. (29)

can be rewritten as σ̄11

σ̄22

σ̄12

 =

CH
1111 CH

1122 0
CH

2211 CH
2222 0

0 0 CH
1212

 ε̄11

ε̄22

2ε̄12

 . (30)

The effective elastic tensor CH can be calculated by the standard homogenization
approach [48, 49] and the strain energy method [47] for the unit cell. Compared with
the homogenization method, the strain energy method is relatively simple to implement.
The basis of the method is that the strain energy of the homogeneous medium, UH =
1
2
V σ̄ij · ε̄kl, and the strain energy of the unit cell, U = 1

2

∫
Ω
σijεkldΩ, are identical. That

is
1

2
V σ̄ij · ε̄ij =

1

2

∫
Ω

σijεkldΩ, (31)

where V is the volume of the unit cell. Then by selecting ε̄ij, the effective material
properties can be represented as the strain energy functionals of the unit cell under
different loading conditions [47, 50].

Since there are four independent constants in CH for the 2D orthotropic material,
four loading conditions are needed. For the unit cell with symmetric microstructure as
shown in Fig. 13(a), only a quarter of the unit cell is considered. Figure 13(b)-(e) define
these four loading conditions.

The first load case in Fig. 13(b) corresponds to the average strain ε̄kl = [1 0 0]T.
From Eq. (30) and Eq. (31), we calculate the strain energy of the homogeneous medium
as

UH
1111 =

V

2

1
0
0

T CH
1111 CH

1122 0
CH

2211 CH
2222 0

0 0 CH
1212

1
0
0

 =
V

2
CH

1111, (32)

and the strain energy of the unit cell under the loading condition in Fig. 13(b) as

U1111 =
1

2

∫
Ω

uTe KeuedΩ. (33)

Then from Eq. (31) we have

CH
1111 =

2

V
U1111. (34)

Similarly, the load cases in Fig. 13(c) and Fig. 13(d) define the strain state ε̄kl =
[0 1 0]T and ε̄kl = [0 0 1

2
]T, respectively. And CH

2222 and CH
1212 can be calculated as

CH
2222 =

2

V
U2222, (35)

and

CH
1212 =

2

V
U1212, (36)

where U2222 and U1212 are the strain energy of the unit cell under the loading conditions
in Fig. 13(c) and Fig. 13(d), respectively.
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(a)

௫ܝ ൌ 1

(b)

௬ܝ ൌ 1

(c)

(d)

௫ܝ ൌ 1

௬ܝ ൌ 1

(e)

Figure 13: Unit cell and boundary conditions of the 1/4 unit cell. (a) Unit cell. (b) Load
case 1. (c) Load case 2. (d) Load case 3. (e) Load case 4.
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The fourth load case in Fig. 13(e) corresponds to the average strain state ε̄kl =
[1 1 0]T. Then from Eq. (31) and Eq. (30), we have

UH
1122 =

V

2

1
1
0

T CH
1111 CH

1122 0
CH

2211 CH
2222 0

0 0 CH
1212

1
1
0


=
V

2
(CH

1111 + CH
1122 + CH

2211 + CH
2222)

= U1122 (37)

Considering Eq. (34), Eq. (35) and Eq. (37), we have

CH
1122 =

1

V
(U1122 − U1111 − U2222). (38)

5.3.2 Optimization formulation of NPR materials design

For a given material with periodic microstructure, the described strain energy method can
be employed to evaluate the material properties. In our work, the proposed isogeometric
shape optimization method is extended to design materials with NPR. The optimization
formulation is formulated as

min
α

J =
∑
i,j,k,l

ωijkl(C
H
ijkl − C?

ijkl)
2 (39a)

s.t. Ku(q) = F(q) (q = 1, 2, 4) (39b)

g(α) = V/V ? ≤ 1 (39c)

αlb ≤ α ≤ αub, (39d)

where CH
ijkl and C?

ijkl are the calculated and target elastic tensors, respectively. ωijkl are
the weights associated with constants in the tensor. q represent the load cases defined
in Fig. 13. For NPR materials design, only CH

1111, CH
1122 and CH

1122 are considered in the
objective function. Therefore, during the shape optimization, only three state equations
corresponding to the load cases defined in Fig. 13(b), (c) and (e) are solved.

