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Abstract

This paper presents an approach for isogeometric analysis of 3D objects using
rational Bézier tetrahedral elements. In this approach, both the geometry and the
physical field are represented by trivariate splines in Bernstein Bézier form over
the tetrahedrangulation of a 3D geometry. Given a NURBS represented geometry,
either untrimmed or trimmed, we first convert it to a watertight geometry rep-
resented by rational triangular Bézier splines (rTBS). For trimmed geometries, a
compatible subdivision scheme is developed to guarantee the watertightness. The
rTBS geometry preserves exactly the original NURBS surfaces except for an inter-
face layer between trimmed surfaces where controlled approximation occurs. From
the watertight rTBS geometry, a Bézier tetrahedral partition is generated automat-
ically. By imposing continuity constraints on Bézier ordinates of the elements, we
obtain a set of global Cr smooth basis functions and use it as the basis for analysis.
Numerical examples demonstrate that our method achieve optimal convergence in
Cr spaces and can handle complicated geometries.

Keywords Isogeometric analysis, Bézier tetrahedron, Trimmed NURBS geometry, Wa-
tertight geometry, Cr smoothness, Optimal convergence

1 Introduction

Isogeometric analysis (IGA) is a numerical analysis approach introduced by Hughes et
al [1] to integrate Computer-Aided Design (CAD) and Finite Element Analysis (FEA).
It uses the same Non-Uniform Rational B-Splines (NURBS) as basis to represent both
geometry and physical field. The exact CAD geometry is preserved in the analysis mesh,
there is no need for the FEA systems to interact with the CAD systems during mesh
refinement. The compatibility of IGA with CAD systems also motivates the development
of isogeometric based shape optimization [2, 3, 4]. Other benefits of NURBS based IGA
include its numerical efficiency and accuracy on a per-node basis, due to the high order
of continuity of NURBS basis over classical C0 Lagrange basis.

However, it is challenging to use tensor-product structure of NURBS to represent
complicated geometries and to allow local refinement. A general 3D geometry is usually
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represented by multiple NURBS surfaces. It is a known challenge to generate NURBS vol-
umetric parametrization for analysis from such complex geometries [5, 6, 7]. In addition,
trimmed geometry is a common occurrence in CAD systems to represent complicated
shapes. This poses another challenge for isogeometric analysis because of the model
gaps presented in trimmed geometries. Gaps are usually unavoidable when two trimmed
NURBS surfaces are stitched together [8]. Fixing the gaps with NURBS often leads to
many small NURBS surfaces [9], making it even more difficult to generate volumetric
representations.

To overcome such issues, T-splines [10, 8, 11] and Catmull-Clark subdivision surfaces
[12] have been used to convert trimmed geometries to watertight representations, which
can be used in isogeometric analysis [13, 14, 15, 16]. However, T-splines and Catmull-
Clark subdivision surfaces also face the challenge of constructing volumetric parametriza-
tion from surface representations. Extraordinary nodes with degenerated continuity are
usually unavoidable in the generated solid T-splines [17, 18] or Catmull-Clark subdi-
vision surfaces [16] for geometries with complex topology. Optimal convergence rates
in isogeometric analysis of general geometry with extraordinary vertices have yet to be
demonstrated.

As an alternative, IGA on triangulations has emerged recently, where Powell-Sabin
B-splines [19, 20, 21], triangular B-splines [22] and more generalized rational triangular
Bézier splines (rTBS) [23, 24] over 2D triangular mesh are used as basis to solve partial
differential equations (PDEs). All these methods possess the merits of efficient local
refinement and high order of continuity. The advantages of Powell-Sabin B-splines are
its normalized basis [25, 26, 27, 28] with nonnegativity and partition of unity, which are
favorable for both geometric modeling and numerical analysis. The advantages of rTBS
include their ability to exactly reproduce arbitrary NURBS geometry and to achieve
optimal convergence in analysis [24]. Moreover, it can be extended to trivariate splines
over tetrahedral partitions, which are able to represent complex solid geometries.

Bézier tetrahedral elements have been used together with trivariate tensor-product
B-splines to form a hybrid volumetric representation from untrimmed B-spline surfaces
[29]. However, the elements only join with C0 smoothness and it does not handle trimmed
geometries nor demonstrate optimal convergence. Trivariate splines of arbitrary smooth-
ness have been used for data fitting [30] and numerical approximations of the 3D steady
state Navier-Stokes equations in a cube [31]. In these works, the smoothness constraints
are enforced through Lagrange multipliers. This leads to a singular matrix in the linear
system and needs special treatment.

In this paper, we extend our earlier work of IGA with Bézier triangles [23, 24] to
Bézier tetrahedra, using rational trivariate Bernstein polynomials over tetrahedral mesh
as basis for analysis. We first convert a NURBS geometry (either trimmed or untrimmed)
into a watertight rTBS geometry. A compatible subdivision scheme is developed to guar-
antee the watertightness of trimmed geometries. The converted rTBS geometry preserves
exactly the original NURBS surfaces except for an interface layer triangles where the ap-
proximation controlled by user-specified threshold occurs. High order Bézier tetrahedral
elements are then generated automatically from the watertight rTBS geometry, along
with a parametric tetrahedral mesh. Finally for analysis we construct a set of Cr basis in
the corresponding macro-element space by imposing continuity constraints on the Bézier
ordinates of the elements [32, 33]. By using a smooth-refine-smooth scheme [24], optimal
convergence rates are achieved with the Cr basis.

To represent trimmed geometries, we extract rTBS patches exactly from the trimmed
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NURBS surfaces. This is different from previous approaches in [34, 35], where the
trimmed NURBS surfaces are globally approximated using triangular Bézier patches
[34] or cubic C1 Clough-Tocher (CT) splines[35]. In [34], the surfaces are assumed to
be trimmed along diametrically opposite patch corners and a system of linear equations
is solved to ensure seamless join of two or more intersected surfaces. In [35], the mis-
match between different trimmed surfaces are repaired by manually moving the boundary
control points. In our approach, to guarantee the watertightness of the geometry, we de-
velop a compatible subdivision scheme. We subdivide the trimming boundary curves on
adjoining patches into compatible Bézier curves that can join seamlessly when stitched
together. The main properties of the rTBS geometry obtained using our approach include
the following.

1. The converted rTBS geometry is watertight.

2. The rTBS patches preserve the original trimmed NURBS surfaces exactly except
for an interface layer of triangles touching the trimming boundary curves.

3. The rTBS patches can preserve one of the trimming boundary curves exactly.

4. The size of the interface layer can be further reduced by mesh refinement, leading to
more rTBS patches that are exact with respect to the original trimmed geometry.

5. The approximation accuracy of the rTBS patches in the interface layer can be
controlled by prescribed tolerances.

The remainder of this paper is organized as follows. Section 2 gives a brief intro-
duction of bivariate and trivariate splines on Bézier triangles and tetrahedra respectively.
Section 3 describes the process of converting NURBS surfaces to rational triangular Bézier
patches. The volumetric parametrization with Bézier tetrahedra is discussed in Section
4. Section 5 describes the details of isogeometric analysis with Bézier tetrahedra. Some
numerical examples are presented in Section 6 followed by conclusion in Section 7.

2 Rational Bézier triangles and tetrahedra

To make the paper self-contained, in this section we briefly introduce bivariate and trivari-
ate splines on Bézier triangles and tetrahedra respectively. The constraints for their
smooth joins are also presented. For further reading please see [32, 33].

2.1 Rational Bézier triangles

A bivariate Bernstein polynomial of degree d is defined as

Bijk,d(ξ) =
d!

i!j!k!
γi1γ

j
2γ

k
3 , i+ j + k = d, (1)

where (γ1, γ2, γ3) is the barycentric coordinate of a point ξ ∈ R2 with respect to a triangle
τ = {v1,v2,v3}. Every point ξ = (ξ1, ξ2) in the triangle τ can be written uniquely in the
form

ξ = γ1v1 + γ2v2 + γ3v3, (2)

with
γ1 + γ2 + γ3 = 1.
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The set {Bijk,d}i+j+k=d forms a basis for the space of degree d bivariate polynomials
Pd [32]. A triangular Bézier patch is defined as

b(ξ) =
∑

i+j+k=d

pijkBijk,d(ξ), (3)

where pijk represents a triangular array of control points. A rational Bézier triangle can
be defined similarly as

b(ξ) =
∑

i+j+k=d

pijkφijk,d(ξ), (4)

with φijk,d being the rational Bernstein basis

φijk,d =
wijkBijk,d∑

i+j+k=dwijkBijk,d

=
wijkBijk,d

w
, (5)

where wijk are the weights associated with the control points pijk.
Under the isoparametric concept, the same bivariate Bernstein basis defining a triangle

τ = {v1,v2,v3} can also be used to define a polynomial function f of degree d over τ as

f(ξ) =
∑

i+j+k=d

tijkφijk,d(ξ). (6)

The tijk are called the Bézier ordinates of f . Their associated set of domain points are
defined as

Dd,τ =

{
qijk =

iv1 + jv2 + kv3

d
, i+ j + k = d

}
. (7)

Thus the control polygon of the function f is given by the points (qijk, tijk). Figure 1
gives an example of the associated domain points of the Bézier ordinates and triangular
Bézier patch.

v1 v2

v3

t300 t210 t120 t030

t201 t111 t021

t102 t012

t003

1

(a) Associated domain points of the Bézier
ordinates tijk in {v1,v2,v3}.

