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Adaptive Slicing of Moving Least
Squares Surfaces: Toward Direct
Manufacturing of Point Set
Surfaces
Rapid advancement of 3D sensing techniques has led to dense and accurate point cloud
of an object to be readily available. The growing use of such scanned point sets in
product design, analysis, and manufacturing necessitates research on direct processing of
point set surfaces. In this paper, we present an approach that enables the direct layered
manufacturing of point set surfaces. This new approach is based on adaptive slicing of
moving least squares (MLS) surfaces. Salient features of this new approach include the
following: (1) It bypasses the laborious surface reconstruction and avoids model conver-
sion induced accuracy loss. (2) The resulting layer thickness and layer contours are
adaptive to local curvatures, and thus it leads to better surface quality and more efficient
fabrication. (3) The curvatures are computed from a set of closed formula based on the
MLS surface. The MLS surface naturally smoothes the point cloud and allows upsam-
pling and downsampling, and thus it is robust even for noisy or sparse point sets. Ex-
perimental results on both synthetic and scanned point sets are presented.
�DOI: 10.1115/1.2955481�

Keywords: moving least squares surface, point-set surface, curvatures, adaptive slicing,
layered manufacturing, direct manufacturing
Introduction
Rapid advancement of 3D sensing technologies and rising de-
ands for individualized manufacturing have spurred the growing

eed for geometric processing of point clouds, a process that con-
erts data output from 3D sensors into suitable geometric models
hat can be used in downstream product design, analysis, and

anufacturing. On the one hand, various 3D sensors of different
odalities, such as tactile, optical, X-ray, magnetic, and acoustic

ensors, can now readily output dense and accurate point cloud of
physical object. On the other hand, the use of geometric models
f existing physical objects is becoming increasingly common in
he product development as evidenced by the growing need for
everse engineering of physical artifacts in automotive, aerospace,
nd consumer product industries, increasing practice of patient-
pecific biomedical implants, customer-specific product design
nd manufacturing �e.g., apparel and footwear�, and service-
ondition based product repair.

Current approaches in geometric processing of point cloud for
ubsequent manufacturing are illustrated in Fig. 1 �in this paper,
e focus on additive manufacturing processes, hereinafter layered
anufacturing �LM��. The prevalent approach involves surface

econstruction where the discrete point cloud �point set� is con-
erted into certain high order continuous surface representations,
.g., conical surfaces or B-spline surface patches. The recon-
tructed surface model is subsequently discretized into a .stl file
or LM. However, the surface reconstruction process, a process
hat involves segmentation and surface fitting, is laborious and far
rom being fully automatic. The multitude of model conversions
rom point sets, to continuous surfaces, to a discrete model �.stl�,
nd to the LM process model �a stackup of 2.5D layers� lend itself
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vulnerable to accuracy loss. An alternative approach is through
triangulation of point cloud into a .stl file. This approach also
involves the model conversion from .stl to the LM process model.
As such, the need for accurate .stl model often leads to the size of
triangles to be extremely small, which negates the benefit of tri-
angular representation of surface shapes.

Recently, a new approach that directly processes point cloud for
LM emerges. For example, in LM, several direct slicing methods
have been reported �1–4�. However, these direct slicing methods
employed a projection process that projects the neighboring points
within �d distance away from the slicing plane onto the plane; a
trade-off between the projection error and the truncation error is
thus introduced. For example, when slicing the rabbit data shown
in Fig. 2�a�, an appropriate plane distance �d is hard to find due to
this tradeoff. When �d is too large, the projection error may be-
come large �depending on the local normal direction�, which is
illustrated by the large bandwidth in Fig. 2�b�; when �d is small,
the truncation error becomes big, which is illustrated by the sparse
data and the discretized loss of high frequency �sharp corners�
information in Fig. 2�c�.