6 Sensitivity analysis

Sensitivity analysis is a necessary part in the gradient-based optimization algorithm. In
the present work, the shape sensitivities of the structural compliance with respect to the
control points of the B-splines boundary are analytically derived. It reads

∂C
∂α

=
∂FT

∂α
u + FT ∂u

∂α
. (40)

Considering the equilibrium equation Ku = F, the Eq. (40) can be further written as

∂C
∂α

= 2
∂FT

∂α
u− uT∂K

∂α
u

=
N∑
e=1

(
2
∂FT

e

∂α
ue − uT

e

∂Ke

∂α
ue

)
, (41)
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where α are the coordinates of the control points of B-splines boundary. The lower case e
symbols indicate the element wise quantities and N is the total number of finite elements.

As stated in Eq. (41), to calculate the sensitivity of the compliance, we just need
to determine the terms ∂Ke

∂α
and ∂Fe

∂α
. In the work, ∂Ke

∂α
and ∂Fe

∂α
are derived by using

the chain rule. First, the derivative of Ke and Fe with respect to the coordinates of the
control points of the fine mesh, p, is calculated by following the procedures proposed in
[11]. Then the nodal sensitivities of p with respect to the optimization variables α will
be given. As shown in Fig. 14, if the B-splines control points c1 changes, the control
points of Bézier triangles in the coarse and fine mesh will change accordingly. Since
the boundary control points of the coarse mesh, p̃B, are obtained from B-splines control

points through knots insertion, ∂p̃B

∂α
can be directly derived. Then the derivative of the

internal control points in the coarse mesh, p̃I , with respect to p̃B can be evaluated based
on Eq. (19). Finally, since both degree elevation and refinement are linear manipulations,
the derivative ∂p

∂p̃
can also be easily obtained.

6.1 Shape sensitivities based on the fine mesh

Derived from Eq. (15), the sensitivity of the element stiffness matrix Ke with respect to
the s-th optimization variable αs reads

∂Ke

∂ps
=

∫
Ω̂e

∂BT

∂αs
DB|J|te + BTD

∂B

∂αs
|J|te + BTDB

∂|J|
∂αs

tedΩ̂. (42)

Likewise, according to Eq. (16), the derivative of the element load vector Fe can be
written as

∂Fe

∂ps
=

∫
Ω̂e

∂NT

∂αs
f |J|+ NT ∂f

∂x

∂x

∂αs
|J|+ NTf

∂|J|
∂αs

tedΩ̂

+

∫
Γ̂t

∂NT

∂αs
t|J|+ NT ∂t

∂x

∂x

∂αs
|J|+ NTt

∂|J|
∂αs

dΓ̂. (43)

In Eq. (43), ∂f
∂x

and ∂t
∂x

appear because the body force f and the traction t may depend

on locations. The term ∂NT

∂αs
vanishes as the optimization of weights is not considered.

So the left terms are ∂B
∂αs

, ∂|J|
∂αs

and ∂x
∂αs

, which will be evaluated following the procedures
proposed in [11]. Let us define an additional matrices G as

G =

[
∂N1

∂x
∂N2

∂x
· · · ∂Nnc

∂x

∂N1

∂y
∂N2

∂y
· · · ∂Nnc

∂y

]
.

Then we have

∂|J|
∂αs

= |J|tr(G ∂p

∂αs
), (44)

∂G

∂αs
= −G

∂p

∂αs
G, (45)

∂x

∂αs
= NT ∂p

∂αs
. (46)

After ∂G
∂αs

is computed, the term ∂B
∂αs

can be directly derived. In above equations, ∂p
∂αs

(nc
by 2) represents the nodal sensitivity and it will be calculated in the following subsections.
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6.2 Sensitivity propagation from the coarse mesh to the fine
mesh

As the coarse Bézier triangular mesh is automatically generated for a given CAD model
defined by B-splines boundary, we obtain the fine mesh through degree elevation and
mesh refinement. The control points for the coarse mesh are denoted as p̃.

Degree elevation Generally, we just use lower order(e.g. quadratic) Bézier patches to
define the geometric model but higher order patches for analysis. For example, we use
d+ 1 degree Bézier patches for the fine mesh and d degree for the coarse mesh. Because
the same patch is defined, then it reads[33]∑

|i|=d

p̃iBi,d(ξ) =
∑
|i|=d+1

piBi,d+1(ξ), (47)

with

pi =
1

d+ 1
[ip̃i−e1 + jp̃i−e2 + kp̃i−e3 ]. (48)

Derived from Eq. (48), then the sensitivities from control points of the coarse mesh to
those of the fine mesh are calculated by

∂pi

∂αs
=

i

d+ 1

∂p̃i−e1
∂αs

,
∂pi

∂αs
=

j

d+ 1

∂p̃i−e2
∂αs

,
∂pi

∂αs
=

k

d+ 1

∂p̃i−e3
∂αs

. (49)

Note that this degree elevation can be repeated to get higher order Bézier patches.