(b) Triangular Bézier patch b(ξ).

Figure 1: Domain points and triangular Bézier patch.

Two polynomials f and f̃ of degree d join r times differentiably across the common
edge of two triangles τ = {v1,v2,v3} and τ̃ = {v4,v3,v2} if and only if [32]

t̃ρ,j,k −
∑

µ+ν+κ=ρ

ρ!

µ!ν!κ!
tµ,k+ν,j+κγ

µ
1 γ

ν
2γ

κ
3 = 0, j + k + ρ = d, ρ = 0, · · · , r, (8)
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where γ1, γ2, γ3 are the barycentric coordinates of vertex v4 with respect to triangle τ .
Figure 2 gives an illustration of two rTBS with C1 continuity constraints. The red
solids represent free nodes whose values can be freely chosen, while the three white solids
representing dependent nodes are determined by the red free nodes through the continuity
constraints. The shaded area indicates the triangles where continuity constraints are
imposed. As can be seen in Figure 2(b), the control points in each shaded triangle pair
are coplanar. For better visualization of the underlying C1 patch, the control net in
Figure 2(b) is shifted up slightly.

v1 v2

v3 v4

1

(a) Two domain triangles with C1 con-
straints on Bézier ordinates.

(b) Two Bézier patches with C1 continuity.

Figure 2: Two Bézier patches with C1 continuity. The dependent nodes (white solids) are
determined by the free nodes (red solids) through the continuity constraints. The shaded
areas indicate the triangles with shared edges where the constraints are imposed. As can
be seen in Figure 2(b), the control points in each shaded triangle pair are coplanar. For
better visualization, the control net is shifted up slightly in Figure 2(b).

2.2 Rational Bézier tetrahedra

Following the bivariate case, the trivariate Bernstein polynomial of degree d with respect
to a tetrahedron τ = {v1,v2,v3,v4} is defined as

Bijk,d(ξ) =
d!

i!j!k!l!
γi1γ

j
2γ

k
3γ

l
4, i+ j + k + l = d, (9)

where (γ1, γ2, γ3, γ4) is the barycentric coordinate of a point ξ ∈ R3 with respect to τ ,

ξ = γ1v1 + γ2v2 + γ3v3 + γ4v4, (10)

with
γ1 + γ2 + γ3 + γ4 = 1.

Similarly {Bijkl,d}i+j+k+l=d form a basis for the space of degree d trivariate polynomials
Pd [32]. A rational Bézier tetrahedron and its basis are defined similarly as in Eq. (4)
and (5), with the triple index (i, j, k) replaced by the quadruple index (i, j, k, l). The
associated domain points of a tetrahedron τ = {v1,v2,v3,v4} are

Dd,τ =

{
qijkl =

iv1 + jv2 + kv3 + lv4

d
, i+ j + k + l = d

}
, (11)
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as shown in Figure 3(a).
Suppose τ := {v1,v2,v3,v4} and τ̃ := {v5,v2,v4,v3} are two tetrahedra sharing the

face F := {v2,v3,v4}. Two polynomials f and f̃ of degree d on τ and τ̃ join together
with Cr continuity across the face F if and only if [32]

t̃mijk −
∑

ν+µ+κ+δ=m

tν,i+µ,k+κ,j+δB
m
νµκδ(v5) = 0, i+ j + k = d−m, m = 0, · · · , r, (12)

where Bm
νµκδ are the Bernstein polynomials of degree m associated with the tetrahedron

τ . Figure 3(b) gives an illustration of two cubic Bézier tetrahedra with C1 continuity
constraints. The red solids represent free nodes whose values can be freely chosen, while
the blue solids representing dependent nodes are determined by the red free nodes through
the continuity constraints. The shaded small tetrahedra indicate the domain points
involved in the continuity constraints. Conditions for smooth joins of the two polynomials
at the common vertex and across the common edge can also be found in [33].

(a) Associated domain points of a Bézier
tetrahedron.

(b) Two domain tetrahedra with C1 con-
straints on Bézier ordinates. The Bézier
ordinates corresponding to the dependent
nodes (blue) are determined by the free
nodes (red) through the continuity con-
straints.

Figure 3: Domain points and continuity constraints of Bézier tetrahedra.

2.3 Spline spaces on tetrahedral partitions

Before introducing the spline spaces defined over tetrahedral partitions, we present two
ways of refining a tetrahedron that will be used in this paper. One is called the Alfeld split,
in which a tetrahedron is subdivided into four subtetrahedra by connecting its barycenter
to each of its vertices. The other is a quasi-uniform refinement, where a tetrahedron is
subdivided into eight subtetrahedra. Four subtetrahedra are obtained by cutting off the
four corners by connecting the midpoints of the edges. The other four are obtained by
connecting the shortest diagonal of the remaining octahedron.
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Let T̂ be a tetrahedral partition of a bounded domain Ω̂ ∈ R3. The space of C0

polynomials Pd of degree d over T̂ is defined as

S0
d(T̂ ) := {f ∈ C0(Ω̂) : f |τ ∈ Pd ∀τ ∈ T̂}. (13)

Given 0 ≤ r < d, the space of Cr polynomials of degree d and smoothness r over T̂ is
defined as

Srd(T̂ ) := {f ∈ Cr(Ω̂) : f |τ ∈ Pd ∀τ ∈ T̂}. (14)

We will also use certain superspline subspaces of Srd(T̂ ). Given 0 ≤ r ≤ µ ≤ ρ, we define

Sr,ρ,µd (T̂ ) := {f ∈ Srd(T̂ ) : f ∈ Cρ(v), ∀v ∈ V , f ∈ Cµ(e), ∀e ∈ E}, (15)

where V and E are the sets of vertices and edges of T̂ respectively. f ∈ Cρ(v) and
f ∈ Cµ(e) mean the polynomial has Cρ and Cµ smoothness at the vertex v and across
the edge e respectively.

3 Conversion of NURBS geometries to watertight

rTBS patches

Since geometries are usually represented by NURBS in CAD systems, we first need to
convert them to rTBS patches. In this section we describe the process of converting both
untrimmed and trimmed NURBS surfaces to watertight rTBS patches.

3.1 Conversion of untrimmed NURBS surfaces

A NURBS surface of degree p, q in directions of u, v respectively is defined as

S(u, v) =

n1∑

i=0

n2∑

j=0

Ni,p(u)Nj,q(v)wijPij

n1∑

i=0

n2∑

j=0

Ni,p(u)Nj,q(v)wij

, 0 ≤ u, v ≤ 1, (16)

where Pij are the control points forming a (n1 +1)×(n2 +1) bidirectional control net, wij
are the weights, and Ni,p(u), Nj,q(v) are the nonrational B-spline basis functions defined
with the knot vectors

U = {u0, u1, · · · , un1+p+1}, V = {v0, v1, · · · , vn2+q+1},

in directions of u, v respectively. Usually it is convenient to represent a NURBS surface
using homogeneous coordinates as

Sw(u, v) =

n1∑

i=0

n2∑

j=0

Ni,p(u)Nj,q(v)Pw
ij, (17)

where Pw
ij = (wijPij, wij). In this paper all calculations are performed using homogeneous

coordinates, for convenience we omit the superscript w in Sw(u, v) and Pw
ij when referring

to the homogeneous form.
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By increasing the multiplicity of the distinct knots in U and V to p and q respectively,
for each knot interval [uiu , uiu+1]×[viv , viv+1] in the parametric domain, the corresponding
surface can be extracted as a tensor-product Bézier patch

S̃(u, v) =

p∑

i=0

q∑

j=0

Bi,p(u)Bj,q(v)P̃ij, 0 ≤ u, v ≤ 1, (18)

where Bi,p(u) and Bj,q(v) are 1D Bernstein polynomials defined as Bi,d(u) =
(
d
i

)
ui(1 −

u)d−i. P̃ij are the control points of the Bézier patch, which can be obtained from the
NURBS control points Pij through Bézier extraction. For convenience, later in this paper

we will omit the ˜ in S̃(u, v) and P̃ij when referring to Bézier patches and their control
points. There should be no ambiguity aroused by this change considering the context.

