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Rapid advancement of sensor technologies and computing
power has led to wide availability of massive population-
based shape data. In this paper, we present a Taylor ex-
pansion based method for computing structural performance
variation over its shape population. The proposed method
takes four steps: 1) learning the shape parameters and their
probabilistic distributions through the statistical shape mod-
eling; 2) deriving analytical sensitivity of structural perfor-
mance over shape parameter; 3) approximating the explicit
function relationship between the FE solution and the shape
parameters through Taylor expansion; 4) computing the per-
formance variation by the explicit function relationship.

To overcome the potential inaccuracy of Taylor expan-
sion for highly nonlinear problems, a multi-point Taylor ex-
pansion technique is proposed, where the parameter space is
partitioned into different regions and multiple Taylor expan-
sions are locally conducted. It works especially well when
combined with the dimensional reduction of the principal
component analysis in the statistical shape modeling.

Numerical studies illustrates the accuracy and efficiency
of this method.
Keywords: shape learning, statistical shape modeling, finite
element analysis

1 INTRODUCTION
Rapid advancement of sensor miniaturization and grow-

ing sensor network and computer power have lead to wide
availability of massive shape data from populations of ob-
jects. Such massive shape data range from human body
shapes in Civilian American and European Surface Anthro-
pometry Resource [1] and Size China [2], to longitudinal
knee observations of a large population of osteoarthritis pa-
tients [3]. Populations of shape data also include shapes
of man-made objects, such as shapes of same manufactured
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parts due to manufacturing process variation as well as part
shapes due to shape degradation after deployment. Mining
and analysis of such massive population-based shape data
can result in knowledge of shape variability of the population
and lead to construction of faithful subject-specific 3D shape
models from sparse measurements. It is then possible to pre-
dict shape-specific functional performance and population-
wide structural performance variation. Such an ability brings
about unprecedented capabilities and tantalizing opportu-
nities for mass customization, part-specific failure predic-
tion and just-in-time part maintenance, and patient-specific
biomedical intervention and treatment [4,5]. The goal of this
work is thus to develop an efficient computer method that can
predict 1) shape-specific structural performance from given
discrete shape data, and 2) structural performance variation
over the shape population.

Our approach builds on statistical analysis of shape vari-
ations, a.k.a. statistcal shape modeling (SSM). SSM has
emerged as a powerful tool [6] for shape learning from
a population where statistical analysis of shape variation
is conducted, typically through principal component analy-
sis. It has found its success in various fields including im-
age segmentation [7], motion tracking [8], and parametric
shape design [9, 10]. The use of statistical shape model-
ing techniques to understand shape variations and its effect
on biomechanical performance has been recently attempted
in [4,11,12,12–14]. However, the computing of the structure
performance variation over a population is usually through
the Monte Carlo simulation, i.e. by randomly generating the
shape parameters according to the learned probabilistic dis-
tributions, and obtaining a set of new shapes and new finite
element meshes usually through mesh deformation. The fi-
nite element analysis is then performed on each of the gener-
ated finite element models and the results are collected from
which the structural performance variation is obtained. For
example, in [14], the performance of the cementless osseoin-
tegrated tibial tray in a general population was studied using



(a) A shape population
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Fig. 1. Proposed approach for predicting subject-specific structural
performance: Taylor series expansion of the FE solution for the mean
shape as applied in a heat transfer problem.

1000 finite element analyses on different subjects. The draw-
back of such Monte Carlo simulation based approach lies in
its inefficiency. In order to obtain a result with reasonable
accuracy, a large number of experiments (usually > 500) are
needed and each experiment, in this context, requires an ex-
pensive finite element analysis.

The advantage of our approach lies in the fact that only
one time FE analysis of the mean shape is used to predict
the subject-specific shape’s structural performance and the
performance variation over the population. Figure 1 shows
the proposed approach as applied in a heat transfer prob-
lem: approximating temperature fields for a shape popula-
tion with Taylor expansion of the FE solution for the mean
shape. Given a population of shapes, the mean shape and
the modes of variation are obtained by the statistical shape
modeling. A shape instance is then represented as the linear
combination of the mean shape and the modes of variation.
The weights w = [w1 · · ·wm]

T is called the shape parameters.
Based on the shape sensitivity analysis ∂u/∂w, where u is
the FE solution, the Taylor expansion is conducted to ap-
proximate the function u(w) and extrapolate the solution on
the mean shape to other shapes.