Mesh refinement For the uniform refinement process, each triangle in the coarse mesh
is divided into four triangles in the fine mesh as shown in Fig. 14. And each control point
in the fine mesh is a linear combination of the control points in the coarse mesh [51] and
can be evaluated using the de Casteljau algorithm stated in Eq. (9). Then the control
points of the fine mesh can be expressed as

pj =
∑
i

Cj,ip̃i, (50)

where Cj,i are coefficients. In the present work, Cj,i are obtained following the algorithm
proposed in [51]. Then the nodal sensitivity of pj reads

∂pj

∂αs
= Cj,i

∂p̃i

∂αs
. (51)

6.3 Sensitivity propagation from domain boundary to the coarse
mesh

During the mesh generation process, we extract Bézier segments from B-splines through
knots insertion. As shown in Fig. 14, as the B-splines control points c1 changes, the
control points of Bézier triangles on the design boundary, p̃B, change accordingly. The
internal control points of the coarse mesh, p̃I , are then updated during the optimization
by solving the pseudo linear elasticity problem Eq. (18).
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Fixed B-splines control points
Movable B-splines control points
Control points of Bézier triangles
Control points of design boundary

c1

(a) Design domain with B-splines boun-
day

(b) Coarse mesh

(c) Fine mesh with refinement (d) Fine mesh with refinement and degree
elevation

Figure 14: Nodal sensitivity propagation from B-splines boundary to the fine Bézier
triangular mesh. Control point c1 moves from the initial position as shown in 2(a) to the
current position.
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Knots insertion For a given B-spline curve with control points c0, c1, · · · , cn and knot
vector {µ0, µ1, · · · , µn+d+1}, a new knot value µ̄ can be inserted into the knot vector
without change the shape of the B-spline curve as follows.

Step 1 Find the knot span [µl µl+1] containing µ̄

Step 2 Find the associated control points cl−d, cl−d+1, · · · , cl
Step 3 Calculate d new control points

di = (1− βi)ci−1 + βici, (52)

with

βi =
µ̄− µi
µi+d − µi

, l − d+ 1 ≤ i ≤ l.

Then we have the new knot vector {µ0, µ1, · · · , µl, µ̄, µl+1, · · · , µn+d+1} and new control
points {c0, c1, · · · , cl−d,dl−d+1,dl−d+1, · · · ,dl, cl, cl+1, · · · , cn}.

To extract the Bézier segements, the above procedures are repeated until each knot
of the B-spline curve has multiplicity d. Finally, the control points of Bézier curves are
linear combination of those of B-spline curve and we have

p̃Bj =
∑
i

Mjici. (53)

Then the nodal sensitivities of the Bézier control points on the boundary read

∂p̃Bj
∂αs

= Mji
∂ci
∂αs

. (54)

Mesh movement by solving linear elasticity equation The variation of the inter-
nal control points of the coarse mesh is determined by solving the pseudo linear elasticity
problem Eq. (18). From Eq. (19), we have

∂p̃I

∂αs
= A

∂p̃B

∂αs
. (55)

7 Numerical examples

In this section, numerical examples are presented to show the validity of the proposed
isogeometric shape optimization framework. All examples assume the plane stress con-
ditions and use the same plate thickness te = 1.0. The convergence criteria used in our
optimization algorithm is the change of the objective function value

e =| C
k − Ck−1

C0

|,

where Ck represents the structural compliance at the k-th iteration. Unless otherwise
specified, e is set to 1e-6 in our work. The gradient-based optimization algorithm,
MMA[52], is utilized to conduct the optimization. The sensitivities of the objective
function and constraints are validated by the finite difference method.
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Figure 15: The design model of a plate with a hole.