After the Bézier extraction, each NURBS surface is represented by a collection of
tensor-product Bézier patches. Each tensor-product Bézier patch can be exactly con-
verted to two Bézier triangles [36].

(a) A bicubic tensor-product
Bézier patch.

u

v

(b) The parametric do-
main of the Bézier patch is
decomposed to two trian-
gles by connecting one of
the diagonals.

(c) The bicubic tensor-product
Bézier patch is converted to two
Bézier triangles of degree 6.

Figure 4: Exact conversion of a tensor-product Bézier patch to two Bézier triangles. The
red points are control points and the blue dashed lines are control nets.

Given the control points Pmn of a tensor-product Bézier patch of degree p, q, the
control points p

ijk
of the Bézier triangles that represent the same patch can be explicitly

computed as

p
ijk

=
1(
p+q
q

)
i∑

m=0

min{j,q−i+m}∑

n=max{0,j−p+m}

Pmn

(
i

m

)(
j

n

)
×
(
p+ q − i− j
p+ n−m− j

)
(19)

where i+j+k = p+q. While Eq.(19) gives the control points of one Bézier triangle from
the rectangular array of control points {Pmn : 0 ≤ m ≤ p; 0 ≤ n ≤ q}, the control points
of the other Bézier triangle can be obtained using the same equation from the reversed
array of control points {Pp−m,q−n : 0 ≤ m ≤ p; 0 ≤ n ≤ q}. Note that the control points
Pmn and pijk are in the form of homogeneous coordinates, so weights of all control points
can be calculated at the same time. An illustration of converting a bicubic Bézier patch
to two Bézier triangles of degree 6 is given in Figure 4.

An important property of the resulting rTBS representation is that, it preserves the
original NURBS surfaces and their parametric continuity exactly. For example, for a
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(a) (b) (c)

Figure 5: Conversion of NURBS surfaces to rTBS patches. The red points are control
points, the blue dashed and black solid lines represent control nets and element edges
respectively. (a) A CAD geometry represented by six bicubic NURBS surfaces {Si}, i =
1, · · · , 6. (b) Extracted tensor-product Bézier patches. (c) rTBS representation converted
from the tensor-product Bézier patches.

bicubic NURBS surface without repeated knots in the interior, it has global C2 continuity
everywhere. After converting it to rational triangular Bézier patches using the process
described above, the resulting rTBS of degree 6 represents the exact geometry as the
original NURBS and is C2 continuous globally.

Figure 5 gives an example of converting a NURBS geometry to rTBS geometry. Given
a CAD geometry represented by a collection of NURBS surfaces {Si}, as shown in Figure
5(a), we first extract tensor-product Bézier patches through Bézier extraction (Figure
5(b)). Using the Eq.(19), each tensor-product Bézier patch is converted to two Bézier
triangles. Thus all NURBS surfaces are converted exactly to rTBS representation, as
shown in Figure 5(c), and the parametric continuity is preserved as well.

3.2 Conversion of trimmed NURBS surfaces

For complex geometries involving surfaces intersection and trimming, it is challenging
to construct a watertight representation because of the trimmed boundaries leading to
gaps between intersected surfaces. When two NURBS surfaces are intersected, the actual
intersection curve is generally not rational, instead it is approximated using a NURBS
curve in CAD system. This approximated intersection curve is projected back to the two
parametric domains of the NURBS surfaces, which are again approximated using B-spline
curves and referred as parametric trimming curves. The compositions of the NURBS
surfaces and the parametric trimming curves give two physical trimming curves on the
respective NURBS surface. Since the two physical trimming curves are mapped from two
different parametric curves under different geometric maps, they usually do not match
with each other. As a consequence, for a two-surface intersection, where there should be
only one intersection curve in theory, there are actually three different representations of
the intersection curve in the CAD system: the approximated intersection curve and two
physical trimming curves. The differences among these curves, particularly the difference
between the two physical trimming curves leads to gaps when stitching the two trimmed
surfaces together.

Figure 6 gives an example where two bicubic NURBS surfaces S1 and S2 are in-
tersected. The blue NURBS curve C0 (quintic in this example) in Figure 6(a) is the
approximated NURBS intersection curve. c1, c2 (both are quadratic in this example)
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are the approximated parametric trimming curves and C1 = S1(c1), C2 = S2(c2) are the
composited physical trimming curves. Each parametric trimming curve has a direction
and the domain on its right side is trimmed off, which is indicated by the dashed lines
in Figure 6(b). The NURBS surfaces S1 and S2 are then trimmed along C1 and C2 re-
spectively (Figure 6(d)). However, since C0, C1 and C2 are all different from each other,
there will be gaps when stitching the two trimmed surfaces together, as can be seen in
Figure 6(e) and 6(f). The gaps need to be fixed before the geometry is discretized for
analysis.

The challenge of fixing the gaps is how to represent the trimmed patches accurately
and efficiently, while allowing patches joining at the trimmed boundaries seamlessly. To
solve this issue, we propose an approach to represent trimmed NURBS geometries us-
ing watertight rTBS patches. Specifically, we directly extract rTBS patches from the
trimmed NURBS surfaces and develop a compatible subdivision scheme to guarantee the
watertightness. The advantage of our approach is that we represent the original trimmed
NURBS surfaces exactly except for an interface layer of triangles touching the trimming
boundary curves. The size of this interface layer can be further reduced by mesh refine-
ment, leading to more rTBS patches that are exact with respect to the original trimmed
geometry. In addition, the approximation accuracy of the rTBS patches in the interface
layer can be controlled by prescribed tolerances.

Our approach can be described as following. We first check the parametric domains
of the trimmed NURBS surfaces to identify the intact triangles and an interface layer
near the parametric trimming curves. Then for each intact triangle a corresponding
rTBS patch can be extracted directly in the physical space. For the interface layers of
two adjoining trimmed surfaces, we want the extracted rTBS patches to be compatible
and join seamlessly at the trimming boundary curve. Thus we develop a compatible
subdivision scheme that subdivides the two physical trimming curves of adjoining NURBS
surfaces and a pre-selected physical trimming boundary curve into compatible Bézier
curves, i.e. Bézier curves with the same set of corresponding end points. Then we extract
rTBS patches from the interface layer as the compositions of the parametric triangles and
the tensor-product Bézier patches. Finally, the compatible physical trimming curves are
replaced with the same pre-selected trimming boundary curves, leading to a watertight
representation with high accuracy.

The extraction of triangular Bézier subpatches from tensor-product Bézier patches
is based on the results in [37]. The composition of a degree n Bézier triangle in the
parametric domain and a tensor-product Bézier patch of degree (p, q) can be exactly
represented as a Bézier triangle of degree n(p + q). The control points of the resulted
triangular Bézier subpatch can also be calculated explicitly [37]. In this paper we only
work with n = 1, that is, we use linear triangle in the parametric domain to extract rTBS
patches from tensor-product Bézier patches. Let τ (ξ) = (u(ξ), v(ξ)) be a linear Bézier
triangle with control points τi′j′k′ = (ui′j′k′ , vi′j′k′), and S(u, v) = (x(u, v), y(u, v), z(u, v))
be a tensor-product Bézier patch of degree (p, q) in the direction (u, v) respectively with
control points Pmn. The composition b(ξ) = S(τ (ξ))=S(u(ξ), v(ξ)) is a rTBS patch of
degree p+ q:

b(ξ) =
∑

|I|=p+q

p
I
BI,p+q(ξ) (20)

with control points

p
I

=
∑

Iu+Iv=I

1(
p+q
I

)Pp,q
0,0(up

Iu
, vq

Iv
), (21)
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(a)

1c
c2

Figure 1: Parametric domains and trimming curves of the two NURBS surfaces.

1

(b)

(c)

(a) Two intersected NURBS sur-
faces.

(b) The intersection curves where
the two surfaces intersect.

(c) Trimmed NURBS sur-
faces.

(d) Stitching together trimmed
surfaces.

(e) Gaps can be seen in the zoom-
in view.

Figure 1: Two intersected NURBS surfaces that are trimmed by their intersection curve.

