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Highlights:

• Rational triangular Bézier splines (rTBS) is used for developing finite shell
elements based on Kirchhoff-Love shells. Using the proposed technique we can
achieve three major goals:

• Analysis of Geometric models of complex topology;

• Efficient local mesh refinement;

• Optimal convergence rate.

Abstract- This article presents application of rational triangular Bézier splines
(rTBS) for developing Kirchhoff-Love shell elements in the context of isogeometric
analysis. Kirchhoff-Love shell formulation requires high continuity between elements
because of higher order PDEs in the description of the problem; therefore, the non-
uniform rational B-spline (NURBS)-based IGA has been extensively used for develop-
ing Kirchhoff-Love shell elements, as NURBS-based IGA can provide high continuity
between and within elements; however, NURBS-based IGA has some limitations;
such as, analysis of a complex geometry might need multiple NURBS patches and
imposing higher continuity constraints over interfaces of patches is a challenging is-
sue. Addressing these limitations, isogeometric analysis based on rTBS can provide
C1 continuity over the mesh including element interfaces, a necessary condition in
finite elements formulation of Kirchhoff-Love shell theory. Based on this technology,
we use Cr smooth rational triangular Bézier spline as the basis functions for repre-
senting both geometry and solution field. In addition to providing higher continuity
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for Kirchhoff-Love formulation, using rTBS elements we can achieve three signifi-
cant challenging goals: optimal convergence rate, efficient local mesh refinement and
analysis of geometric models of complex topology. The proposed method is applied
on several examples; first, this technique is verified against multiple plate and shell
benchmark problems; investigating the convergence rate on the benchmark problems
demonstrate that the optimal convergence rate can be obtained by the proposed
technique. We also apply our method on geometric models of complex topology or
geometric models in which efficient local refinement is required. Moreover, a car hood
is modeled with rTBS and structurally analyzed by using the proposed framework.

keywords: Isogeometric Analysis, Shell elements, Kirchhoff-Love Shell, Rational
Triangular Bézier Splines (rTBS), Complex Geometry.

1 INTRODUCTION

Mechanical analysis of thinned-wall structures, shells, has always been an appealing
topic in engineering, owing to its key role in structural design and the complexity in
the physics of the problem. From computational standpoint, mathematics of shell
and plate formulations has drawn great attention; hence, there are manifold theories
of shells and plates with respect to the numerical application. Among these theo-
ries, Kirchhoff-Love and Reissner-Mindlin theories have been extensively employed
for developing finite element formulation of shells and plates mechanics. The major
difference between these two theories arises from physical description of problem; in
Kirchhoff-Love, the normal to the midsurface is assumed to remain normal after de-
formation. However, in Reissner-Mindlin, this normal can rotate after deformation
[1]. The Reissner-Mindlin formulation is relatively more accurate for thick shells and
it is generally used for this type of shells [2].

Although thin shell definition encompasses most shell structures in engineering
practice, Reissner-Mindlin is more attractive for application in finite element software
because the C0-continuity over elements interfaces is sufficient in Reissner-Mindlin
based FEM, while Kirchhoff-Love models require C1-continuity over elements and
their interfaces[3]. Despite many efforts for imposing C1-continuity on Lagrange
elements (e.g. [4, 5, 6, 7] and references therein), the developed formulations are
generally complex and expensive to implement. Hence, finite shell and plate elements
derived from Reissner-Mindlin theory are more widely used[8, 9, 10]. There are also
some other techniques in this regard, such as rotation-free thin shells with subdivi-
sion finite elements[11, 12], extended rotation-free shells including transverse shear
effects [13], meshfree Kirchhoff-Love shells[13] and discontinuous Galerkin method for
Kirchhoff-Love shells [14, 15]. Recently, Greco et. al [16] proposed a bi-cubic G1-
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conforming element for Kirchhoff plate model; using Lagrange multiplier and penalty
formulation they have achieved optimal convergence rate.

The Kirchhoff-Love model is appealing for numerical analysis due to its relatively
fewer degrees of freedom; using this theory, only the displacement fields have to be
computed,[17, 18, 19], whereas Reissner-Mindlin formulation requires both displace-
ments and rotation fields. Furthermore, Kirchhoff-Love formulation does not suffer
from the shear locking existing in Reissner-Mindlin shell and plate elements[19].