Table 1: Comparison of analytical sensitivity with finite differencing

α ∆C
∆α

∂C
∂α

∂C/∂α
∆C/∆α

∆V
∆α

∂V
∂α

∂V /∂α
∆V /∆α

1 0.17246 0.17245 99.9949 -6.25000 -6.25000 100.0000

2 0.02189 0.02189 99.9955 -6.25000 -6.25000 100.0000

3 0.02279 0.02279 99.9928 -6.25000 -6.25000 100.0000

7.1 A plate with a hole

The benchmark problem, a plate with a hole, is first studied. The Young's modulus is
210 and the Poisson's ratio is 0.3. The maximum volume constraint for the problem is
9600. For this example, the move limits of α are set to αx ∈ [0, 30], αy ∈ [0, 30], so that
the optimal hole profile can be found. The design model, including boundary conditions,
loads, and design boundary, is shown in Fig. 15. We use five cubic B-splines curves to
represent the design domain and the control points for design boundary are indicated
as red solid circle (Figure 16(a)). For this simple problem, only five Bézier triangles are
used for the coarse mesh (see Fig. 16(b)). For the coarse mesh, we select the mesh size
as 100 during the mesh generation process. As cubic Bézier triangles are used in coarse
mesh, the control points on the design boundary are same with the control points of the
B-splines. Figure 16(d) shows the initial fine mesh used for isogeometric analysis, which
is generated by refining the coarse mesh in Fig. 16(b) three times.

Before optimization, the analytical sensitivity is checked by finite differencing, as
shown in Table 1. ∆/∆α and ∂/∂α represent the finite difference and the analytical sen-
sitivities, respectively. ∆α represents the perturbation amount of optimization variables
and it is set to 0.001. The sensitivities of the compliance C and the volume V are checked.
It can be observed from Table 1 that the analytical sensitivities excellently agree with
the finite difference sensitivities. The computing cost for the sensitivity analysis is seen
to be inexpensive. This example is performed on a HP EliteDesk 800 G1 desktop with
an Intel(R) i7-4790 processor, 16GB memory, Windows 7 SP1, and MATLAB R2014b.
The fine mesh (Figure 16(c) ) for analysis has 320 elements and 3002 degrees of freedom

26



Fixed B-splines control points
Movable B-splines control points

(a) Design domain with B-splines
bounday

(b) Initial coarse cubic Bézier trian-
gular mesh

(c) Initial fine cubic Bézier triangu-
lar mesh

(d) Optimized result

Figure 16: The design of a plate with a hole.
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Figure 17: The convergence history for the design of a plate with a hole.

(DOFs). The CPU cost is 2.5 seconds for the isogeometric analysis and 1.8 seconds for
the sensitivity analysis. As the coarse mesh (Figure 16(b)) only has 5 elements and 62
DOFs, it only takes 0.0065 seconds for solving the pseudo linear elasticity problem for
mesh movement. This verifies that the computational cost for mesh movement can be
significantly saved based on the coarse mesh. For comparison, we test the plate hole
problem in [11], which is based on NURBS representation, and it has 2312 DOFs. It
takes 2.8 seconds for the isogeometric analysis and 2 seconds for the sensitivity analysis.
It is seen that, even though the proposed method needs to solve a pseudo linear elasticity
problem for mesh movement, the total computational cost is still comparable to the cost
of the NURBS-based shape optimization.

The compliance of the problem converges to 466.5719 after 28 iterations and the
optimized shape is shown in Fig. 16(d). The convergence history of the compliance,
volume constraint and minimum Jacobian ordinate, is shown in Fig. 17. We can see that
the minimum Jacobian ordinate is always positive as the design boundary doesn’t change
too much. In this case, mesh optimization and regeneration are not needed.

For an infinite plate, the theoretical profile of the hole for this example should be an
exact circle under equal biaxial loading. Here, how well our results match the analytical
solution is investigated. Then, we redo the optimization by pre-setting weights of the
variable control points which allow the exact representation of the expected circle. The
specified weights are {1, 1+

√
2

3
, 1+

√
2

3
, 1}. The two optimized profiles with the specified and

unit weights are shown in Fig. 18(a). For comparison, the exact circular arc is also plotted
in Fig. 18(a). The differences among the three profiles are visually indistinguishable.
Figure 18(b) plots the magnified view of the profiles. We can observe that even though
the control points of the three curves are different, the hole profiles remain almost the
same. For better observing the differences among these three profiles, the radial distances
from the three profiles to the circle center are shown in Fig. 19. The maximum deviation
from the theoretical circle center is 0.234% percent for the B-spline representation and
0.231% for the NURBS representation. Compared to the results in [11], the difference
between the B-splines and NURBS representations is relatively small in our work. In
summary, as the differences among the three profiles are so small compared with results
from [9, 11], we can come to the conclusion that our method obtains the right solution.
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Figure 18: Comparison of optimized hole profiles for different boundary representations.
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Figure 19: Radial distance from the optimized hole profiles to the circle center.
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7.2 A cantilever with holes

We first study a cantilever beam with one hole, which is drawn from [53]. The dimensions,
loads and design boundaries are shown in Fig. 20(a). The Young's modulus is 15 and
the Poisson's ratio is 0.35. The maximum volume constraint for the problem is 95. The
domain boundary is defined with quadratic B-splines. For this problem, the move limits
of α are set to αx ∈ [0, 20], αy ∈ [−20, 20]. As shown in Fig. 20(c), quadratic Bézier
triangles are used for the coarse mesh. During the mesh generation process, the mesh
size is set to 0.8 in the example. The fine mesh is generated by once degree elevation and
once uniform refinement. Since the thickness of connections are relatively large compared
with the mesh size in the example, the local refinement and the distance control are
unnecessary.