1

(d)

(e) (f)

Figure 6: Two trimmed bicubic NURBS surfaces. (a) The two intersecting NURBS
surfaces S1 and S2 and their intersection curve C0. (b) Parametric domains and trimming
curves c1 and c2 of S1 and S2. (c) The original NURBS surfaces with control nets. (S2

has been moved away from S1 for better visualization.) The white points are the control
points of S1 and S2. The red and green curves C1,C2 are the composited physical
trimming curves. (d) Trimmed NURBS surfaces where unwanted parts of S1 and S2

are trimmed off along C1 and C2 respectively. (e) The two trimmed surfaces stitched
together. (f) Zoom-in view showing the gap between the trimmed surfaces inside the
black rectangle in (d).
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where I, Iu, Iv represent index triples of the form (i, j, k), Iu = Iu1 +· · ·+Iup , Iv = Iv1+· · ·+Ivq
and Iuı = (iuı , j

u
ı , k

u
ı ), with iuı , j

u
ı , k

u
ı ∈ {0, 1}, |Iu| = |Iu1 | + · · · + |Iup | = p where |Iuı | =

iuı + juı + kuı , similarly for Ivı , and |I| = |Iu| + |Iv| = p + q. The construction points
Pp,q

0,0(up
Iu
, vq

Iv
) can be calculated recursively using the de Casteljau algorithm. In u direction

it can be computed as

Pa,b
i,j (ua

Iu
, vb

Iv
) = (1− u

Iua
)Pa−1,b

i,j (ua−1
Iu

, vb
Iv

) + u
Iua

Pa−1,b
i+1,j (ua−1

Iu
, vb

Iv
), (22)

where P0,0
i,j = Pij, and the argument (ua

Iu
, vb

Iv
) means Pa,b

i,j has to be evaluated by perform-
ing a de Casteljau calculations in u direction for the u parameter values uIu1 , uIu2 , · · · , uIua
and b de Casteljau calculations for the v parameter values vIv1 , vIv2 , · · · , vIvb . And a similar
recursion in the v direction can also be computed.

An example is given in Figure 7, where a Bézier triangle of degree 6 is extracted
from a bicubic tensor-product Bézier patch. As can be seen, the previous conversion of a
tensor-product Bézier patch to two Bézier triangles is just a special case of this problem.

(a) A bicubic tensor-product
Bézier patch.

u

v

(b) A triangle in the
parametric domain of the
Bézier patch.

(c) The composition of the lin-
ear triangle and bicubic tensor-
product Bézier patch is a Bézier
triangle of degree 6.

Figure 7: Triangular Bézier subpatch on a tensor-product Bézier patch.

Now we describe the detailed steps of our method to fix the gap shown in Figure 6.

1. Bézier extraction of intact triangles. In the parametric domains of the NURBS sur-
faces S1,S2, we first find the triangles that are intact from the trimming operation.
As shown in Figure 8(a) and 8(b), the intact triangles are shaded. For each intact
triangle in the parametric domain, there is a corresponding Bézier triangle in the
physical space that can be extracted using Eq.(19). The resulting rTBS patches of
the intact triangles of S1, S2 are shown in Figure 8(c).

2. Compatible subdivision of physical trimming curves and a pre-selected trimming
boundary curve. This step can be further explained in the following sub-steps.

(a) Select a curve from C0,C1,C2 as the trimming boundary curve that will be
used in the converted rTBS geometry. In this example, we choose C0 since it
is relatively closer to both S1 and S2 than the other two curves. However, if
we want the trimming boundary curve lies exactly on, e.g. S1, then we can
choose C1 as the trimming boundary curve.

(b) Subdivide the parametric trimming curves c1, c2 and the selected trimming
boundary curves C0 into Bézier curves. Since the composited curves are cal-
culated in terms of the Bézier form, we subdivide c1, c2 into Bézier curves at
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c1

(a)

c2

(b) (c)

Figure 8: Extraction of triangular Bézier patches from intact triangles. (a-b) Identifica-
tion of intact triangles (shaded) of S1, S2. (c) Extracted rTBS patches from the intact
triangles.

their knot points and the intersections with the knot lines of S1,S2, as marked
by red and green squares respectively in Figure 9(a) and 9(b). In this exam-
ple, c1 and c2 are subdivided into 11 and 10 Bézier curves respectively. Using
the point inversion algorithm [38], we also find the knot values of c1, c2 corre-
sponding to these intersections. The computed knot values for all subdivision
points are denoted as Ξ1,Ξ2 for c1, c2 respectively.

c1

(a)

c2

(b)

Figure 9: Subdivision of c1 (red curve in (a)),c2 (blue curve in (b)) into Bézier curves.
The subdivision points (marked as squares) include the knot points of c1, c2 and their
intersections with the knot lines of S1,S2 respectively.

We also subdivide the selected trimming boundary curve C0 into 9 Bézier
curves at the values in its knot vector Ξ0. Figure 10 shows the subdivided
curves C0 and the composited curves C1,C2. As can be seen, although the
three curves C0,C1,C2 are almost the same, the subdivided curve segments
do not match at the subdivision points.

(c) Compatible subdivision of C0,C1,C2 such that the distances between corre-
sponding end points of the subdivided segments are smaller than a prescribed
tolerance δ1. The value δ1 is used to control the approximation error caused
by replacing the subdivided segments of C1,C2 with the corresponding seg-
ments of C0. Since the difference among the three curves C0,C1,C2 depends
on the specific CAD geometry, the value δ1 can be determined by trial-and-
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(a) (b)

Figure 10: Initial subdivision of the selected trimming boundary curve C0 (blue) and
the composited curves C1 (red), C2 (green). The subdivision points (marked as squares)
of the three curves usually do not match with each other. (a) Overlapped view. (b)
Side-by-side view.

error. Another alternative is to use a minimization algorithm to make the
difference between corresponding subdivision points as small as possible. For
the examples in this paper, we choose δ1 = 10−5. Now suppose we have three
knot values ξ1,i ∈ Ξ1, ξ2,j ∈ Ξ2, and ξ0,k ∈ Ξ0, as shown in Figure 11(a), we
explain this idea using the following steps. To simplify the notation, we define
C1(ξ1,i) = S1(c1(ξ1,i)) and C2(ξ2,j) = S2(c2(ξ2,j)).

i. For every knot point C1(ξ1,i), C2(ξ2,j) on C1 and C2 respectively, find the
corresponding point C0(ξ01,i), C0(ξ02,j) on C0 such that their distance is
smaller than the prescribed value δ1, i.e. ∀ξ1,i ∈ Ξ1, find ξ01,i such that

|C0(ξ01,i)−C1(ξ1,i)| < δ1,

and ∀ξ2,j ∈ Ξ2, find ξ02,j such that

|C0(ξ02,j)−C2(ξ2,j)| < δ1.

The set of values {ξ01,i}, {ξ02,j} are denoted as knot vectors Ξ01 = {ξ01,i}
and Ξ02 = {ξ02,j} respectively. The illustration of this step is shown in
Figure 11(b).

ii. For every knot point C0(ξ0,k) and C0(ξ02,j) (obtained in Step 2(c)i) on C0,
find the corresponding point C1(ξ10,k) and C1(ξ10,j) on C1 such that their
distance is smaller than the prescribed value δ1, i.e. ∀ξ0,k ∈ Ξ0 and ξ02,j

in Step 2(c)i, find ξ10,k and ξ10,j such that

|C1(ξ10,k)−C0(ξ0,k)| < δ1, |C1(ξ10,j)−C0(ξ02,j)| < δ1.

The set of values {ξ10,j, ξ10,k} is denoted as Ξ10 = {ξ10,j, ξ10,k}.The illus-
tration is shown in Figure 11(c).
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iii. For every knot point C0(ξ0,k) and C0(ξ01,i) (obtained in Step 2(c)i) on C0,
find the corresponding point C2(ξ20,k) and C2(ξ20,i) on C2 such that their
distance is smaller than the prescribed value δ1, i.e. ∀ξ0,k ∈ Ξ0 and ξ01,i

in Step 2(c)i, find ξ20,k and ξ20,i such that

|C2(ξ20,k)−C0(ξ0,k)| < δ1, |C2(ξ20,i)−C0(ξ01,i)| < δ1.

The set of values {ξ20,i, ξ20,k} is denoted as Ξ20 = {ξ20,i, ξ20,k}.The illus-
tration is shown in Figure 11(d).

C1(ξ1,i)

C0(ξ0,k)

C2(ξ2,j)

(a)

i
C1(ξ1,i) C0(ξ01,i)

i
C2(ξ2,j)C0(ξ02,j)

(b)

ii
C0(ξ0,k)C1(ξ10,k)

ii
C1(ξ10,j) C0(ξ02,j)

(c)

iii

C0(ξ0,k) C2(ξ20,k)
iii

C0(ξ01,i) C2(ξ20,i)

(d)

Figure 11: Compatible subdivision of the three curves C0 (blue), C1 (red) and C2 (green).