The limitation of usual Taylor expansion lies in its po-
tential inaccuracy for nonlinear problems. In this work, to
overcome potential inaccuracy of Taylor expansion, a multi-
point based Taylor expansion technique is proposed. The pa-
rameter space of the shape population is partitioned into dif-
ferent regions and multiple Taylor expansions are conducted
around the local bases within each region. This technique
is extremely powerful when combined with the dimensional
reduction of principal component analysis (PCA) in SSM.
Since as a result of PCA, the first several shape parameters

capture a majority of the shape variations. Thus the region
partition is only carried with respect to the first few shape
parameters and the dimension of the problem has been sig-
nificantly reduced. To determining the positions of the ex-
pansion bases, an optimization based approach is designed.

2 METHOD OVERVIEW
The proposed method involves four steps: 1) statistical

shape modeling; 2) shape sensitivity analysis; 3) approxima-
tion by Taylor expansion; and 4) computing the performance
variation.

The input for our method are the boundary shapes:{
X(k)

Γ
,k = 1, · · · ,ns

}
. Firstly, the shape parameters and their

probabilistic distributions are learned from the statistical
shape modeling. The shapes are parameterized by the eigen-
shapes {ψψψk} and the shape parameters {wk}

XΓ = XΓ +
m

∑
k=1

wkψψψk, wk ∼ N(0,λk), (1)

where XΓ is the boundary shape, XΓ is mean shape of the
population. wk ∼ N(0,λk) means the kth shape parameter is
normally distribution with mean 0 and variance λk.

Secondly, the analytical sensitivities of the FE solution
u and the structural performance c with respect to the shape
parameters w = [w1, · · · ,wm]

T are calculated

∂c
∂wk

=
∂c
∂ut

∂u
∂wk

, k = 1, · · · ,m. (2)

Then, with the results of sensitivity analysis, an explicit
function relationship between the structural performance and
the shape parameters is obtained from the Taylor expansion

c̃(w) = c(0)+
m

∑
k=1

∂c
∂wk

wk, (3)

where c(0) is the structural performance of the mean shape.
c̃(w) is the approximation of c(w).

Finally, the probability distribution p(c̃) of the structural
performance is obtained by the explicit function relationship
c̃(w) and the learned probability distribution of the shape pa-
rameters p(w).

The output is the cumulative distribution function (CDF)
Fc̃(c∗) = p(c̃ ≤ c∗) of the structural performance c̃, where
p(c̃≤ c∗) is the probability that c̃ is less than c∗.

In this study, we use p(·) to denote the probability of
a specific event. The boundary shapes are represented by
discrete sampling points: XΓ = [x1, · · · ,xnb ]

t , where xi =
[xi,1,xi,2]

t is vector of coordinates and nb is the number of
sampling points. We use X to denote the FE mesh in gen-
eral. When X appears in the equations, it means the positions
of the mesh nodes, for example, X = [p1, · · · ,pnp ]

t , where



pi = [pi,1, pi,2]
t is vector of coordinates and np is the number

of mesh nodes. We use u to denote the FE solution in gen-
eral. When u appears in the equations, it means the nodal
values of the FE solution, for example, u = [u1, · · · ,unp ]

t . If
u is an np×1 vector and w is an m×1 vector, ∂u

∂wt would be
an np×m matrix, its element in the ith row and jth column
is ∂ui

∂w j
.

3 STATISTICAL SHAPE MODELING
Statistical shape modeling plays important roles in com-

puting the structural performance variation over a shape pop-
ulation. It computes the mean shape and the modes of vari-
ations in a population. It captures the variability of shapes
in space through the probability distribution of the learned
shape parameters. The mean shape of the population pro-
vides a statistical atlas, based on which we create the tem-
plate FE mesh. The statistical shape modeling usually con-
tains three steps: shape registration, shape alignment, and
shape analysis.

Given a population of shapes
{

X(1)
raw, · · · ,X(ns)

raw

}
, they

can be registered to a reference shape by the rigid [6] or the
non-rigid shape registration techniques [15, 16], or could by
cross-parameterization [17]. In this work, the shape registra-
tion is conducted by deforming the given shapes to the refer-
ence shape through the iterative free-form deformation [16],
by which the boundary correspondences between the refer-
ence shape and the given shapes are obtained. Then, the
shapes are re-sampled by the same number of points in cor-
respondence and are aligned to the same coordinate frame,
for example, by generalized Procrustes analysis [18]. These
re-sampled shapes are X(k)

Γ
= [x(k)1 , · · · ,x(k)nb ]

t , k = 1, · · · ,ns,
where ns is the number of training shapes, and nb is the num-
ber of sampling points on each shape.