Isogeometric analysis (IGA), a new framework for finite element analysis intro-
duced by Hughes et al. [20], has become an appealing technology for the numerical
modeling due to its attractive properties, e.g. exact geometry representation, higher
convergence rate and achievable continuity within and between elements. These fea-
tures, in particular the continuity, have made IGA a promising framework for shell
and plate elements [21]. Initially, IGA was based on representing both geometry and
the unknown (solution) fields by non-uniform B-splines (NURBS) of high regular-
ity. Smooth NURBS functions can conveniently provide higher continuities. Kiendl
et al. [22] introduced the application of IGA for developing Kirchhoff-Love shell
elements. This work was followed by many other studies;[23, 24, 25, 26, 27, 28,
28] on various Reissner-Mindlin shells with isogeometric analysis. The hierarchic
family of isogeometric shell elements introduced by Echter et al. [29] includes 3-
parameter (Kirchhoff-Love), 5-parameter (Reissner-Mindlin) and 7-parameter (three-
dimensional shell) models. Solid-shell elements based on isogeometric NURBS were
investigated by Bouclier et al. [30], Hosseini et al. [31, 32], Du et al. [21]. The
shell formulation of Benson et al. [33] blended and used both Kirchhoff-Love and
Reissner-Mindlin theories.

Despite showing significant advantages, NURBS-based IGA has some limitations
such as lack of automatic parametrization, inefficient local mesh refinement and dif-
ficulties in complex topology representation [34, 35, 36, 37]. The problem of local
mesh refinement has been addressed by polynomial splines over hierarchical T-meshes
(PHT-splines) [38]. In the literature, the latter two issues have been dealt with mostly
by dividing the physical domain into multiple patches; this method gives rise to chal-
lenging complexities regarding the continuity over the interfaces of patches [21]. Mor-
tar, penalty method and Nitsche method, despite their limitations, have been used to
resolve the issue; Du et al. [21] employed the Nitsche method for isogeometric analy-
sis of a plate comprised of non-conforming multi-patches. Also, the same method has
been used by [39] for enforcing coupling constraints at trimming curves of thin shells.
In a study by Kiendl et al. [40], they used the bending strip method to impose the
C1-continuity over shell structures represented with multiple patches.

Considering limitations of NURBS-based IGA, we seek other techniques. Ratio-
nal triangular Bézier splines (rTBS), an alternative to NURBS, was developed in the
context of analysis by Qian’s group [41]. The rTBS framework has been improved
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by Xia et. al.[34, 42]; they achieved high continuity between patches and applied
the improved framework on various partial differential equations including elasticity
problem over 2D and 3D domains. Recently, rTBS has been used for developing
Kirchhoff-Love plate elements in [43]; they could obtain continuity over mesh by
using Lagrange multipliers. Moreover, their work is limited to only plate formu-
lation. Addressing the aforementioned challenges and limitations, this study aims
at developing a novel Kirchhoff-Love shell and plate elements formulation based on
the improved (rTBS) which provides the essential C1 continuity of Kirchhoff-Love
formation. We use Cr smooth rational triangular Bézier spline as the basis functions
for representation of both geometry and solution field. Geometry is discretized into
a set of Cr rTBS elements while the input geometry boundary is preserved. It is
worthwhile clarifying the definition of Cr smoothness in the article; this implies that
two polynomial functions in adjacent elements join r times differentiably across the
boundary. The Cr smoothness of the basis allows us to develop Kirchhoff-Love plate
and shell elements. In addition to the important contribution regarding continuity
for Kirchhoff-Love shell formulation, three significant objectives are achieved: optimal
convergence rate, efficient local mesh refinement and analysis of geometric models of
complex topology. These contributions are demonstrated through several examples.
First, we investigate the accuracy and convergence rate of the current method by
applying it on multiple benchmarks problems, for both plate and shell elements. In
the last example, the proposed method is used to model and analyze a car hood; this
example demonstrates the applicability of the current technology on real engineering
problems.