Following the above steps, we obtain three new knot vectors Ξ′0 = Ξ0∪Ξ01∪
Ξ02, Ξ′1 = Ξ1 ∪ Ξ10 and Ξ′2 = Ξ2 ∪ Ξ20. Now if we subdivide C0 and C1,C2 at
the parametric values in Ξ′0, Ξ′1 and Ξ′2 respectively, for every ξ′0 ∈ Ξ′0, there
are corresponding values ξ′1 ∈ Ξ′1 and ξ′2 ∈ Ξ′2 that

|C0(ξ′0)−C1(ξ′1)| < δ1 & |C0(ξ′0)−C2(ξ′2)| < δ1.

There are a few remarks for this compatible subdivision scheme.

i. To avoid very thin elements, if there are two values in any knot vector Ξ′0,
Ξ′1 and Ξ′2 that are closer than δ2 (δ2 = 0.05 in this paper), we remove one
of them, and also remove the corresponding values in the other two knot
vectors. If one of the two close values belongs to Ξ0, Ξ1 or Ξ2, then it is
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kept and the other one is removed. Otherwise, it is up to the user to decide
which one of the two is removed. This is to make sure the original knot
vectors Ξ0, Ξ1 and Ξ2 of the three curves C0 and c1, c2 remain unchanged
after subdivision.

ii. According to [37], the composition of tensor-product Bézier patches of de-
gree p, q and Bézier curve of degree n are Bézier curves of degree n(p+ q).
Although we can compute such high order Bézier curves exactly, to reduce
the complexity of the problem, we approximate c1, c2 using piecewise lin-
ear segments c̄1 and c̄2 by connecting the knot points. This will reduce
the degree of the composited Bézier curves C1 = S1(c̄1) and C2 = S2(c̄2)
to 6, compared to degree 12 of S1(c1) and S2(c2). To ensure a good ap-
proximation, we check the length of each segment of c1 and c2 defined
by each knot span of Ξ1,Ξ2, and the length of the line in c̄1 and c̄2 that
approximates it. If the normalized difference of the lengths is larger than
a prescribed threshold (3% in this paper), a new knot is inserted in Ξ1 (or
Ξ2) at the midpoint of that knot span, and the corresponding line segment
in c̄1 (or c̄2) is replaced with two new line segments. At the same time, the
knot vectors Ξ′0, Ξ′1 and Ξ′2 are also updated using step 2c. This process
continues until it convergences.

Figure 12 shows the compatible physical trimming curves C1,C2 and the
selected trimming boundary curve C0 after subdivision. The corresponding
segments approximating the subdivided parametric trimming curves c̄1 and c̄2

are also shown.

3. Bézier extraction of the interface layer triangles. We define the interface layer as the
domain sandwiched between the boundary of the intact triangles and the parametric
trimming curve, as shown in the shaded color in Figure 13. With the approximated
parametric trimming curves c̄1 and c̄2 in previous steps, we discretize the interface
layers into triangles. The composition of each triangle with its underlying tensor-
product Bézier patch results in a Bézier triangle of degree 6. The converted rTBS
geometry preserves the original NURBS surfaces and their continuities exactly.
However, they generally do not match at the trimming boundary where they are
supposed to meet. As shown in Figure 13(d), the control points of the Bézier
triangles along the trimmed boundaries do not match with each other. So we need
another step to fix the gap.

4. Replace both physical trimming curves C1,C2 with C0. To make sure the trimming
boundaries on the two trimmed NURBS surfaces match with each other exactly, we
replace both C1,C2 with C0 obtained in previous steps. This results in a seamless
join of the rTBS patches converted from the two trimmed NURBS surfaces, as
shown in Figure 14. In addition, the resulting rTBS geometry preserves exactly the
input NURBS surfaces except for the interface layer triangles (dark shaded elements
in Figure 14). Moreover, this interface layer can be further refined to improve the
accuracy.

Note that, in this example the interface layer is triangulated simply using the points
on the boundaries only. When the number of points on the boundary becomes excessive,
elements can become skewed. The quality of the elements can be improved by inserting
additional points in the interior of the interface layer.
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c̄1

(a)

c̄2

(b)

(c)

(a) (b)

1
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1

1.5

2

2.5

3

 

 

Knots in Ξ0

Knots in Ξ1

Knots in Ξ2

1

1

(c)

(d) (e) (f)

Figure 1: (a-b) Approximation of the trimming curves c1 and c2 using piecewise linear segments c̃1 and

c̃2 respectively. (c) Subdivision of the parametric curve at knots in Ξ. (d-f) Bézier curves C̃0, C̃1 and

C̃2 in physical space.

1

(d) (e)

Figure 12: (a-b) Approximation of the final subdivided trimming curves c1 and c2 using
piecewise linear segments c̄1 and c̄2 respectively. (c-e) Compatible Bézier curves C1 (red),
C0 (blue), C2 (green) after subdivision. The red, blue, and green squares indicate the
subdivision points corresponding to points on C1, C0, C2 respectively.
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(a) (b)

(c) (d)

Figure 13: Extraction of rTBS patches (dark shaded) from the interface layer triangles.
(a-b) Triangulation of the interface layer of S1 and S2. (c) Extracted rTBS patches with
control points. (d) zoom-in view inside the white box in (c) shows the edges along the
trimming boundary do not match since they are evaluated on S1,S2 respectively.

(a) (b)

Figure 14: Replacement of the trimmed boundary edges with the selected trimming
boundary curve C0. (a) The blue points are the control points of the subdivided Bézier
segments of C0. (b) Zoom-in view inside the white box in (a) shows a seamless join of
the rTBS patches.
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We would like to remark that, the entire process of generating watertight rTBS ge-
ometry from trimmed NURBS geometry can be fully automatic with the given tolerance
values such as δ1, δ2. In our examples, given the IGES files of a trimmed NURBS geom-
etry and the tolerance values, the watertight rTBS geometries can be generated in real
time.

4 Volumetric parametrization with rational Bézier

tetrahedra

After converting the NURBS surfaces to watertight rTBS patches, a tetrahedral partition
can be generated using the linearized version of the triangular Bézier boundary surface.
Then we can elevate the degree of the linear tetrahedral elements and move the control
points on the boundary surface to recover the high order triangular Bézier boundary
surface. To improve the mesh quality, the interior control points are also moved by
solving an elasticity problem [39]. In the end, a high order Bézier tetrahedral partition is
generated from the rTBS geometry, where the boundary surfaces are preserved exactly.
Meanwhile, the generated linear tetrahedral mesh can be used as the parametric mesh
after degree elevation. A set of basis functions is then constructed in the parametric
space to be used for isogeometric analysis.

4.1 Tetrahedralization of watertight rTBS patches

Once we have a watertight geometry represented by rTBS patches, we can parametrize
it into Bézier tetrahedral elements. We explain the process with an example shown in
Figure 15. Given a rTBS geometry b shown in Figure 15(a), by connecting the vertices
of the Bézier triangles in b, a linearized version b of the triangular Bézier boundary
surface is obtained (Figure 15(b)). From b, a tetrahedral partition T is generated by a
tetrahedral mesh generator (see Figure 15(b), we use Tetgen [40] for the examples in this
paper.). The degree of the linear tetrahedral partition T is then elevated to 6, yielding the

parametric mesh T̂0 (Figure 15(c)). Then by moving the control points on the boundary

surface of T̂0 to the position on the triangular Bézier boundary surface b, we create a
high order Bézier tetrahedral partition T0 of the geometry, as shown in Figure 15(d). To
alleviate possible element distortion in the mesh, we move the interior control points in
T0 by solving an elastic equation and smoothing their weights by solving a Laplacian
equation. Optimization technique such as [21, 7] can also be used. To show the interior
of the mesh, some elements are removed, as shown in Figure 15(e) and 15(f).

Note that, while the parametric and physical mesh T̂0 and T0 are ready to be used for
isogeometric analysis, the geometric map G0(ξ) : T̂0 7→ T0 is only C0, including the map of

the boundary surface. When generating the parametric mesh T̂0, the linearization process
of the triangular Bézier patches may create many sharp corners and edges in T̂0 that
correspond to continuous points and edges in T0. Therefore when imposing Cr constraints
to obtain a Cr geometric map, these sharp corners and edges will create singularities in
the corresponding physical mesh. In order to preserve the mapping continuity without
introducing singularities, ideally a new parametric mesh T̂ with no additional sharp
corners or edges as in the input NURBS geometry is needed. While such T̂ can be
generated easily for simple geometries such as shown in Figure 15, for complex geometries,
singularities may be unavoidable to preserve the Cr geometric map. In Figure 15, the
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geometric map of the boundary surfaces GΓ : T̂Γ 7→ T0,Γ is continuous up to the same
order as the input NURBS surfaces.