The principal component analysis (PCA) is then con-
ducted for capturing shape variations and dimensional reduc-
tion. In PCA, each shape is treated as a vector in R2nb , the
mean shape of the population is

XΓ =
1
ns

ns

∑
k=1

X(k)
Γ
, (4)

the shape covariance matrix is

ΣΣΣ =
1

ns−1
ΦΦΦΦΦΦ

T , (5)

where ΦΦΦ= [X(1)
Γ
−XΓ, · · · ,X

(ns)
Γ
−XΓ]. Just as all the covari-

ance matrices do, the shape covariance matrix ΣΣΣ describes
the patterns and ranges of variations from the mean XΓ.
Through eigen-decomposition, we have

ΣΣΣψψψk = λkψψψk, k = 1, · · · ,ns−1, (6)
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Fig. 2. Statistical shape modeling of hand shapes: (a) 40 aligned
training shapes; (b) the mean shape: XΓ; (c) the first mode by
varying w1: XΓ + w1ψψψ1; (d) the second mode by varying w2:
XΓ +w2ψψψ2; (e) the third mode by varying w3: XΓ +w3ψψψ3.

where ψψψ1, · · · ,ψψψns−1 are the principal components of ΣΣΣ,
λ1, · · · ,λns−1 are the corresponding eigenvalues. The prin-
cipal components captures the modes of shape variations.
The eigenvalues are the amount of variances in those com-
ponents.

Through PCA, the shapes are modeled as the linear com-
bination of the mean shape and the variation modes

XΓ = XΓ +
m

∑
k=1

wkψψψk, (7)

where XΓ is a shape modeled by PCA, ψψψk,k = 1, · · · ,m are
the first m variation modes. The number of modes, m, can be

determined, e.g. from
m
∑

k=1
λk/

ns−1
∑

k=1
λk ≥ 98%, which means

that the first m modes should capture more than 98% of the
total shape variances in the training set. wk,k = 1, · · · ,m are
the corresponding weights. We call them the shape parame-
ters and note w = [w1, · · · ,wm]

t .
In Figure 2 we show an example of statistical shape

modeling of 40 hand shapes, from which we see the mean
shape of the population and the first three modes of shape
variations. As a result of dimensionality reduction, the first
three shape modes captures 66.6%, 16.6%, and 7.8% of the
total shape variances respectively.

The shape parameters {wk} are assumed to be normally
distributed. They are uncorrelated with each other as the re-
sult of PCA. The probabilistic distribution of the shapes in
R2nb is then modeled by the distributions of the first m shape
parameters as

wk ∼ N(0,σk), k = 1, · · · ,m,

where N(0,σk) stands for the normal distribution with 0
mean and standard deviation σk =

√
λk.



4 SHAPE SENSITIVITY ANALYSIS
Through statistical shape modeling, a shape in the pop-

ulation is parameterized by the shape parameters w. In this
section we derive the analytical sensitivity of the FE solution
u over the shape parameters w. Assume we have the FE state
equation

K(w)u = b(w), (8)

the sensitivity of the FE solution over the shape parameters
is calculated by [19]

∂u
∂wk

= K−1
(

∂bbb
∂wk
− ∂K

∂wk
u
)
,k = 1, · · · ,m. (9)

For a specific element e in the stiffness matrix K or the
loading vector b, by the chain rule we have

∂e
∂wk

=
∂e

∂Xt
∂X
∂Xt

Γ

∂XΓ

∂wk
, (10)

where ∂e
∂Xt |1×2np is the sensitivity of element e with respect

to the mesh nodes, it is calculated according to the governing
equations of the finite element method [19–21]; ∂X

∂Xt
Γ

|2np×2nb

is the sensitivity of the mesh nodes with respect to the bound-
ary points, it is calculated based on the Thin-plate deforma-
tion, whose details will be given later; and ∂XΓ

∂wk
|2nb×1 is the

sensitivity of the boundary points with respect to the shape
parameters and from equation (7) we have

∂XΓ

∂wk
= ψψψk, k = 1, · · · ,m. (11)

The only unknown in equation (10) now is ∂X
∂Xt

Γ

. Here
the thin-plate deformation (TPS) [22] is used to transfer the
boundary perturbations to the interior nodes due to its sim-
plicity and robustness. It is worth mentioning that other de-
formation methods could also be applied, for example, the
free-form deformation [23], the deformation by pseudo lin-
ear elasticity [24].