Γopt

Γopt

Γopt

2

4

2

20

8

2Γopt
1.5

F = 1

Ω

(a) Design model (b) Design domain with B-splines bound-
ary

(c) Initial Bézier triangular mesh (d) Initial fine mesh

(e) Optimized coarse mesh (f) Optimized fine mesh

Figure 20: Design of a cantilever with one hole.

The optimal result is shown in Fig. 20(f), with the compliance of 19.57 and the volume
of 94.99. The optimized shape in Fig. 20(f) is similar with the result in [53]. Figure 21
shows the convergence history of the compliance, the volume constraint and the minimum
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Figure 21: Convergence history for the design of a cantilever with one hole. Dashed lines
show the iterations at which remeshing is invoked.

(a) Original coarse mesh

Jacobian ordinates

(b) Jacobian contour for (a)

(c) Regenerated valid mesh (d) Jacobian contour for (c)

Figure 22: Cantilever with one hole: remeshing at the 12th iteration to avoid mesh-
folding.
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Table 2: Summary of the optimization results for the cantilever beam

Type 1 hole 3 holes 6 holes 9 holes

Compliance 19.57 17.52 17.24 17.16

Jacobian. It can be easily seen that the minimum Jacobian ordinate is larger than zero
during the optimization, which means the mesh is valid. The dashed lines in Fig. 21
show the iterations at which we do remeshing. For this example, we only remesh three
times at the 9th, 18th and 29th iterations. Therefore, the remeshing process will not
increase computational cost too much as only a few remeshing operations are needed.
We can observe that the change of the compliance and volume constraint are very small
after remeshing. This is because the boundary control points, i.e. optimization variables,
remain the same during the remeshing process.

During the optimization process, the mesh can be largely distorted due to the large
deformation of design boundary. Figure 22(a) shows the coarse mesh at the 9-th iteration
before. We can see that the triangles around the hole are largely distorted and self-
intersections appear. In Fig. 22(b), the corresponding Jacobian contour and ordinates
are plotted. From the locally magnified inset figure, it is clear that the negative Jacobian
ordinate locates in the triangle where self-intersection happens. In order to avoid large
distortions and self-intersections, the mesh is regenerated based on the same domain
boundary. The regenerated coarse mesh is shown in Fig. 22(c) and the corresponding
Jacobian contour and ordinates are shown in Fig. 22(d), respectively. The new mesh
uses more triangular elements around the hole and the elements aren’t largely distorted.
The minimum Jacobian ordinate also becomes positive, with the value of 0.026.

In order to show that our method can work well for design problems with complex
geometry and allow large deformation of the design boundary, we increase the number of
holes in the design domain. The similar problems are also studied in [53]. Except adding
the number of holes, other dimensions and loading conditions are same with those in the
previous example. The maximum volume constraint is still 95. The Young's modulus
is 15 and the Poisson's ratio is 0.35. The domain boundary is defined with quadratic
B-splines. For the mesh generation process in this example, the mesh size is selected as
0.8. In order to avoid the single elements at the thin connections between holes, we do
local refinement for each generated coarse mesh. The coarse mesh uses quadratic Bézier
triangles. The fine mesh is obtained through once degree elevation and once uniform
refinement. Therefore, for the fine mesh, at least four layers of elements are guaranteed
within the thin connections. To prevent intersections of holes, the distance constraint
checking strategy is applied. The prescribed minimum squared distance, Dmin, is 0.04,
i.e. the distance between two curves should be larger than 0.2. The small limit is selected
so that the optimum design can be found.

The optimized designs for three, six and nine holes are shown in Figs. 23, 24 and
25, respectively. Table 2 lists the resulting compliance for the cantilever with different
number of holes. We can observe that as the optimal compliance decreases with the
number of holes. This is because more holes allow for larger design space to search the
optimal design. It can also be observed that this advantage becomes small starting from
three holes.