(a) (b) (c)

(d) (e) (f)

Figure 15: Tetrahedralization of a geometry represented by watertight rTBS patches.
The red points are control points, the blue dashed and black solid lines represent control
nets and element edges respectively. (a) A watertight geometry b represented by rTBS

patches. (b) Linearized surface triangulation b. (c) Generated parametric mesh T̂0 after
degree elevation of the linear tetrahedral partition T0. (d) Physical mesh T0 after moving
the boundary and smoothing the interior control points. (e) Interior mesh after removing
the elements in (d). (f) Removed elements in (d).

4.2 Construction of Cr basis

Once the geometry is parametrized, we can construct a set of basis functions over the
tetrahedral mesh in the parametric space. We first extend the definition of domain
points in Eq. (11) from a tetrahedron τ to a tetrahedral partition T̂ , which is defined as
Dd,T̂ := ∪τ∈T̂Dd,τ . Note that domain points shared by multiple tetrahedra are included

only once in Dd,T̂ . The set Dd,T̂ can be used to parametrize the C0 space S0
d . That is,

each domain point ξ ∈ Dd,T̂ is associated with a rational C0 basis φi(ξ) and for any

f ∈ S0
d we can write

f =
∑

i

tiφi(ξ) = tTDφ(ξ), (23)
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where
∑

i has the meaning of summation over all domain points inDd,T̂ , and tD
d,T̂

contains

the corresponding Bézier ordinates in the physical space. As shown in Eq. (5), the basis
φi is the extension of the Bernstein basis Bijk,d in rational space. It has the property
of linear independence, nonnegativity and partition of unity, which make it ready to be
used in analysis.

By imposing the smoothness conditions (12) on the Bézier ordinates, Eq. (23) can
also be used to represent a Cr continuous polynomial f ∈ Srd . However, in this case
we cannot assign arbitrary values to every coefficient of f . Instead, only the coefficients
corresponding to a reduced determining set of the domain points Md,T̂ ⊂ Dd,T̂ can be
assigned, and all remaining coefficients will be determined by the smoothness conditions.
WhenMd,T̂ is the smallest set among all possible determining sets, it is called a minimal
determining set (MDS) [32, 41]. The domain points in Md,T̂ are referred as free nodes
and those in Dd,T̂ but not in Md,T̂ are referred as dependent nodes.

The application of smoothness conditions (12) on a tetrahedral partition essentially
forms a homogeneous linear system

AtD
d,T̂

= 0, (24)

where A is a coefficient matrix depending on the position of the domain points and tD
d,T̂

are the n Bézier ordinates for the domain points in Dd,T̂ . The dimension of the space

Srd(T̂ ) thus is

dimSrd(T̂ ) = dimS0
d(T̂ )− rank A. (25)

After some matrix operations of A, Eq.(24) can be written in the form

tD
d,T̂

= CT tM
d,T̂
, (26)

where C is called the continuity matrix. Substituting Eq.(26) into Eq.(23) gives

f(ξ) = tTD
d,T̂
φ(ξ) = tTM

d,T̂
Cφ(ξ) = tTM

d,T̂
ψ(ξ) (27)

where
ψ(ξ) = Cφ(ξ) (28)

is a set of global Cr basis functions composed as the linear combinations of the C0 basis
φ(ξ). Now we have represented a Cr continuous function f ∈ Srd in terms of the Cr basis
and the coefficients corresponding to the free nodes tM

d,T̂
.

In order to construct a set of Cr basis that can be used for analysis, we use the so-called
macro-element spaces [32] only. In macro-element spaces, the basis corresponding to its
MDS is stable and locally supported. Moreover, the basis has full approximation power,
thus optimal convergence can be achieved in analysis [24]. Many Cr macro-element spaces
defined over tetrahedral partitions can be found in [32, 33] and the papers listed therein.

In this paper, we choose a quintic C1 space S1,2,4
5 (T̂A) defined over the Alfeld split of a

tetrahedral partition to demonstrate our analysis approach. The space is defined as

S1,2,4
5 (T̂A) := {f ∈ S1

5 (T̂A) : f ∈ C2(v),∀v ∈ V , f ∈ C4(vτ ),∀T ∈ T̂}, (29)

where V , vτ , τ are the vertices, barycenters and tetrahedra in T̂ .
In Section 4.1, we have constructed a C0 geometric map G0(ξ) : T̂ 7→ T0. With the

Cr basis ψ and MDS Md,T̂ , we can replace the control points in the C0 mesh T0 with a
new set of control points that satisfy the Cr continuity constraints

p = CTpf , (30)
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where p are all the control points in the new physical mesh T , and pf are the control
points in T that corresponds to the free domain points in Md,T̂ . Note that, the control
points on the boundary surface of T0 will not be replaced, because the boundary map
GΓ : T̂Γ 7→ T0,Γ created in Section 4.1 is already Cr continuous. Therefore, the exact
boundary is preserved in the Cr map. It should be mentioned that, for geometries
with complicated shapes, replacing the control points may lead to distortion or even
self-intersection in the Cr map. However, as concluded in [42], basis functions with
high order and high continuity were able to lessen the impact of the distortions in IGA.
Nonetheless, further study on improving the mesh quality using optimization technique
such as presented in [21] will be helpful.

The Cr geometric mapping G(ξ) : T̂ 7→ T now can be expressed in terms of rational
Cr basis ψi(ξ), or equivalently, the rational C0 basis φj(ξ) as

G(ξ) =
m∑

i

pfi ψi(ξ) =
n∑

j

pjφj(ξ), (31)

where m and n are the dimension of the space Srd and S0
d respectively, and pfi ,pj satisfy

the continuity constraints in Eq.(30).
As discussed in [24], in order to achieve optimal convergence rates in Cr spaces, the

smooth-refine-smooth scheme must be used. A pre-refinement geometric map with suffi-
cient smoothness need to be constructed before applying any refinements. This smooth
map is different from the Cr geometric map (31) in that it does not need a set of stable
basis in the macro-element spaces. Therefore the pre-refinement map can be constructed
simply by enforcing the smoothness constraints and solving the system using Gaussian
elimination.

5 IGA with Bézier tetrahedra

In this section we describe the method of isogeometric analysis using rational Bézier
tetrahedral elements where the classical Galerkin formulation is applied as in [24]. The
problems considered in this paper include linear elasticity and Poisson problems. The
governing equation for the linear elasticity is





∇ · σ + b = 0 on Ω

σ = D∇su

σ · n = t on Γt

u = ū on Γu,

(32)

where D is the elasticity matrix, b and t refer to body force and traction respectively,
u is the displacement, Γt and Γu are the portions of the boundary where traction and
displacement are specified respectively. The Poisson problem is defined as

{
−∇2u = f in Ω,

u = ū on Γ,
(33)

where f : Ω→ R is a given function and ū denotes prescribed boundary values.
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Using the basis constructed in the previous section, we approximate the solution in
the corresponding parametric domain as

û(ξ) =
∑

i

uiψi(ξ) = uTψ (34)

where ui corresponds to the approximate solution’s Bézier ordinate at the i-th domain
point in the parametric domain Ω̂T̂ . The solution u(x) over the domain ΩT in the physical
space is obtained by composing û(ξ) with the inverse of the geometric mapping G−1 such
that u(x) : Ω 7→ R2,

u(x) = û(ξ) ◦G−1(x). (35)

After inserting the approximate solution and basis functions into the corresponding weak
form of the PDE, we obtain the following mass and stiffness matrices respectively as

M0 =

∫

Ω

φ · φ dΩ, (36)

K0 =

∫

Ω

∇φ · ∇φ dΩ, (37)

for C0 elements. For Cr elements, we use the same Bézier extraction technique [43, 44, 45]
that has been used in IGA with Bézier triangles [24] to calculate the mass and stiffness
matrices as

Mr =

∫

Ω

ψ ·ψ dΩ =

∫

Ω

(Cφ) · (Cφ) dΩ = CTM̃0C, (38)

Kr =

∫

Ω

∇ψ · ∇ψ dΩ =

∫

Ω

(C∇φ) · (C∇φ) dΩ = CT K̃0C, (39)

where M̃0 and K̃0 are the mass and stiffness matrices respectively for the same Cr

elements in terms of the C0 basis φ. The difference between M̃0 and M0, K̃0 and K0 is
due to the potential relocation of the control points to satisfy the Cr continuity constraints
for the Cr elements. Using the Bézier extraction technique allows the implementation
to be applied in any existing FEM routine without changing the assembly process. The
numerical integration is performed in each element (micro-element if split is used) by using
standard and collapsed [46] Gaussian quadrature rules on the boundaries and element
interiors respectively. The least square method is used to apply the Dirichlet boundary
conditions.