The formulation of the thin-plate deformation is

ΦΦΦ(x) = c+Ax+VtU(x), (12)

where x = [x1,x2]
t is the domain point and is deformed to

ΦΦΦ(x); c = [c1,c2]
t is the translation vector; A is the 2× 2

affine transformation matrix; VtU(x) is the deformation part,
where U(x) = [ρ(x−xΓ

1 ), · · · ,ρ(x−xΓ
nb
)]t is the nb×1 vector

of kernel functions, xΓ
1 , · · · ,xΓ

nb
are the coordinates of bound-

ary points with xΓ
i = [xΓ

i,1,x
Γ
i,2]

t , and V = [v1, · · · ,vnb ]
t is the

nb×2 matrix of TPS weights with vi = [vi,1,vi,2]
t . The kernel

function ρ is defined as

ρ(h) =
{
‖h‖2 log(‖h‖), ‖h‖> 0;
0, ‖h‖= 0. (13)

Given the coordinates of the initial boundary points
xΓ

1 , · · · ,xΓ
nb

, and the coordinates of the perturbed boundary
points xΓ

1 , · · · ,xΓ
nb

, the translation vector c, affine transforma-
tion matrix A and the deformation weights V can be solved
as [6, 22]:

V = B11XΓ,

[
ct

At

]
= B21XΓ, (14)

where XΓ = [xΓ
1 , · · · ,xΓ

nb
]t is the nb × 2 matrix of initial

boundary points, XΓ = [xΓ
1 , · · · ,xΓ

nb
]t is the nb× 2 matrix of

perturbed boundary points. In this paper the mean shape XΓ

is set as the initial boundary. B11 (nb×nb) and B21 (3×nb)
are coefficient matrices decided by the positions of the initial
boundary points XΓ, whose closed form formulation is given
in [6].

Substituting (14) into (12), we have

ΦΦΦ(x) = Xt
ΓB12

[
1
x

]
+Xt

ΓB11U(x), (15)

where B12 is the transpose of B21.
Assume X = [p1, · · · ,pnp ]

t the nodes of the FE mesh of
the mean shape XΓ, and X = [p1, · · · ,pnp ]

t the nodes of the
deformed FE mesh. We have X as a linear function of the
boundary points XΓ

X =
(
[1,Xt

]B21 +Ut(X)B11
)

XΓ, (16)

where U(X) = [U(p1), · · · ,U(pnp)]. From equation (16) we
have the sensitivity of the mesh nodes with respect to the
boundary points

∂X
∂Xt

Γ

=

(
[1,Xt

]B21 +Ut(X)B11

[1,Xt
]B21 +Ut(X)B11

)
, (17)

on the left side of the equation X and XΓ are vectorized.
Now, we have the sensitivity of the FE nodal solutions

∂u
wt from equations (9) and (10). The sensitivity of the struc-
tural performance ∂c

∂wt can be easily obtained by the chain
rule:

∂c
∂wt =

∂c
∂ut

∂u
∂wt . (18)

5 TAYLOR APPROXIMATION OF STRUCTURAL
PERFORMANCE
The Taylor expansion is used to explicitly approximate

the function relationship c(w) between the structural perfor-
mance c and the shape parameters w.
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Fig. 3. Partition the domain into different regions and conduct Taylor
expansion in each region separately.

5.1 Single point Taylor expansion
In the single point Taylor expansion, the performance

function c(w) is expanded around the mean shape, where the
shape parameters are zeros.

c̃(w) = c(0)+
∂c

∂wt w, (19)

where c(0) = c(u(0)), and u(0) is the FE solution on the
mean shape solved from the below equation:

K(0)u = b(0). (20)

5.2 Multi-point Taylor expansion
To overcome the potential inaccuracy of Taylor expan-

sion at points far away from the mean shape, a multi-point
Taylor expansion technique is proposed.

As shown in Figure 3 are two different examples of the
multi-point Taylor expansion. In Figure 3(a) the domain has
been partitioned into three regions by the two dashed hori-
zontal lines. The Taylor expansions are conducted locally in
each region around the bases pi, i = 0,1,2. In Figure 3(b) the
domain has been partitioned into five regions. The procedure
of the multi-region Taylor expansion is as follows:

1. Choosing n number of expansion bases {p0,p1, · · · ,pn}.
2. Partition the parametric domain into n regions

Ω0,Ω1, · · · ,Ωn according to the closest distance to
the base points:

Ωi =

{
w | ‖w−pi‖= min

j=0,··· ,n
‖w−p j‖

}
.

3. Approximate c(w) piece-wisely by the Taylor expan-
sions around the local bases:

c̃(w) =


c(p0)+

∂c
∂wT (w−p0), ∀w ∈Ω0

...
c(pn)+

∂c
∂wT (w−pn), ∀w ∈Ωn

(21)

It should be noted that, though c̃(w) may not be continuous,
the obtained probability distribution p(c̃) will be close to that
of the true performance p(c) as long as c̃(w) is close to c(w).