2 Formulations and Methods

This section presents the mechanics of thin shells, discretization and rational trian-
gular Bézier splines. A brief introduction on the mechanics of thin shells will allow us
to clearly explain how we use rTBS for solving the equations of thin shell mechanics.

2.1 Mechanics of thin shell

The formulation of thin shells mechanics are described, i.e., kinematics of thin shells
(based on Kirchhoff-love theory) and constitutive relations are briefly explained.

In the theory of Kirchhoff-Love shells, shell structure is assumed to be thin such
that transverse shear strains can be assumed negligible. This assumption implies that
a vector normal to the mid-surface remains normal after deformation and the shell
geometry description is reduced to its mid-surface[44]. The following formulations are
based on [38]. The Greek index α = 1, 2 denotes quantities in curvilinear coordinate
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Figure 1: Shell geometry. A denotes the parametric domain, Φ and φ represents the
shell geometry before and after deformation, respectively.

system. Also, capital letters are used for configuration before deformation. The shell
middle surface is parametrized by coordinates ξ1, ξ2 ∈ A ⊂ <2 (see Fig. 1). The
position of a material point in the reference configuration is defined by

X(ξ1, ξ2, ξ3) = Φ(ξ1, ξ2) + ξ3T (ξ1, ξ2), (1)

and deformed configuration

x(ξ1, ξ2, ξ3) = φ(ξ1, ξ2) + ξ3t(ξ1, ξ2), (2)

where t is the normal to surface and ζ ∈ [−0.5h, 0.5h] is the coordinate within the
thickness and h denotes the thickness. The functions Φ(ξ1, ξ2) and φ(ξ1, ξ2) map
middle surface from the parametric domain to the physical space, for reference and
deformed configuration. Kirchhoff-Love hypothesis implies that T and t are perpen-
dicular to Φα and φα

T =
Φ,1 × Φ,2

||Φ,1 × Φ,2||
, t =

φ,1 × φ,2
||φ,1 × φ,2||

, (3)

Φ,α · T = 0, |T | = 1, T · T,α = 0. (4)

The deformation gradient is defined by

F = ∇x · (∇X)−1, ∇x =


∂x1

∂ξ1

∂x1

∂ξ2

∂x1

∂ξ3
∂x2

∂ξ1

∂x2

∂ξ2

∂x2

∂ξ3
∂x3

∂ξ1

∂x3

∂ξ2

∂x3

∂ξ3

 . (5)

The covariant base vectors are given by
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gα =
∂x

∂ξα
= φ,α + ξ3tα, g3 =

∂x

∂ξ3
= t,

Gα =
∂X

∂ξα
= Φ,α + ξ3Tα, G3 =

∂X

∂ξ3
= T.

(6)

The Green-Lagrange strain tensor is defined by

E =
1

2
(F TF − I), (7)

where F and I denotes the deformation gradient and identity tensor, respectively.
The strain tensor components are decomposed into membrane and bending con-

tributions.

Eαβ = εαβ + ξ3καβ =
1

2
(gαβ −Gαβ) + ξ3(kαβ −Kαβ),

gαβ = g,α · g,β = x,α · x,β,
Gαβ = G,α ·G,β = X,α ·X,β,

kαβ = −gαβ · t, Kαβ = −Gαβ · T.

(8)

Using constitutive relations, we can define stress tensor (Voigt notation)

σ =

σ11

σ22

σ12

 =
E

1− ν2

1 ν 0
ν 1 0
0 0 1−ν

2

 E11

E22

2E12

 , (9)

where E is the Youngs modulus and ν denotes the Poissons ratio. The stresses are
decomposed into a membrane and a bending stress; after integrating through the
thickness,force and moment resultants are defined

n =

n11

n22

n12

 =
Eh

1− ν2

1 ν 0
ν 1 0
0 0 1−ν

2

 ε11

ε22

2ε12

 , (10)

m =

m11

m22

m12

 =
Eh3

12(1− ν2)

1 ν 0
ν 1 0
0 0 1−ν

2

 κ11

κ22

2κ12

 . (11)

To obtain the equilibrium between internal forces ans external loads, we can use
the principle of virtual work expressed as

δw = δwint + δwext = 0, (12)
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in which internal and external virtual work is given by

δwint = −
∫

Ω

(σ · δE)dΩ = −
∫
A

(n · δε+m · δκ)jdξ1ξ2, (13)

δwext =

∫
Ω

(q · δu)dΩ +

∫
Γt

(p · δu)dΓ, (14)

where j = ||Φ,1 × Φ,2||. we note that δE, δu, q and p and refer to variation of the
strain, variation of the displacement, body force and traction force, respectively.