In this paper, we present an approach that can generate a LM
model directly from the point cloud. This approach is based on
adaptive slicing of moving least squares �MLS� surfaces from the
point set. It effectively circumvents the tradeoff between the trun-
cation error and the projection error. Instead of using the projec-
tion, this algorithm employs an intersection method that generates
each 2D contour by directly intersecting a slicing plane with the
underlying MLS surface defined by the input point data. In com-
parison with the current direct slicing methods, our new method
tends to give more accurate 2D contours, as shown in Fig. 2�d�,
due to the following reasons: �1� The projection error is avoided
by employing an intersection method instead of the projection
method. Meanwhile, the accuracy of the intersection is precisely
controlled by any given error bound. �2� The truncation error is

reduced by upsampling enabled by MLS. While in the projection
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ased methods, the density of projected points is limited by the
ocal density of the input point set. �3� The measurement noise is
elieved by the smoothing effect of MLS.

Salient features of our adaptive direct slicing method include
he following.

• Direct processing. The method does not involve any inter-
mediate geometric model, completely bypasses the labori-
ous surface reconstruction, and avoids the potential model
conversion induced accuracy loss.

• Adaptive contour/layer generation. The contour profile and
the thickness of each layer are adaptive to surface curvature;
thus, the resulting surface quality and build time are im-
proved. Existing direct slicing methods do not allow such
adaptive slicing feature due to the fact that the slice is com-
puted from projection without knowledge of local curvature.

• Closed formulas for curvature computing. Unlike other cur-
vature estimating methods �5,6�, where subjective param-

ig. 1 Approaches for geometric processing of scanned point
loud data for LM

Fig. 2 Comparison of the current projec
proaches. „a… Isoview of the rabbit data wi
approach, larger �d leads to more points
error. „c… In the projection based approach
on the slicing plane and potential truncati

based approach.
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eters and heuristic assumptions are needed to estimate the
curvatures, this paper presents a set of closed formulas for
computing curvatures from MLS surfaces without any extra
data specific parameters.

• Single underlying point set surface. The MLS surface pro-
vides a single underlying surface representation of the
physical object that can be applied in a variety of down-
stream design, analysis, and manufacturing applications. It
circumvents the trade-off between the projection error and
the truncation error. It allows upsampling and downsam-
pling. It is robust even for noisy or sparse point sets.

Figure 3 presents a flowchart of our adaptive direct slicing
method, in which the differential geometric analysis and MLS are
two fundamental components. The differential geometric analysis
provides the normal and curvature information for point set sur-
faces. MLS gives the underlying surface representation of the in-
put scanned point set. The 2D contours/2.5D layers are then adap-
tively generated based on the computed curvatures.

The rest of the paper is organized as follows. In Sec. 2, we
provide a review of relevant work. In Sec. 3, we introduce MLS
surfaces as our underlying representation of the point set surface.
In Sec. 4, we present two necessary differential geometric analy-
ses: normal estimation for point data and curvature calculation in
MLS surfaces. In Sec. 5, we explain the overall procedure of our
adaptive direct slicing method, followed by details of two main
algorithms: adaptive 2D contour generation and adaptive layer

n based and our MLS based slicing ap-
licing planes. „b… In the projection based

the slicing plane and potential projection
maller �d leads to fewer points projected
error. „d… The resulting points of our MLS
tio
th s
on
, s

on
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hickness calculation. We present experimental examples to illus-
rate the efficacy of the direct slicing method in Sec. 6 and con-
lude this paper in Sec. 7.

Literature Review
LM is a process in which a part is produced by successively

dding material layer by layer. A basic computational task in LM
s slicing—the generation of 2.5D layers. Various slicing proce-
ures have thus far been proposed and compared in recent surveys
7,8�. Here, we briefly present the works in Refs. �9,10�, from
hich we have adopted adaptive layer generation strategies. In
ef. �9�, the accuracy issue of LM in terms of the staircase effect
as analyzed. The staircase effect has been relieved by controlling

he maximum allowable cusp height using 12 different expres-
ions, depending on geometrical conditions and containment re-
uirements. In Ref. �10�, the staircase interaction between the
oundaries of the decomposed neighboring volumes has been fur-
her studied, which has been eliminated by a feature based volume
ecomposition algorithm.