Choosing appropriate expansion bases p0 · · ·pn is criti-
cal in the multi-point Taylor expansion. For each point w,
it is expanded with respect to the closest base point. So the
range of extrapolation at w is l(w) = min

j=0,··· ,n
‖w−p j‖. Since

the error of Taylor expansion is propositional to l(w)r+1,
where r is the degree of expansion and in this paper r = 1, it
is desirable to minimize the overall squared range of extrapo-
lation. However, each shape parameter w does not appear in
the same frequency, the accuracy of approximation is more
important at the regions of high probability. Based on that,
an objective function is designed:

min
{p j}

E =
∫
Ω

l(w)2 p(w)dw, (22)

where the extrapolation range l(w)2 is weighted by the prob-
ability density p(w) and is integrated over the whole domain.
Note that l(w) in equation (22) is a minimum formula and
will cause obstacles for the optimization. Since the p-norm
is widely used in approximating the minimum and maxi-
mum formulas, l2(w) = min

j=0,··· ,n
‖w− p j‖2 is substituted by

(∑n
i=0 l−2q

j )−
1
q . Considered that the probability density p(w)

of the shape parameters is original symmetric as in equation
(24), it is desirable to have the expansion bases symmetric
with respect to the origin. At last, we have the optimization
formula:

min
{p j}

E =
∫
Ω

(
n

∑
i=0

l−2q
j )−

1
q p(w)dw, (23)

s.t. p j =−pn− j, j = 0, · · · ,n.

Locations of expansion bases are then obtained from (23)
through a gradient decent approach.

6 Probabilistic distribution of the structural perfor-
mance
Through the Taylor expansion, an explicit function rela-

tionship c̃(w) between the shape parameters w and the struc-
tural performance c is obtained. By the statistical shape mod-
eling, the probability density function of the shape parame-
ters are learned:

p(w) = Π
m
k=1(2πλk)

− 1
2 e
−

w2
k

2λk , (24)

where wk is the kth shape parameter and λk is the shape vari-
ance in the kth principal direction.



The cumulative distribution function of the approxi-
mated structural performance c̃ is given by:

Fc̃(c∗) = p(c̃≤ c∗) =
∫

c̃(w)≤c∗

p(w)dw. (25)

6.1 Closed form solution
If the obtained structural performance c̃ is linear and

continuous as in equation (19), since it is assumed that the
shape parameters are normally distributed, we have that c̃ is
also normally distributed with mean c(0) and variance:

λc =
∂c

∂wt Λ
∂c
∂w

, (26)

where Λ = diag(λ1 · · ·λm) is the covariance matrix of w. The
closed form of equation (25) is then obtained accordingly.

6.2 Monte Carlo integration
If the obtained structural performance c̃ is discontinu-

ous as in equation (21). A closed form of equation (25) is
either non-existent or very hard to obtain. In such cases, the
Monte Carlo integration [25] is used to integrate the cumula-
tive probability function (25). Compared with the finite ele-
ment analysis, the function evaluations of c̃(w) by (21) cost
nothing.

7 NUMERICAL RESULTS
In this section, the influence of geometrical variation on

the structural performances have been studied with a 2D heat
transfer problem and a 2D elasticity problem. We examine
the numerical accuracy of the Taylor expansion for various
modes of shape variations. We also compare the distributions
of the structural performances obtained by Taylor expansion
with those obtained by the Monte Carlo simulation.

The evaluation process of Monte Carlo simulation
(MCS) is as follows:

1. Randomly generate N ≥ 500 sets of shape parameters
{wi} according to p(w).

2. For each shape parameter wi, generate the correspond-
ing boundary shape X(i)

Γ
by the statistical shape model

(7).
3. Generate the finite element mesh X(i) for X(i)

Γ
by the

thin-plate deformation of the FE mesh of the mean shape
(16).

4. Conduct the FE analysis, record the results and repeat
steps 2,3,4 until i = N.

In our numerical study, the 40 hand shapes in [26] are
used as the training set as in Figure 2. Each shape is rep-
resented by nb = 2001 number of discrete points. We model
the shape variations among them through the statistical shape
modeling method as detailed in [16]. The first 8 shape modes
is used to compactly represent the overall shape variation,

(a) Boundary conditions on the
mean shape

(b) FE solution

Fig. 4. A 2D heat transfer problem: Dirichlet boundary condition
u = 50 on Γ1 (red circle), Neumann boundary condition ∂u

∂n =
−200(green boundary), thermal load: q = 1000000 in the center
of the hand (yellow area).

which captures more than 98% of the total shape variance.
The template FE mesh is created on the mean shape and has
np = 1250 number of nodes.