We use the nine holes example to illustrate the local refinement process and show
the distance control. The regenerated coarse mesh at the 95th iteration is shown in Fig.
26(a). We can observe that only one layer of elements exist within the thin connections
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Figure 23: Design of a cantilever with three holes.
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Figure 24: Design of a cantilever with six holes.
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(a) Initial mesh

(b) Locally refined mesh

(c) Uniformly refined mesh

Figure 26: Cantilever with nine holes: local and uniform refinement of single-element
thin connections. After refinements, at least four layers of triangles exist at the thin
connections.

36



uv

(a) Two B-spline boundaries in the initial
design

1
0.8

0.6
0.4

u
0.2

00
0.2v

0.4
0.6

0.8

0

5

10

15

20

25

1

S
(u

;v
)

(b) The squared distance function with
minDr,s = 3.224

v
u

(c) Two B-spline boundaries in the final
design

10.80.60.4

u
0.200

0.2v
0.4

0.6
0.8

0

10

20

30

40

50

1
S
(u

;v
)

(d) The squared distance function with
minDr,s = 0.041

Figure 27: Cantilever with nine holes: the squared distance visualization between two
boundaries in the initial and final designs, respectively.

between holes. Figure 26(b) shows the locally refined mesh, in which the single elements
between holes are subdivided. After local refinement, at least two layers elements are
guaranteed in the thin connections for the coarse mesh. For the fine mesh, once uniform
refinement is further applied to the coarse mesh. We can observe from Fig. 26(c) that at
least four layers of elements exist within the thin connections for the fine mesh.

For the distance control, we visualize the squared distance function between two B-
spline boundaries. Figure 27(a) and (c) show two B-spline boundaries in the initial and
final designs (Figure 25(c) and (d)), respectively. The squared distance function between
these two boundaries are shown in Fig. 27(b) and (d). Red points are the squared distance
ordinates. The minimum ordinates between these two boundaries are 3.224 for the initial
design and 0.043 for the final design. That is, the distance constraints are active in the
final design. For the two B-spline boundaries, we first extract Bézier segments and then
derive the squared distance ordinates between each pair of Bézier segments separately
on two boundaries. We can observe from Fig. 27(b) and (d) that the convex hull of the
squared distance function is very compact. Based on this fact, if the distance constraints
are active, the discrepancy between the real distance between B-spline boundaries and
the prescribed limit will be very small.

7.3 Auxetic materials design

In this subsection, two examples are presented for NPR materials design. The first ex-
ample considers a unit cell that is widely studied in literatures, e.g. [54, 30, 50]. This
unit cell has simple geometry and good manufacturability. In the second example, a
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relatively complex unit cell is optimized to show the ability of the proposed shape opti-
mization approach for complex topology. The geometry of the unit cell is motivated by
the topological design in [55]. In both examples, the optimized unit cells are periodically
arranged to form cellular structures. These periodic cellular structures are represented
by the B-splines boundaries, which can be easily linked to CAD systems. Further, Bézier
triangular meshes are generated for these periodic cellular structures and numerical tests
are conducted to verify the NPR behavior.

7.3.1 Unit cell with simple geometry

The first example optimizes a unit cell with a target Poisson's ratio ν = −1. The target
elastic properties are prescribed as C?

1111 = 0.1, C?
2222 = 0.1 and C?

1122 = −0.1. The
corresponding weights in the objective function are set as ω1111 = 0.5, ω2222 = 0.5 and
ω1122 = 5, which are selected based on the suggestions in [50]. The Young's modulus of
the solid material is 0.91 and the Poisson's ratio is 0.3. The given volume fraction of
the unit cell is 0.25. The unit cell is represented by quadratic B-splines boundaries. The
dimension of a quarter of the unit cell is 50 by 50. The move limits of B-splines control
points, α, are set to αx ∈ [0, 50], αy ∈ [0, 50], so that every control point can move around
freely in the unit cell. The design domain is discretized by quadratic Bézier triangles.
The fine mesh is generated by uniformly refining the coarse mesh. In the fine mesh, at
least four layers elements are guaranteed within the thin connections.

Figure 28 (a) and (b) show the initial coarse mesh and fine mesh of the 1/4 unit cell,
respectively. The optimized coarse mesh and fine mesh are shown in Fig. 28 (c) and (d).
The effective elastic tensor CH for the optimized design is

CH =

 0.0577 −0.0433 0

−0.0433 0.0578 0

0 0 0.0012

 ,
which corresponds a negative Poisson's ratio ν = CH

1122/C
H
1111 = −0.75. In our implemen-

tation, as we use the same weights ω1111 and ω2222, the designed unit cell should have the
same value for CH

1111 and CH
2222. However, due to asymmetric meshes during the optimiza-

tion, the optimized design can be asymmetric. Hence, there is a small difference between
ν12 and ν21, i.e. ν12 = 0.7491 and ν21 = 0.7504. The difference between the optimized and
desired negative Poisson's ratio partly results form the limitations of volume constraint
and symmetric boundary conditions. The convergence history of the example is shown
in Fig. 29. The optimization algorithm gets converged in 32 iterations and re-meshing is
invoked at the 20th iteration.