Different from the traditional slicing procedures, several direct
licing procedures that avoid both the B-spline surface fitting and
he triangular mesh construction tasks have been published �1–4�.
n image processing based method is proposed in Ref. �1�, which

ollects representative feature points by thinning the projected im-
ge. This feature points are then formed into a set of features
urves, which are finally used to extract contours for LM. A simi-
ar projection based method is presented in Ref. �2�, which adap-
ively determines the slice thickness to control the projection error
not the cusp height�. In order to avoid the wideband of 2D point
ata in the projection process, a new slicing procedure is pre-
ented in Ref. �4�, which is based on the growing self-organizing
ap neural network algorithm for piecewise linear reconstruction

f curves and surfaces from unorganized thick point data. To re-
ieve the wideband problem in the projection method, a “voting
long the surfel” approach is proposed in Ref. �3�, which utilizes
he quadratic surfel for slicing the point set. However, the trade-
ff between the projection error and the truncation error remains.

Recently, in computer graphics, a number of point based repre-
entations, such as surfel �11,12� or MLS �13–19� have been pro-
osed and proven to be successful in 3D rendering. Moreover, as

Fig. 3 Flowchart for our adaptive direct slicing algorithm
smooth surface defined by a projection process �13,14�, MLS

ournal of Computing and Information Science in Enginee
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surfaces can also be used for point set denoising, upsampling,
downsampling, offsetting, and so on. Based on a more general
definition of this projection MLS in Refs. �15,16�, a mathematical
proof of the convergence of the projection procedure is presented
in Refs. �17,18�. Meanwhile, the resulting MLS surface is proven
to be isotopic to the original sampled surface.

3 Introduction on MLS Surfaces
This section gives a brief introduction on a MLS surface as

described in Refs. �13–18�, which forms the basis of our point set
surface representation and subsequent direct slicing algorithm in
Sec. 5.

Levin �13,14� initially defined the MLS surface S as the station-
ary set of a projection operator �P, i.e.,

S = �x � R3��P�x� = x� �1�

Such projection based MLS surfaces are referred to as projection
MLS surfaces. Note that this projection is different from the pro-
jection based slicing methods where points are simply projected
on the z-planes. Amenta and Kil �15,16� gave an explicit defini-
tion for projection MLS surfaces as the local minima of an energy
function e�y ,a� �a is a direction vector� along the directions given
by a vector field n�x�. Based on this definition, they derived a
projection procedure for taking a nearby point onto the MLS sur-
face S through the interaction of a normal field n�x� and the en-
ergy function e�y ,a�, which can be summarized and intuitively
illustrated in Fig. 4.

For details of this projection procedure, please refer to Refs.
�15,16�. Here we just briefly present two key points in this proce-
dure: Evaluating the normal direction through a vector field n�x�,
and searching for the local minimum of an energy function
e�y ,n�x��.

When evaluating the normal vector, we assume that the normal
information at each input point data is available. This assumption
is naturally true, when the input data are a set of surfels. When the
normal information is not readily available as in some applica-
tions, we can easily compute this normal information, which we
will discuss in the next section. Then we can compute a normal
vector for any point with the normals of the nearby sample points,
i.e., define a normal vector field as the normalized weighted av-
erage of the normals at the sample points. Suppose a normal vec-
tor vi is assigned to each point qi�R3 of an input point set Q, we
have

n�x� =
�qi�Q

vi��x,qi�

	�qi�Q
vi��x,qi�	

�2�

where

��x,qi� = e−	x − qi	
2/h2

�3�

is a Gaussian weighting function, in which h is a scale factor that
determines the width of the Gaussian kernel, which has been dis-
cussed extensively in Refs. �17,18,20�. In these papers, various
schemes have been developed in determining h, e.g., defining h as
a fraction of the local feature size �17� or varying h based on the

Fig. 4 Illustration of the projection process of a projection
MLS
local point density �20�. In this paper, for the sake of simplicity,
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e adopt a constant scale factor h for each example. Applying the
cale factors listed in Table 3, the resulting MLS surfaces can
roperly preserve the small features and avoid potential instabili-
ies due to the quick falloff of the Gaussian weighting function.

In order to search the local minimum of an energy function, we
efine the energy function e :R3�R3→R as

e�y,n�x j�� = e�y� = �
qi�Q

��y − qi�Tn�x j��2��y,qi� �4�

o facilitate the search of the local minimum, we can substitute
=x j + tn�x j� into Eq. �4� and restate it as a function of variable t
s follows

e�t� = �
qi�Q

��x j − tn�x j� − qi�Tn�x j��2��x j − tn�x j�,qi�

ith a vector field n�x� and an energy funtion e, we now have an
legant scheme to project a point onto a MLS surface. Throughout
he rest of this paper, this projection based MLS scheme will be
sed for locally approximating an underlying surface from a set of
ample points.