7.1 2D heat transfer problem
The 2D heat transfer is governed by the Poisson equa-

tion:

−∆u = q in Ω (27)
u = T1 on Γ1 (28)

∂u
∂
−→n

= g on Γ2 (29)

where u is the temperature, q is the thermal load, Ω is the
domain of heat transfer, Γ1 is the Dirichlet boundary, T1 is
the boundary temperature, Γ2 is the Neumann boundary, and
g is the Neumann boundary condition.

Figure 4 shows the 2D heat transfer on the hand shape.
Figure 4(a) shows the FE mesh of the mean shape and the
boundary conditions. Figure 4(b) shows the corresponding
FE solution. In this example, the variability of the thermal
compliance c =

∫
Ω

qudΩ due to the shape variations is stud-
ied.

7.1.1 Temperature distribution by Taylor expansion
Figure 5 shows the predicted temperature distribution of

shapes due to the change of the first shape parameter. We
can see that as w1 increases from−2σ1 to 2σ1 in Figure 5(a),
5(b), 5(c), and 5(d), the hand becomes more expanded, and
the temperature in the field decreases.

In order to examine the accuracy of Taylor expansion,
here we compare the results predicted by the Taylor expan-
sion with the ones obtained by the finite element analysis.

The Taylor expansion of the nodal temperatures u(w)
and the thermal compliance c(w) around the mean are done
through equation (19). The finite element analysis are con-
ducted at the designed points, as shown by the stars ∗ in Fig-
ure 7. At each point, a new shape is generated by the corre-
sponding shape parameters, the FE mesh is obtained by the
thin-plate deformation of the FE mesh of the mean shape and
a new FE analysis is conducted.



(a) ũ(w1)|w1=−2σ1 (b) ũ(w1)|w1=−σ1

(c) ũ(w1)|w1=σ1 (d) ũ(w1)|w1=2σ1

Fig. 5. Predicted temperature distribution due to shape variations
in the first mode. The color means the temperature, and its range
follows the same color bar as in Figure 4.

(a) ũ(w1)−u(w1)|w1=−2σ1 (b) ũ(w1)−u(w1)|w1=2σ1

(c) ũ(w2)−u(w2)|w2=−2σ2 (d) ũ(w2)−u(w2)|w2=2σ2

(e) ũ(w3)−u(w3)|w3=−2σ3 (f) ũ(w3)−u(w3)|w3=2σ3

Fig. 6. The errors between the temperatures predicted by Taylor
expansion and from FE analysis.

Figure 6(a) and 6(b) show the errors between the tem-
peratures predicted by Taylor expansion and from FE anal-
ysis with shape change in the first mode. The results are
obtained by varying the first shape parameter from negative
two standard deviations to positive two standard deviations,
while keeping all the other shape parameters 0. The max-
imum errors in Figure 6(a) and 6(b) are 6.89 and 7.03, re-
spectively, while the scale of temperature variation in our FE
solution is about 80 as shown in Figure 4. We could see
that the maximum error happens at the tip of the little finger,
where the shape variation is large and is far from the Dirich-

w
1
/<

1

-3 -2 -1 0 1 2 3

c

#109

5.5

6

6.5

7

7.5 FE Solution
Taylor expan.

(a) First mode

w
2
/<

2

-3 -2 -1 0 1 2 3

c

#109

6.2

6.4

6.6

6.8 FE Solution
Taylor expan.

(b) Second mode

w
3
/<

3

-3 -2 -1 0 1 2 3

c

#109

6.2

6.3

6.4

6.5

6.6

6.7 FE Solution
Taylor expan.

(c) Third mode

c #109
5.5 6 6.5 7 7.5

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

0.2

0.4

0.6

0.8

0.05

0.5

0.95

Taylor expan.
MCS

(d) CDF

Fig. 7. Comparing Taylor expansion with FE analysis of thermal
compliance: (a) c̃= c(0)+w1∂c/∂w1; (b) c̃= c(0)+w2∂c/∂w2;
(c) c̃= c(0)+w3∂c/∂w3; (d) cumulative distribution functions from
Taylor expansions and from 500 Monte Carlo simulations.

let boundary. The Taylor expansion extrapolates the FE solu-
tion of the mean shape to other shapes, so it is reasonable to
expect that the maximum error happens at the farthest extrap-
olation point (large shape deviation). Since the temperature
on the Dirichlet boundary is fixed, so there is no error on the
Dirichlet boundary.