2.2 Isogeometric Discretization

Based on the concept of isogeometric analysis, both shell surface and solution field
(displacement) are defined in terms of same basis functions

Φ(ξ1, ξ2) =
n∑
i=1

N(ξ1, ξ2)P i, (15)

N(ξ1, ξ2) and P i are the basis functions and control points, respectively. These terms
will be detailed in the next section.

u(ξ1, ξ2) =
n∑
i=1

N(ξ1, ξ2)ui. (16)

The membrane and bending strain can then be discretized by

ε(ξ1, ξ2) =
n∑
i=1

Bi
n(ξ1, ξ2)ui, (17)

κ(ξ1, ξ2) =
n∑
i=1

Bi
m(ξ1, ξ2)ui, (18)

where
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Bi
n =


N i
,1Φ,1 · e1 N i

,1Φ,1 · e2 N i
,1Φ,1 · e3

N i
,2Φ,2 · e1 N i

,2Φ,2 · e1 N i
,2Φ,2 · e3

(N i
,2Φ,1 +N i

,1Φ,2) · e1 (N i
,2Φ,1 +N i

,1Φ,2) · e2 (N i
,2Φ,1 +N i

,1Φ,2) · e3

 ,

Bi
m =


Bi
m11 · e1 Bi

m11 · e2 Bi
m11 · e3

Bi
m22 · e1 Bi

m22 · e2 Bi
m22 · e3

2Bi
m12 · e1 2Bi

m12 · e2 2Bi
m12 · e3

 ,
Bi
mαβ = Φ,αβ · T

1

j
[N i

,1(Φ,2 × T )−N i
,2(Φ,1 × T )]+

+
1

j
[N i

,1(Φ,αβ × Φ,2)−N i
,2(Φ,αβ × Φ,1)]−N i

,αβ · T,

(19)

N i refers to the i-th basis function and e1, e2, e3 denote the basis vectors of an or-
thonormal coordinate system. Considering equations. (10-18), we can create a set of
equations, Ku = f , to find the unknowns u. K, stiffness matrix, and f, external load,
are define by (before element assembly)

Kij =

∫
A
(h(Bi

n)TDBj
n +

h3

12
(Bi

m)TDBj
m)jdξ1ξ2, (20)

fi =

∫
A
qNijdξ

1ξ2 +

∫
∂A
pNi||Φ,t||dlξ. (21)

2.3 IGA Based on Rational Triangular Bézier Splines

This section presents IGA on triangulation based on [34]. Each knot span in a NURBS
curve corresponds to a Bézier curve which is defined by Bernstein basis functions.
Bernstein polynomial of degree d is given by

ψi,d(ξ) =
d!

i!j!
ζ i(1− ζ)j, | i |= i+ j = d. (22)

In this study we use Bézier triangles. Bézier triangles are based on bivariate Bernstein
polynomials. Bivariate form of Eqn. 22 describes the bivariate Bernstein polynomials:

ψi,d(ζ) =
d!

i!j!k!
ζ i1ζ

j
2ζ

k
3 , | i |= i+ j + k = d, (23)
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Figure 2: Barycentric coordinates of a point, P (s, t), in a triangle, τ . ζ1 = area(V3V2P )
area(V1V2V3)

,

ζ2 = area(V3V1P )
area(V1V2V3)

, ζ3 = area(V1V2P )
area(V1V2V3)

.

i refers to a triple index i, j, k. ζ1, ζ2, ζ3 are the barycentric coordinates of a point
(s, t) ∈ R2. Any points in a fixed triangle τ defined by vertices v1,v2,v3 (see Fig. 2)
can be described uniquely by