6 Numerical examples

In this section, we demonstrate IGA with Bézier tetrahedra on linear elasticity and Pois-
son problems. In the first example, we demonstrate that optimal convergence rate can
be achieved for IGA with Bézier tetrahedra in C1 space. In the second example, we show
that IGA with Bézier tetrahedra can be applied on geometries with very complicated
shape. In the third and fourth examples, we demonstrate that our method can be used
to handle complex trimmed geometries. At last we demonstrate the analysis of a com-
plex geometry using C1 smooth splines. For the analysis procedure, we follow the same
framework for IGA with Bézier triangles in [24]. The element matrices for Cr elements
are computed in terms of C0 elements using the Bézier extraction technique. Boundary
MDS is used to apply Dirichlet boundary conditions. The numerical integration in each
element is implemented using the collapsed Gaussian quadrature rules [46].
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6.1 Optimal convergence in Cr space

The first example demonstrate how optimal convergence can be achieved using IGA with
Bézier tetrahedra in C1 space.

We solve a Poisson problem

−∇2u = sin(x) sin(y)

on the geometry shown in Figure 16. The exact solution are imposed as Dirichlet bound-
ary conditions on all boundary surfaces. We use the C1 elements in the superspline space
S1,2,4

5 with Alfeld split. As discussed in [24], in order to obtain optimal convergence in a
superspline space, the smooth-refine-smooth scheme is needed to obtain a pre-refinement
geometric map with sufficient smoothness. In this example, we need to obtain a C2 map
since the C4 smoothness only occurs at the barycenters and is always satisfied. We apply
the smoothness conditions on the control points of the mesh in Figure 16(a) to obtain a
C2 mesh as shown in Figure 16(c) and 16(d). Then we can construct a set of C1 basis in
the space S1,2,4

5 . A pair of parametric and physical mesh with free and dependent nodes is
shown in Figure 17. The initial mesh with Alfeld split consists of 100 elements and 2,301
control points. Figure 18 shows a comparison of the basis function and their gradients of
C0 and C1 basis. As can be seen, the gradient of C0 basis is discontinuous across some of
the element edges, while the gradient of C1 basis is continuous across all element edges.

To evaluate the convergence, we refine the mesh using the quasi-uniform refinement
method. As shown in Figure 19, optimal convergence rate is achieved when using the
smooth-refine-smooth scheme [24]. As a comparison, the non-optimal convergence when
using the refine-then-smooth scheme is also presented.
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(a) The original geometry represented by
Bézier tetrahedra of degree 5 with control
points.

(b) The wireframe view of the origi-
nal geometry.

(c) C2 mesh of the geometry. The red and
blue points are free and dependent control
points respectively in the C2 smoothness
constraints.

(d) The wireframe view of the C2 ge-
ometry.

Figure 16: A 3D model represented by exact Bézier tetrahedral partition with control
points.
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(a) S15 (TA) physical mesh with Alfeld
split.

(b) S15 (T̂A) parametric mesh with Alfeld
split

Figure 17: Meshes in space S1,2,4
5 with Alfeld split. The initial mesh with Alfeld split

consists of 100 elements and 2,301 control points. The red and blue points represent free
and dependent points respectively.

(a) C0 basis function. (b) Discontinuous gradient of C0 basis
function.

(c) C1 basis function with Alfeld split. (d) Continuous gradient of C1 basis func-
tion.

Figure 18: Comparison of C0 and C1 basis functions and their gradients.
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6.2 Analysis of an untrimmed geometry

In the second example, we illustrate the ability of our method to handle untrimmed
complex geometries, where the linear elasticity of a propeller is analyzed.

The model shown in Figure 20 is a simplified version of the model obtained from
[47]. The geometry is represented by 24 untrimmed bicubic NURBS surfaces. Using
the parametrization method described in Section 3.1, the NURBS surfaces are exactly
converted to 3,870 Bézier triangles of degree 6, from which a tetrahedral mesh with
6,431 elements are constructed. As can be seen in Figure 20(c) and 20(d), the triangular
Bézier surface of the generated Bézier tetrahedral partition preserves the original NURBS
surfaces and continuity exactly. The final mesh consists of 798,366 dofs. A wind loading
is simulated by setting all displacement components on the interior cylindrical surface
to zero, the traction on all other surfaces is set to t = [0, 0,−nz] if nz > 0 and zero
otherwise. The Young’s modulus is E = 105, and Poisson’s ratio ν = 0.3. The linear
elasticity equation is solved using C0 basis of degree 6. The simulated displacement
profile is shown in Figure 21 with the original Bézier tetrahedral mesh superimposed.
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(a) Input: bicubic NURBS surfaces. (b) Zoom-in view of the NURBS surface and
control points. The blue dashed lines are control
nets.

(c) Bézier tetrahedral mesh with converted tri-
angular Bézier surface.

(d) Zoom-in view of the triangular Bézier sur-
face and control points.

(e) Tetrahedral mesh in parameter space. (f) Zoom-in view of the polygonal surface in (e).
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(g) Parametric and physical element samples.

Figure 20: Parametrization of the propeller geometry represented by 24 bicubic NURBS
surfaces.

Deformed shape

Songtao Xia (UW-Madison) IGA on triangulations in 3D May 5, 2015 5 / 5

(a) (b)

Figure 1: The original Bézier tetrahedral mesh for the propeller model and an exaggerated displacement
profile with displacement magnitude superimposed.

1

Figure 21: The original Bézier tetrahedral mesh for the propeller model and an exagger-
ated displacement profile with displacement magnitude superimposed.
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6.3 Analysis of trimmed geometries

To demonstrate the ability of IGA with Bézier tetrahedra to handle trimmed geometries,
we analyzed two geometries represented by multiple trimmed NURBS surfaces.

The first geometry is a simple computer mouse represented by six bicubic NURBS
surfaces, as shown in Figure 22. The four side surfaces S1,S2,S3,S4 and top surface S5

are trimmed by their intersection curves. The four side surfaces and the bottom surface
S6 join with each other with C0 smoothness. The intersection of the top and four side
surfaces results in four intersection curves. As shown in Figure 22(c), a gap can be seen
in the zoom-in view inside the white box in Figure 22(a). The gap needs to be fixed
before the CAD geometry is discretized for analysis.

(a) (b)

(c)

Figure 22: A trimmed CAD geometry represented by six bicubic NURBS surfaces. (a)
The untrimmed NURBS surfaces with control nets. The thick black curves are the
boundaries of the NURBS surfaces. The four side surfaces and the bottom surface join
with each other with C0 smoothness. (b) The four side surfaces and the top surface
are trimmed by their intersection curves. (c) Zoom-in view inside the white box in (a)
showing a gap.

Using our method described in Section 3.2, we first identify the intact triangles and
interface layers in the parametric domains. As shown in Figure 23, the intact triangles
and interface layers are separated by the thick black lines. For the intact triangles, each
can be extracted as a rTBS patch. For the interface layers, we triangulate them after
compatible subdivision. The resulting triangulations are shown in Figure 24. The four
selected trimming boundary curves are also subdivided into compatible Bézier segments.
Figure 25 shows the extracted rTBS patches, which preserve the original NURBS surfaces
exactly. However, since the rTBS patches are extracted from different NURBS surfaces,
their interfaces usually do not match with each other and results in smalll gaps. After
replacing the Bézier edges along the trimmed boundaries with the compatible curves, a
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watertight representation of the trimmed geometry is obtained, as shown in Figure 26.
Then a Bézier tetrahedral mesh is created from the rTBS patches, as shown in Figure
27 where a corner of the model has been cut off to show the interior of the generated
tetrahedral elements. The Bézier tetrahedral mesh consists of 513 elements and 22,384
control points.

(a) (b) (c)

(d) (e) (f)

Figure 23: (a-d) Trimming curves in the parameter space of the four side surfaces. (e)
Trimming curves in the parameter space of the top surface. The dashed lines represent
domains that are trimmed off. (f) The four selected trimming boundary curves in the
physical space. The triangles represent the end points of the curves.