Differential Geometric Analysis

4.1 Estimating Surface Normal From Points. As we intro-
uced in the previous section, the computation of the normal vec-
or field n�x� requires a preassigned normal at each point of the
nput point set Q. When this normal information is missing, a
tatistical analysis of the neighboring samples can be applied to
stimate the normal vectors, e.g., an eigenanalysis of the covari-
nce matrix of the point positions.

Let c be the weighted centroid of the neighborhood of q, i.e.,

c = �
qi�Q

qi · ��q,qi�

he 3�3 covariance matrix C for the sample point q is then
iven by

C = �
qi�Q

�qi − c� · �qi − c�T · ��q,qi�

ince matrix C is symmetric and positive semidefinite, all its three
igenvalues �0, �1, and �2 are real valued. Assuming �0��1
�2, we can use the eigenvector v0 of the smallest eigenvalue �0

o approximate the surface normal nq at q �21�.
Notice that the normal vectors estimated by this method are

noriented. Although the orientation of a normal vector is not
equired to define a normal vector field as in Eq. �2�, this infor-
ation is necessary for the adaptive slicing process presented in

he next section. A simple scheme can be used to setup a consis-
ent orientation for the normal vectors that point to the “outside”
f the object. This algorithm starts with an extremal point, such as
he point with the largest x or y coordinate and sets the orientation
f its normal as pointing away from the centroid of the point
loud. Then the orientation of the normal vector of the nearest
eighbors can be adjusted by guaranteeing the angle between the
eighboring normals less than � /2. Such an adjusting process can
nally spread the correct normal orientation to all the sampled
oints.

4.2 Curvature Calculation in MLS Surfaces. In our direct
licing algorithm, the curvature of a planar curve �or the surface
urvature along the intersection of a surface and a plane� plays a
ey role in determining the step length in 2D contour generation
nd the layer thickness in layer generation.

To calculate the curvature of planar curves on a MLS surface,
e first convert the native form of MLS into an implicit form. It
as been proven, in Refs. �15,17� that the MLS surface is actually
he implicit surface given by the zero-level set of the implicit

unction

31003-4 / Vol. 8, SEPTEMBER 2008
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g�x� = n�x�T
� �e�y,n�x��
�y

�
y=x
� �5�

where n :R3→R3 is the vector field defined by Eq. �2� and e :R3

�R3→R is the energy function defined by Eq. �4�. Let x
= �x y z�T, then any planar curve on this MLS surface can be de-
fined as the intersection the MLS surface and a plane as follows:

�g�x� = g�x,y,z� = 0� � �h�x� = Ax + By + Cz + D = 0�

For a more elegant expression of this planar curve, we can trans-
form the problem so that the plane h�x�=0 is transformed to the

xy-plane ĥ�x�=z=0. Then the expression for the implicit curve
will reduce to

g��x,y� = n���x y 0�T�T
� �e��y,n���x y 0�T��
�y

�
�x y 0�T

� = 0

�6�

which is only a function of variable x and y �since z=0 in the
xy-plane�.

Applying a curvature formula given in Ref. �22�, we have the
curvature of this implicit planar curve as

k = −
T�g��x,y��T · H�g��x,y�� · T�g��x,y��

	�g��x,y�	
�7�

where T�g��x ,y�� is the unit tangent vector of the implicit curve

T�g��x,y�� =

−

�g��x,y�
�y

�g��x,y�
�x

�T


−
�g��x,y�

�y

�g��x,y�
�x

�T
and

�g��x,y� = 
 �g��x,y�
�x

�g��x,y�
�y

�T

is the gradient of g��x ,y�, H�g��x ,y��=����g��x ,y��� is the Hessian
matrix of g��x ,y�. Notice that