(s, t) = ζ1v1 + ζ2v2 + ζ3v3, ζ1 + ζ2 + ζ3 = 1. (24)

Given the above information, we can define a triangular Bézier patch

x(ζ) =
∑
|i|=d

piψi,d(ζ), (25)

pi is a set of control points. By considering weights, A rational Bézier triangle is
given by

x(ζ) =
∑
|i|=d

piΨi,d(ζ), (26)

where

Ψi,d =
wiψi,d∑

|i|=d

wiψi,d

(27)

wi refers to the weight of the control point pi. Isoparametric concept implies that we
can use the same bivariate Bernstein basis on a triangle τ with vertices v1,v2,v3 for
defining a d-degree polynomial function f over τ as

f(ζ) =
∑
|i|=d

biΨi,d(ζ), (28)

The bi (or bijk) refer to the Bézier ordinates of f; their corresponding array of domain
points are given by

qijk =
iv1 + jv2 + kv3

d
, i+ j + k = d. (29)
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(a) Triangular Bézier patch. (b) Associated domain points of the
Bézier ordinates bijk in {v1,v2,v3}.

Figure 3: Triangular Bézier patch and domain points.

The control polygon of the function f is determined by the points (qijk, bijk). Fig.
3 shows an example of a triangular Bézier patch and the associated domain points of
the Bézier ordinates.

Continuity within and between elements is the key requirement in finite shell
element based on Kirchhoff-love theory. C0 conforming triangular elements is one of
the techniques to develop Kirchhoff-love shell elements, in which rotation is calculated
as a degree of freedom. In the present method, however, rotation is not needed
to be considered as a degree of freedom. Here, we describe how we obtain high
continuity over triangular Bézier patches. Two degree-d polynomials f and f̃ join r
times differentiably across the interface of two triangles τ = {v1,v2,v3} and τ̃ =
{v4,v2,v3} if and only if [45];(j + k + ρ = d, ρ = 0, ..., r, )

˜bρ,j,k −
∑ ρ!

µ!ν!κ!
bµ,k+ν,j+κζ

µ
1 , ζ

ν
2 , ζ

κ
3 = 0, (30)

where ζ1, ζ2, ζ3 define the barycentric coordinates of vertex v4 in relation to triangle
τ . Fig. 4 demonstrate two triangular Bézier patches with C1 continuity across the
boundary of patches. The red solids represent free nodes of which values are indepen-
dently computed; these nodes determine the value of black solids, dependent nodes,
by applying the continuity constraints. The continuity constraints are imposed over
the gray area; this figure also illustrates the coplanarity of the control points in these
triangle pair.

Considering a parametric domain Ω̂ and its triangulation T̂ (Fig. 5), the spline
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Figure 4: Illustration of dependent and independent nodes. a) Two domain triangles,
b) two Bézier patches with c1 continuity. the red nodes represent free nodes whose
values can be independently set, these nodes determine the value of black nodes,
dependent nodes, through the continuity constraints. The shaded area shows the
triangles where continuity constraints are imposed; figure b demonstrates that the
control points in these triangle pair (indicated by ←→) are coplanar. For better
visualization, the control net is shifted up slightly.

spaces of piecewise d-degree polynomials T̂ is defined by [45]

Srd(T̂ ) =
{
f ∈ Cr(Ω̂) : f |τ ∈ P ∀τ ∈ T̂

}
, (31)

τ is an arbitrary triangle in T̂ and r refers to the continuity order of the spline over
Ω̂. A spline is called superspline when it has higher smoothness across some edges or
at some vertices, and the associated space is given by [45]

Sr,ρd (T̂ ) =
{
f ∈ Srd(T̂ ) : f ∈ Crv(V ) ∀v ∈ V & f ∈ Cre(e) ∀e ∈ E

}
. (32)