The unit cell is shown in Fig. 30(a), which is geometrically similar with the design by
topology optimization [50]. The unit cell is periodically repeated to generate the cellular
structure in Fig. 30(b). As this periodic cellular structure is also represented by B-splines
boundaries, it can be easily integrated to CAD systems for manufacturing.

To numerically verify the NPR behavior, Bézier triangular mesh is also generated for
the periodic cellular structure in Fig. 30(b). The dimension of the cellular structure
is 400 by 400. The boundary condition of the numerical test is shown in Fig. 31(a).
Left and bottom boundaries are supported and a displacement with a magnitude of -40
is applied on the right boundary. The initial shape and deformed shape of the cellular
structure are shown in Fig. 31(b) and (c), respectively. The color contour in Fig. 31(c)
shows the displacement in Y direction. As shown in Fig. 31(c), the structure shrinks
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(a) Initial corse mesh (b) Initial fine mesh

(c) Optimized corse mesh (d) Optimized fine mesh

Figure 28: Design of a quarter of the unite cell with simple geometry.
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Figure 29: Convergence history for the design of the unit cell with simple geometry.
Dashed lines show the iterations at which remeshing is invoked.
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(a) Unit cell (b) 4× 4 cellular structure

Figure 30: Unit cell and the periodically arranged cellular structure.
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Figure 31: Numerical verification of the NPR behavior. (a) Boundary conditions. (b)
Initial shape. (c) Deformed shape.
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(a) Initial corse mesh (b) Initial fine mesh

(c) Optimized corse mesh (d) Optimized fine mesh

Figure 32: Design of a quarter of the unit cell with complex geometry.

when it is compressed. The average displacement in the Y-direction on the top boundary
is ūy = 30.02, which is identical to the negative Poisson's ratio -0.75.

7.3.2 Unit cell with complex geometry

In the second example for material design, a unit cell with relatively complex geometry
is optimized. It should be noted that as we focus on demonstrating the proposed method
for complex topology, the manufacturability of the design isn’t considered during the
optimization. The target Poisson's ratio is ν = −0.5. The corresponding target elastic
properties are set as C?

1111 = 0.06, C?
2222 = 0.06 and C?

1122 = −0.03, which are selected
based on the results in [55]. The corresponding weights in the objective function are set
as ω1111 = 0.5, ω2222 = 0.5 and ω1122 = 5. The Young's modulus of the solid material is
1.0 and the Poisson's ratio is 0.2. The given volume fraction of the unit cell is 0.35. The
unit cell is represented by quadratic B-splines boundaries. Quadratic Bézier triangles are
used to discretize the design domain. The fine mesh is generated by uniformly refining the
coarse mesh. At least four layers of elements are guaranteed within the thin connections.

The initial designs and the optimized designs of the quarter of the unit cell are shown
in Fig. 32. Both coarse and fine meshes are plotted. The effective elastic tensor for the
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(a) Unit cell (b) 4× 4 cellular structure

Figure 33: Unit cell with complex topology and the periodically arranged cellular struc-
ture.

(a) (b)

Figure 34: Numerical verification of the NPR behavior of the unit cell with complex
geometry. (a) Initial shape. (b) Deformed shape.

optimized design is

CH =

0.0599 −0.03 0

−0.03 0.0599 0

0 0 0.0022

 .
The corresponding Poisson's ratio is -0.5, which matches the desired value. The full unit
cell and the periodically repeated 4 by 4 cellular structure are shown in Fig. 33. Numerical
simulation is also conducted for this cellular structure to verify the NPR behavior. The
boundary conditions of the simulation are same with those in Fig. 31(a). Figure 34 shows
the initial and the deformed shapes. It can be observed that the structure shrinks laterally
when axially compressed. The color contour in Fig. 31(b) shows the displacement in Y-
direction. The average displacement at the top boundary is -20.323, which leads to the
negative Poisson's ratio -0.508. This result matches very well with the designed NPR.
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8 Conclusion

An isogeometric shape optimization method based on Bézier triangles is proposed in the
work. For an input design model defined by B-spline boundary, the geometry is exactly
parameterized by a coarse Bézier triangular mesh. For isogeometric analysis, a fine Bézier
triangular mesh is used to represent physical fields. The coarse mesh is employed to
maintain mesh quality and to solve a pseudo linear elasticity problem for mesh movement
during the shape optimization. As the fine mesh retains the same geometric map as the
coarse mesh, we can achieve high accuracy in analysis with the fine mesh and ensure
mesh validity with the coarse mesh. This use of bi-level meshes is especially effective in
shape optimization since the mesh Jacobian evaluation based on the coarse mesh will be
computationally cheap.