Figure 6(c) and 6(d) compare the Taylor expansion with
the FE solutions for shape changes along the second mode.
The maximum errors in Figure 6(c) and 6(d) are 1.59 and
2.15, respectively. Figure 6(e) and 6(f) compares the Taylor
expansion with the FE solutions for shape changes along the
third mode. The maximum errors in Figure 6(e) and 6(f) are
0.80 and 0.81, respectively.

It could be seen that from the first mode to the third
mode, the errors become smaller and smaller. That’s be-
cause as a result of PCA, the first mode captures a majority of
the total shape variances and the remaining modes captures
fewer and fewer shape variances. So the deviation from the
mean shape becomes smaller and smaller.

7.1.2 Thermal compliance by Taylor expansion
Figure 7(a) shows the relationship between the first

shape parameter w1 and the thermal compliance c by Tay-
lor expansion and from the FE analysis. Since the thermal
load q as in Figure 4(a) is added in the middle area, where
has small extrapolation errors as in Figure 7(a), the results of
Taylor expansion c̃ is close to the FE analysis c. The maxi-
mum relative error (max |c̃− c|/c) is 6.77%.

Figure 7(b) and 7(c) show the relationships between the
second and third shape parameters with the thermal compli-
ance. The results of Taylor expansion agree well with the fi-
nite element analysis, the maximum relative errors are 0.42%
and 0.49% respectively.

Since the Taylor expansions in Figure 7(a), 7(b), and



(a) Boundary conditions on the
mean shape

(b) Nodal displacements

Fig. 8. A 2D linear elasticity problem: (a) FE model of the mean
shape: Dirichlet boundary condition û = [0,0]T on ΓD (red circle),
Neumann boundary condition t̂ = [200,0]T (green boundary); (b)
the resulting nodal displacements, the color shows the values of hor-
izontal displacements.

7(c) gives relatively small extrapolation errors, the single-
point Taylor expansion (19) around the mean shape is used
to approximate c(w) and calculate the cumulative probabil-
ity function (CDF) of the thermal compliance. In this case
we have the analytical solution (26). The result is shown in
Figure 7(d), it can be seen that the analytical CDF conforms
well to that obtained by the Monte Carlo simulations. The
three horizontal curves in Figure 7(d) partition the space into
four intervals at the cumulative probabilities of 5%, 50%,
and 95%. From the two inner intervals we could see that, for
about 90% of the shapes in the population, the thermal com-
pliance c should be within the range [5.8× 109,7.1× 109].
The run time for the Taylor expansion based approach is
2.88s including the sensitivity calculation. The run time for
the 500 Monte Carlo simulations is 106.54s. The computing
is performed with MATLAB on the processor of “intel(R)
Core(TM) i7-5500U”.

7.2 2D elasticity problem
The governing PDEs of the linear elasticity problem are

−∇∇∇ ·σσσ = f in Ω, (30)
σσσ = 2µεεε+λ(∇∇∇ ·u)I in Ω, (31)

εεε =
1
2
(∇∇∇u+∇∇∇uT ) in Ω, (32)

u = û on ΓD, (33)
σσσn = t̂ on ΓN , (34)

where σσσ is the domain stress, f is the domain force, Ω is the
domain, u is the displacement, I is the identity matrix, û is
the fixed displacement on the Dirichlet boundary ΓD, and t̂
is the traction on the Neumann boundary ΓN .

In this example, the variability of the structural compli-
ance c =

∫
ΓN

uT t̂dΓ due to the shape variations is studied.

Figure 8(a) shows the FE model X of the mean shape XΓ

and the boundary conditions. Figure 8(b) shows the solved
nodal displacements.

(a) ũ(w1)|w1=−2σ1 (b) ũ(w1)|w1=−σ1

(c) ũ(w1)|w1=σ1 (d) ũ(w1)|w1=2σ1

Fig. 9. Taylor expansion predicted nodal displacements due to
shape variations in the first mode. The color shows the values of
horizontal displacements and its range follows the same color bar as
in Figure 11.
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Fig. 10. Comparing Taylor approximation with FE solutions of struc-
tural compliance.

7.2.1 Nodal displacements by Taylor expansion
In this section we display the nodal displacements pre-

dicted from the Taylor expansion of equation (19) for shapes
with varying shape parameters.

Figure 9 shows the predicted nodal displacements of
shapes due to the change of the first shape parameter. As
w1 increases from −2σ1 to 2σ in Figure 9(a), 9(b), 9(c), and
9(d), the hand becomes more expanded and smaller, and the
displacements decreases.