All vertices and edges are represented by V and E in T̂ and ρ := {v}v∈V ∪{e}e∈Ewith
r ≤ v, e ≤ d for each v ∈ V and e ∈ E. In order to obtain Cr spline spaces on
a triangulated domain Ω̂(T̂ ) multiple methods are available in the literature. Al-
though, imposing condition (9) directly on the triangles is a conventional technique;
the degree of the polynomial must be much higher than r, i.e. d ≥ 3r + 2 [44]. In
the present work, we also apply another method: splitting every triangle in T̂ into
multiple microtriangles before applying the continuity constraints on the microtrian-
gles. Clough-Tocher (CT) and Powell-Sabin (PS) methods are used for splitting. In
CT splitting method, each vertex of a triangle is connected to its centroid point; this
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(a) Triangulated Parametric Do-
main

(b) Triangulated Physical Domain

Figure 5: Illustration of a Triangulated physical and parametric Domain

(a) PS macro-element (b) CT macro-element.

Figure 6: Splitting methods used in this study. red and black nodes represent inde-
pendent and dependent nodes, respectively.

forms three micro-triangles. PS method splits each macro-triangle into six micro-
triangles with centroid point as the interior split point. Edges are then bisected (see
Fig. 6).

Using PS and CT macro-elements cannot guarantee obtaining optimal convergence
rate. Possible inconsistency in geometric map during the refinement can damage the
convergence rate; in order to avoid this inconsistency, we use smooth-refine-smooth
procedure [42]. In this method, a sufficiently smooth pre-refinement map is con-
structed; then, further refinement can be applied and following Cr continuity con-
straints, rTBS elements are formed. The refined control points do not relocate as they
have already satisfied the continuity conditions. The resulting mesh is Cr smooth,
and the geometric map remains the same and doesn’t suffer from inconsistency for all
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Figure 7: Problem setup. An isotropic square plate under a uniform transverse load;
t and a refers to the thickness and side dimension of plate, respectively.

subsequent refinements. This remedy for inconsistency allows us to obtain optimal
convergence rate. We also note that the initial geometry (surface) is C1 smooth.

In this study, the polynomial function is the displacement of the structure; follow-
ing Galerkin method and FE discretization, the weighted basis function introduced in
Eqn. (27) are plugged in B matrix, Eqn. (19). Also, the numerical integration is im-
plemented in each element (if split is used, micro-element) by standard and collapsed
[46] Gaussian quadrature rules on the boundaries and within element, respectively.
Details on triangular Bézier patches and continuity constraints can be found in [34].

3 Numerical Results

3.1 Plates

This section presents numerical examples for K-L plate formulation. In the first
two verification examples, convergence properties of the proposed approach are in-
vestigated. The third example, analyzing a geometric model of complex topology,
demonstrates that the current method can be used for local mesh refinement and
complex topology representation.

Convergence Study

In order to verify our method, an isotropic square plate under a uniform transverse
load is analyzed (Fig. 7). The exact solution (Eqn. 33) is extracted from [47] for
a square plate with simply supported boundary conditions. The simply supported
boundary condition is applied as a Dirichlet B.C.; i.e. the displacement of boundary
nodes are set to zero. We note that in plate formulation, the deformation distribution
is calculated in one direction, i.e. degree of freedom per node is one.
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Figure 8: C1 continuous mesh with PS split for a square plate. The red solid nodes
are free ( independent) nodes whereas white solid nodes are dependent nodes; values
of white nodes are determined through the continuity.

w =
4qa4

π5D

∞∑
m=1,3,5,...

1

m5
(1− αm tanhαm + 2

2 coshαm
cosh

2αmy

a
+

+
αm

2 coshαm

2y

a
sinh

2αmy

a
) sin

mπx

a

, (33)

where q, a and D represent transverse load, square dimension (see Fig. 7) and bending
stiffness, respectively. Also the dimensionless αm = mπ

2
.

Fig. 8 illustrates the C1 continuous mesh for this problem. The red solid nodes are
free (independent) nodes and white solid nodes are dependent nodes; the values of
dependent nodes are determined through the continuity constraints, as explained in
previous section.