For the selected benchmark problem, design of a plate with a hole, the proposed
optimization method obtains the correct solution. The design of a cantilever with holes
further demonstrates the ability of the proposed method to handle the design domains
of complex topology. In the multi-hole cantilever design, as connections between holes
in the final designs are overly thin and become single-element wide, a local refinement
scheme is employed to generate multiple layers of elements within these thin connections
to ensure analysis accuracy.

The proposed method is also employed to design materials with negative Poisson's
ratio (NPR). The optimized unit cells are periodically repeated to generate cellular struc-
tures. These cellular structures are represented by B-splines boundary, which can be di-
rectly integrated into CAD systems for manufacturing. Bézier triangular mesh is also au-
tomatically generated for the cellular structures and the NPR behavior is verified through
isogeometric analysis.

In order to ensure design boundary does not self-intersect, or become too close, a
distance constraint is explicitly imposed. In order to efficiently check the distance between
two B-spline curves, we cast the squared distance between Bézier curves into a Bézier
form. The convex hull property of Bézier form is then used for quick check of the distance.

In our future work, the Cr-smooth Bézier triangles will be used to parameterize the
design domain and represent the physical fields in order to take advantage of its com-
putational efficacy [23, 24]. During the shape optimization process, as design boundary
changes, how to construct valid Cr-smooth parameterization will be studied. Based on
Bézier tetrahedra [25], the proposed method will also be extended to 3D problems.
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[53] Grégoire Allaire and Olivier Pantz. Structural optimization with freefem++. Struc-
tural and Multidisciplinary Optimization, 32(3):173–181, 2006.

[54] Fengwen Wang, Ole Sigmund, and Jakob Søndergaard Jensen. Design of materials
with prescribed nonlinear properties. Journal of the Mechanics and Physics of Solids,
69:156–174, 2014.

[55] A Radman, X Huang, and YM Xie. Topological optimization for the design of mi-
crostructures of isotropic cellular materials. Engineering optimization, 45(11):1331–
1348, 2013.

47



Appendix

The squared distance between two Bézier curves can also be represented as a Bézier form.
Given two Bézier curves, C1(u) and C2(v), of degree m and n

C1(u) =
∑
|i|=m

PiBi,m(u), u ∈ [0, 1] (56)

C2(v) =
∑
|j|=n

QjBj,n(v), v ∈ [0, 1], (57)

the squared distance function between these two curves reads

S(u, v) =

∑
|i|=m

PiBi,m(u)−
∑
|j|=n

QjBj,n(v)

2

. (58)

The Bézier form of S(u, v) can be defined as

S(u, v) =
∑
|r|=2m

∑
|s|=2n

Dr,sBr,2m(u)Bs,2n(v), (59)

where Dr,s = Ar +Bs− 2Er,s are the squared distance ordinates and Ar, Bs and Er,s are
denoted as

Ar =
∑

i1+i2=r

|i1|=m
|i2|=m

(
m
i1

)(
m
i2

)(
2m

i1+i2

) (Pi1 ·Pi2), (60)

Bs =
∑

j1+j2=s

|j1|=n
|j2|=n

(
n
j1

)(
n
j2

)(
2n

j1+j2

) (Qj1 ·Qj2), (61)

Er,s =
∑

i1+i2=r

|i1|=m
|i2|=m

(
m
i1

)(
m
i2

)(
2m

i1+i2

) Pi1 ·
∑

j1+j2=s

|j1|=n
|j2|=n

(
n
j1

)(
n
j2

)(
2n

j1+j2

) Qj1 . (62)

Figure 35(a) shows two cubic Bézier curves symmetric with respect to x-axis. The
corresponding squared distance function and the ordinates are shown in Fig. 35(b). We
can observe that the maximum ordinate is 8, which corresponds to the squared distance
between (0, 1) and (2,−1) or (0,−1) and (2, 1), and the minimum distance happens at
u = 0.5 and v = 0.5. We can also notice that for the two cubic curves, 49 distance
ordinates are needed to represent the squared distance function.
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Figure 35: Squared distance between two Bézier curves.
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