7.2.2 Structural compliance by Taylor expansion
In this section the single-point Taylor expansion around

the mean shape (19) is used to obtain the cumulative distri-
bution function of the structural compliance.

Figure 10(a),10(b), and 10(c) plot the relationship be-
tween the first, second, and third shape parameters and the
resulting structural compliance c by the Taylor expansions
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Fig. 11. Cumulative distribution function by multi-point Taylor expan-
sion: (a) result with three expansion bases; (b) result with five expan-
sion bases.

and from the FE analysis. It could be seen that the results of
Taylor expansion deviates a lot from that of the FE analysis.

Figure 10(d) compares the cumulative distribution func-
tion of the structural compliance c̃ obtained by the Taylor
expansion with the one obtained by 500 Monte Carlo simu-
lations. We can see that the analytical CDF obtained by the
Taylor expansion deviates a lot from the CDF obtained by
the Monte Carlo simulations.

7.2.3 Multi-point Taylor expansion
The drawback of Taylor expansion lies in the fact that

the approximation error becomes larger as the range of ex-
trapolation increases. For certain problems, for example the
2D elasticity problem in this paper, it will cause large dis-
crepancy between the approximated function c̃(w) and the
real one c(w), and thus large discrepancy between the cor-
responding cumulative distribution functions. By observing
Figure 10(a), 10(b) and 10(c), it can be seen that the response
of the real FE analysis is quit curved and the Taylor expan-
sion of the points far away from the mean shape deviates a
lot from the real FE solution. To overcome this issue, the
multi-point Taylor expansion technique, as discussed in sec-
tion 5.2, is used.

Figure 11 shows the results obtained by the multi-point
Taylor expansion. We can see that the cumulative distribu-
tion function obtained by the Multi-point Taylor expansion
conform well with that of the Monte Carlo simulation. The
expansion bases {P0 · · ·Pn} are obtained by the optimization
formula (22). In this example, the multi-point Taylor ex-
pansion is only carried with respect to the first three shape
parameters (w1,w2,w3), which captures 91.0% of the total
shape variances ∑

3
i=1 σ2

i /∑
40
i=1 σ2

i = 0.91.
With n = 2, the obtained expansion bases are:

(1.107,0,0), (0,0,0), (−1.107,0,0), the result is shown
in Figure 11(a). With n = 4, the obtained expansion
bases are: (1.764,0,0), (−0.798,0,0), (0,0,0), (0.798,0,0),
(−1.764,0,0), the result is shown in Figure 11(b). It is very
interesting to notice that all the expansion bases are arranged
along the first dimension. This perhaps can be ascribed to
the fact that the 1st mode captures 66.7% of the total shape
variances.

The run time for the multi-point Taylor expansion is
12.98s with n = 2 and 21.86s with n = 4 including the sensi-
tivity calculation. The run time for the 500 Monte Carlo sim-

ulations is 133.86s. The computing is performed with MAT-
LAB on the processor of “intel(R) Core(TM) i7-5500U”.

8 Conclusion
In this paper, we have presented a Taylor expansion

based method for efficiently computing structural perfor-
mance variation over a shape population. Each shape in the
population is represented as discrete points. These shapes
are then aligned together by generalized Procrustes analy-
sis. Principal component analysis is conducted to obtain the
shape variation, which is represented as a sum of variations
in multiple principal modes. Finite element analysis is con-
ducted on the mean shape. For each shape specified by the
shape parameters, we then invoke a thin-plate deformation
based scheme to automatically deform the mesh nodes. The
performance of the shapes is approximated via Taylor expan-
sion of the FE solution of the mean shape.

Our Taylor expansion approach allows efficient comput-
ing of structural performance variations over a shape popula-
tion without conducting a large number of FE analysis. The
technical contributions of this work include: 1) We have de-
rived the analytical sensitivity of the FE solution with respect
to the shape parameters and applied it in the Taylor series ap-
proximation of the FE solutions. Numerical results confirms
its accuracy with respect to FE solutions. 2) We have demon-
strated that the multi-point Taylor expansion technique can
effectively overcomes the potential inaccuracy of Taylor ex-
pansion when combined with the dimensionality reduction
of principal component analysis.

Future work includes extending the current approach to
3-dimensional problems. Our Taylor expansion is linear and
the use of multi-point Taylor expansion makes it possible to
account for non-linearity. For shapes with large variations, it
would be interesting to compare our multi-point Taylor ex-
pansion with higher-order approximations.

In this work, shape parameters are assumed to be nor-
mally distributed. For shape sets where the shape parameters
are not normally distributed, especially when involving pose
changes [27], alternative techniques [28] can be considered.
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