Fig. 10 shows the results of the simulation when we set a = 1, t = a/1000, q = 0.01,
E = 107 and ν = 0.3. Fig. 11 illustrates the convergence rate for the simply supported
plate under uniform load. Using quadratic polynomial (p = 2), cubic polynomial
(p = 3) and quintic polynomials convergence rates (in L2 norm) are found to be 2,
3.1 and 3.5, respectively. This is the best convergence rate for this problem; quadratic
convergence rate for quadratic polynomial is consistent with error estimates proved
in [48, 49, 44]; for PDEs of order 2m with m ≥ 1 and exact solution u ∈ Hr

Ω, r is the
regularity, the error estimates in L2 is given by

‖u− uh‖L2(Ω) ≤ Chβ‖u‖Hr
Ω
, (34)
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(a) Parametric Domain (b) Physical Domain

Figure 9: C1 continuous mesh with PS split for a circular plate.

h,C and β refer to the size of elements, a constant (independent of u and h) and a
lower bound for the convergence order estimate, respectively. For Galerkin method
β is defined by

β = min{δ, 2(δ −m)},
δ = min{r, p+ 1},

(35)

where p is the polynomial degree. For cubic and quintic the well-established optimal
convergence rate of p+1 is not attainable, owing to the critical regularity of the exact
solution (r ≤ p+1) [44];for further details on regularity and optimal convergence rate,
readers are referred to aforementioned reference.

In the second example, the proposed method is tested against the problem of
simply supported circular plate under uniform loading. The exact solution (Eqn. (36)
is extracted form [44]

u(r) =
qr4

64D
(
r4

R4
− 2

3 + ν

1 + ν

r2

R2
+

5 + ν

1 + ν
), (36)

where r denotes the distance from the center of circle and R is the radius of circle.
Fig. 9 shows the C1 continuous mesh for circular plate. The red solid nodes are

free (independent) nodes and white solid nodes are dependent nodes; the values of
dependent nodes are determined through the continuity constraints, as explained in
previous section.
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Figure 10: Computed deformation distribution of the isotropic square plate under a
uniform transverse load. For a finer visualization in 3D view, numerical results are
artificially scaled up.

Fig. 12 demonstrates the estimated deformation distribution for this problem.
Fig. 13 illustrates the convergence rate for quadratic, cubic and quintic polynomials;
optimal convergence rate is attained for all polynomials; for quadratic polynomials
convergence rate is found to be approximately p = 2; differently from square plate
analysis, optimal convergence rate (p+1) is obtained for cubic and quintic polynomials
because the exact solution does not hold any critical regularities.

Complex Topology and Local Refinement

The last example indicates the functionality of current technique for representing
a geometric model of complex topology. Fig. 14 shows the mesh model (quadratic
elements with PS split, number of free nodes=582) of a plate with three holes; the
mesh is efficiently refined around the holes without refinement in the rest of the
geometry. Local mesh refinement can be useful for error-adaptive mesh refinement.
Fig. 15 demonstrates the computed deformation distribution in this plate; the model
is under uniform distributed load and boundary edges are fixed.
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Figure 11: The convergence rate for the problem of simply supported plate under uni-
form load. For quadratic polynomial (a), cubic polynomial (b) and quintic polynomial
(c) convergence rates are found to be 2, 3.1 and 3.5, respectively.
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Figure 12: Computed deformation distribution of an isotropic circular plate under a
uniform transverse load. For a better visualization in 3D view, numerical results are
artificially scaled up.
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Figure 13: The convergence rate of circular plate analysis for quadratic (a), cubic (b)
and quintic (c) polynomials; optimal convergence rate is attained for all cases.
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Figure 14: Mesh model (PS split) of a plate with three holes; mesh around the holes
is locally refined without refinement in the rest of the geometry.

Figure 15: The deformation distribution in a plate with three holes; The plate is under
uniform load and simply supported boundary conditions. For a better visualization
in 3d view, numerical results are artificially scaled up.
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(a) Parametric Domain (b) Physical Space

Figure 16: Parametric and physical C1 mesh with CT split. We use cubic triangular
elements.

3.2 Shell Structures

This section begins with a benchmark problem for verifying the proposed method for
shell elements (both bending and membrane effects are considered). Then, results for
different geometric models are presented.