A linear elasticity problem is solved using the created Bézier tetrahedral mesh. The
geometry is fixed at two nodes on the left side and a unit displacement is applied at
the right side. The Young’s modulus is 103 with the Poisson’s ratio 0.3. The resulting
displacement contour is shown in Figure 28, which is expected.
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(a) (b) (c)

(d) (e) (f)

Figure 24: Compatible subdivision of the trimming curves. (a-e) Triangulations of the
interface layers of the four side surfaces and top surface after compatible subdivision.
(f) Subdivided trimming boundary curves in physical space. The blue squares are the
subdivision points.

(a) (b)

Figure 25: Conversion of trimmed NURBS surfaces to rTBS patches. (a) The converted
rTBS patches and control points. (b) Zoom-in view inside the white box in (a) showing
the control points do not match at the trimming boundary. Different colors are used
for the side and top surfaces. The dark shaded patches are extracted from the interface
layers.
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(a) (b)

Figure 26: Watertight representation after replacing the boundary edges with the sub-
divided trimming boundary curves. (a) The blue points are the control points of the
Bézier segments of the subdivided trimming boundary curves. (b) Zoom-in view inside
the white box in (a) showing a seamless join of the rTBS patches.

(a) (b)

Figure 27: Generated Bézier tetrahedral elements with some elements removed to show
the interior mesh. (a) Bézier tetrahedral mesh in physical space. (b) Tetrahedral mesh
in parametric space.

(a) (b)

Figure 1: The original Bézier tetrahedral mesh for the propeller model and an exaggerated displacement
profile with displacement magnitude superimposed.

1

Figure 28: Displacement contours from numerical result.
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The second trimmed geometry is a piston head represented by 31 trimmed NURBS
surfaces with 64 intersection curves, as shown in Figure 29. The control points for one
selected surface in blue color are also shown. The 31 NURBS surfaces are either cylindrical
surfaces or planar surfaces with degree up to 3 in each direction. Most surfaces have only
1 knot interval in both directions, i.e. they are actually tensor-product Bézier patches,
as shown in Figure 30 and 31.

(a) (b)

Figure 29: The piston head model represented by 31 trimmed NURBS surfaces with 64
intersection curves. (a) The trimmed geometry represented in CAD system. The blue
curves are the intersection curves. (b) The original NURBS surfaces before trimming.
The blue curves are the intersection curves between surfaces. The control points are
shown for one of the surfaces indicated as blue.

Figure 30 is a bilinear planar surface with 8 trimming curves. The original surface is
a Bézier patch and the whole domain enclosed by the trimming curves is the interface
layer, as indicated by the shaded color in Figure 30(c). The parametric domain is then
triangulated after compatible subdivision. The extracted rTBS patches are shown in
Figure 30(d), where the degree is elevated to 6. Figure 31 is a cylindrical surface with
6 trimming curves. The original surface is also a Bézier patch of degree 1 and 2 in
each direction. After compatible subdivision, we triangulate the domain, as shown in
Figure 31(c). The extracted rTBS patches are shown in Figure 31(d), where the degree
is elevated to 6. Only the rTBS patches extracted from the interface layer (shaded in
Figure 31(c)) will be affected by the replacement of the trimming boundary curves. The
interface layer can be further refined so more extracted rTBS patches will become exact
with respect to the original NURBS surface, as shown in Figure 31(d).

Finally, we successfully convert the trimmed NURBS surfaces to watertight rTBS
patches with 1308 Bézier triangles of degree 6. Then we parametrize the watertight
rTBS patches volumetrically using 1965 Bézier tetrahedra elements, with a total number
of 82, 682 control points, as shown in Figure 32.

We solve the linear elastic equation over the Bézier tetrahedral mesh. We applied
uniform pressure at the bottom surface while fixing the inner surfaces of the two horizontal
holes near the top. The Young’s modulus is set as 103 with the Poisson’s ratio 0.3. Figure
33 shows the displacement contours of the analysis results.
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(a) Parametric doamin with trimming
curves (red).

(b) Original NURBS surface with physical trimming
curves (blue).

(c) Triangulation of parametric doamin af-
ter compatible subdivision.

(d) Extracted rTBS patches with control points (de-
gree elevated to 6).

Figure 30: Conversion of a selected trimmed surface 1 to rTBS patches.
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(a) Parametric doamin with trimming
curves (red).

(b) Original NURBS surface with physical trimming
curves (blue).

(c) Triangulation of parametric doamin af-
ter compatible subdivision. The interface
layer triangles are shaded.

(d) Extracted rTBS patches with control points (de-
gree elevated to 6).

(e) Refinement of mesh in (c). The size of
the interface layer is reduced.

(f) Extracted rTBS patches correponding to (d). The
size of rTBS patches extracted from the interface
layer is reduced.

Figure 31: Conversion of a selected trimmed surface 2 to rTBS patches. The size of the
interface layer can be reduced by mesh refinement, leading to more rTBS patches that
are exact with respect to the original trimmed geometry.
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(a) (b)

(c) (d)

Figure 32: The piston head model represented by watertight rTBS patches, which is then
parametrized into 1965 Bézier tetrahedra elements. (a) The trimmed NURBS surfaces are
converted to 1308 rTBS patches. (b) Zoom-in view inside the white box in (a) showing
the smooth surface. (c) Generated Bézier tetrahedral mesh with some elements removed
to show the interior mesh. (d) Another view of the mesh in (c).
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Figure 33: Displacement contours of the analysis results.

6.4 Stress analysis using C1 Bézier tetrahedra

In this last example, we demonstrate our approach of analyzing a connecting rod model
(Fig. 34(a)) using C1 rational Bézier tetrahedra. We first parametrize the initial geometry
into 2405 C0 Bézier tetrahedral elements of degree 5, as shown in Figure 34. In this
tetrahedral model, the three circular holes are exactly represented due to the use of
rational form of Bézier tetrahedra. Then we construct C1 smooth basis functions by using
the Alfeld split and imposing the corresponding smoothness constraints. The resulting
C1 physical and parametric elements are shown in Figure 35(c). For the ease of domain
parameterization, singularities of the mapping from the parametric domain to the physical
domain are introduced at the sharp vertical edges of the parametric domain corresponding
to the cylindrical surfaces. At these vertical edges, the smoothness is reduced to C0. The
final C1 meshes are shown in Figure 35. The interior of the smooth Bézier tetrahedra is
also shown in Fig. 35(b).

For the stress analysis, we fix the half-cylindrical surface on the left, and apply a unit
force pointing to the left on the inner surface of the hole on the right. We compare the
analysis results from the C0 and C1 elements in Figure 36. For the C1 elements, the stress
at the singular edges on the cylindrical surfaces are evaluated by averaging the stress of a
small neighborhood.. As can be seen, the overall stress distribution is about the same for
C0 and C1 elements. However, a close-in view shows that C0 elements give discontinuous
stress contours across element edges while C1 elements give continuous stress contours
even across element edges.
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(a)

(b)

Figure 34: (a) A connecting rod model. (b) The model is parametrized with 2405 rational
Bézier tetrahedral elements of degree 5. The red points are the control points.
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(a) (b)

(c)

Figure 35: C1 parametrization of the connecting rod model in Fig. 34. The red and blue
points are free and dependent points respectively. (a) Physical mesh. (b) Some elements
are removed to show the interior of the mesh. (c) Parametric mesh.
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(a) (b)

(c) (d)

Figure 36: Comparison of stress contours from the analysis results with C0 and C1

elements. (a) stress from C0 elements. (b) Zoom-in view showing the discontinuous
stress using C0 elements. (c) stress from C1 elements. (b) Zoom-in view showing the
continuous stress using C1 elements.
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7 Conclusion

In this paper, we present an isogeometric analysis approach with Bézier tetrahedra. We
convert any complex NURBS geometries (either trimmed or untrimmed) into watertight
geometries represented by rTBS patches. A compatible subdivision scheme is developed
to guarantee the watertightness when converting trimmed geometries. The converted
rTBS geometry preserves the original NURBS surfaces exactly, except for an interface
layer for trimmed geometries. The approximation accuracy of this interface layer can
be improved by further refinement. From the rTBS geometry surface, a high order
Bézier tetrahedral partition is created automatically, discretizing the geometry into Bézier
tetrahedral elements.

The same trivariate Bernstein polynomials representing the Bézier tetrahedra are
used as basis for analysis. In addition, by imposing continuity constraints on the Bézier
ordinates, we can construct a set of Cr basis that can be used for analysis. Using the
smooth-refine-smooth scheme, optimal convergence rate has been demonstrated using
such Cr basis. Numerical results show that our approach can handle any geometry with
complex trimmed NURBS surfaces.

Compared with NURBS based IGA, our approach inherits the advantage of repre-
senting CAD geometries exactly and efficient analysis using high order continuous basis.
In addition, our approach can represent complex geometries, including both trimmed and
untrimmed.
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