3.2.1 Benchmark problem: Scordelis-Lo Roof

Scordelis-Lo Roof, a benchmark problem for shell elements [50], is cylindrical geom-
etry (length=50m, radius=25) under uniform vertical load 90N/m2 (gravity). The
material properties are defined as, E=432 MPa and ν = 0. Fig. 16 shows the mesh
model in both parametric and physical space; we use CT method for splitting cu-
bic macro-elements and there are 1667 free nodes in domain. The reference solution
is the vertical displacement of midside, which is 0.3086 [50]. By using the proposed
method, we obtain 0.308 for the midside vertical displacement shown in Fig. 17, which
indicates the accuracy and reliability of the current technique.

3.2.2 Complex Geometries

We show that the current technique can be conveniently used to analyze shell structure
of complex geometries. First, we apply our method on a shell with single hole. The
geometric model is provided in Fig. 18. The structure is under vertical load and the
outside boundaries are fixed in all directions. We use quadratic elements for this
simulation and macro triangles are split by the PS method (Fig. 19). Also, there
are 864 free nodes in the domain. Fig. 20 demonstrates the results of deformation
distribution in vertical direction for a shell with single hole.
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Figure 17: The computed deformation distribution for Scordelis-Lo Roof. The maxi-
mum vertical displacement (0.308) occurs in the midside.

Figure 18: The triangulated geometric model of a shell structure with single hole.
This also shows the C1 continuous mesh model with PS split.
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(a) Parametric Domain (b) Physical Space

Figure 19: Parametric and physical mesh. We use quadratic triangular elements with
PS split.

Figure 20: The computed deformation distribution for a shell structure with single
hole.
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3.2.3 Engineering Practice

In the last example, a car hood is modeled and analyzed. The geometric model
of the car hood is extracted from a car cad model available in Grabcad website
[designed by F. Kaya and M. Jadhav]. By creating multiple bi-cubic tensor product
Bézier patches [twenty patches] over the surface in SolidWorks, the original model is
converted to a surface represented by Bézier patches. We use Rhino to convert these
cubic patches to quadratic patches since quadratic Bézier patches can be converted
to relatively lower order Bézier triangles (Bézier triangles of degree four); therefore,
in this work we use quartic Bézier triangles with PS splitting method, generating
3790 free nodes. The Bézier patches are converted to rational Bézier triangles by
using in-house codes (Fig. 21). This example demonstrates the applicability of the
proposed technique for real engineering problems; this is a significant contribution of
our work as geometric models of complex topology are pretty common in engineering
practice; moreover, local mesh refinement is typically needed for efficient and accurate
simulation. Quartic elements and PS splitting method are used for generating the
mesh model in Fig. 22. All the boundaries are fixed in all directions and vertical
uniform load is applied on the model. Fig. 23 illustrates the deformation distribution
in vertical direction.

Conclusion and Future Works

We developed a rational triangular Bézier spline based isogeometric analysis approach
to plate and shell problems. The C1 smoothness of the rTBS elements has allowed
us to employ the Kirchhoff-Love formulations. Besides providing the essential con-
tinuity over mesh, this technique offers some significant advantages, including those
inherited from the concept of isogeometric analysis, for instance preservation of ex-
act geometry representation. Using the rTBS-based isogeometric analysis on several
examples, we showed that the presented method enables us to achieve three signifi-
cant goals: obtaining the optimal or the best possible convergence rate, locally and
efficiently refining mesh, and representing a thin geometric model of complex topol-
ogy. Furthermore, we analyzed a car hood by using the current technique, which
demonstrated the functionality of this technique for simulation of real engineering
problems. Future work will be focused on development of non-linear shell elements
based on rTBS formulation. This will open new opportunities in investigating more
engineering problems for which consideration of non-linearity and high accuracy are
of particular interest.
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(a) Cad model of a car (extracted from Grabcad website, designed by F. Kaya
and M. Jadhav) and its hood represented by multiple Bézier patches

(b) The geometric model of car hood. This model has been
created by converting the tensor-product Bézier patches to
triangular Bézier patches.

Figure 21: Geometric model of a car hood
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(a) Parametric Domain

(b) Physical Space

Figure 22: Parametric and physical mesh. We use quartic triangular elements.

26



Figure 23: The computed deformation distribution for car hood. The maximum
vertical displacement is 28µm.
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