T�g��x,y�� =
T · �g��x,y�
	�g��x,y�	

where T is a 2�2 matrix defined as

T = �0 − 1

1 0
�

Hence, the curvature formula of Eq. �7� can be simplified as

k = −
�T · �g��x,y��T · H�g��x,y�� · T · �g��x,y�

	�g��x,y�	3 �8�

To further expand this formula, we first apply a new notation: x
= �x y 0�T. Then, taking the derivative of Eq. �4� with respect to y
and setting y equal to x give

� �e��y,n���x y 0�T��
�y

�
�x y 0�T

= � �e��y,n��x��
�y

�
y=x

= �
qi�Q

2e−	x − qi	
2/h2
��x − qi�Tn��x�� · n��x�

−
1

h2 ��x − qi�Tn��x��2 · �x − qi��
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ubstituting it into the transformed implicit function �6� and no-
icing that �n��x��T ·n��x�=1, we have

g��x,y� = n��x�T
� �e��y,n��x��
�y

�
y=x
�

= �
qi�Q

2e−	x − qi	
2/h2
1 −

1

h2 ��x − qi�Tn��x��2� · �x − qi�Tn��x�

�9�

rom Eq. �9�, we can derive the formulas for ��g��x ,y�� and
hich contains the following advantages: �1� A marching process

ournal of Computing and Information Science in Enginee
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H�g��x ,y��. Here we just give the resulting formulas. The gradient
of g��x ,y� can be expressed as

��g��x,y�� = �
qi�Q

2e−	x − qi	
2/h2
 2

h2 ��x − qi�Tn��x�� · 
 1

h2 ��x

− qi�Tn��x��2 − 1� · �x − qi� + 
1 −
3

h2 ��x

− qi�Tn��x��2� · �n��x� + �T�n��x�� · �x − qi���
The Hessian of g��x ,y� can be expressed as
H�g��x,y�� = ����g��x,y��� = �
qi�Q

−
4

h2e−	x − qi	
2/h2
 2

h2 ��x − qi�Tn��x�� · 
 1

h2 ��x − qi�Tn��x��2 − 1� · �x − qi� + 
1 −
3

h2 ��x

− qi�Tn��x��2� · �n��x� + �T�n��x�� · �x − qi��� · �x − qi�T + 2e−	x − qi	
2/h2
 6

h4 ��x − qi�Tn��x��2 −
2

h2� · �x − qi� · �n�T�x� + �x

− qi�T · ��n��x��� +
4

h2e−	x − qi	
2/h2

��x − qi�Tn��x�� · 
 1

h2 ��x − qi�Tn��x��2 − 1� · I −
12

h2 e−	x − qi	
2/h2

��x − qi�Tn��x�� · �n��x�

+ �T�n��x�� · �x − qi�� · �n�T�x� + �x − qi�T · ��n��x��� + 2e−	x − qi	
2/h2
1 −

3

h2 ��x − qi�Tn��x��2� · ���n��x�� + �T�n��x��

+ �T���n��x��� · �x − qi��
here I is the identity matrix. Notice that the sign of the result
urvature k in Eq. �8� has an explicit physical meaning: If k is
egative, then the curvature vector k is opposite to the direction of
ormal n, or the planar curve is convex at this point; otherwise, k
nd n have the same direction, or the planar curve is concave. It is
mportant to distinguish between the convex and concave property
f the planar curve since different formulas of the layer thickness
ill be applied in these two different cases �9�.

Direct Slicing of Point Set Surfaces

5.1 Overall Procedure. In our direct slicing scheme for mea-
ured data, we assume that the building orientation is already
etermined. Without loss of generality, we further assume that the
uilding direction is z axis, which means that every slice has a
onstant z coordinate. Then our direct slicing algorithm can be
ummarized as using measured data and a prescribed cusp height
as system input, output successive 2.5D layers with layer thick-

ess, and step length of the contour in each slice adaptive to
urvature on the underlying MLS surfaces. A stackup of these
ayers constitute the layered manufactured object. An overall sys-
em flowchart for our direct slicing algorithm is shown in Fig. 3.
rom Fig. 3, we can see that the system flowchart includes three
ain steps: Point preprocessing, adaptive 2D contour generation,

nd adaptive layer thickness calculation. The point preprocessing
ets up a local neighborhood relation for each input point, which
s the base of normal estimation. Since we adopt a standard data
orting algorithm based on the k-d tree structure �23� in the first
tep, we will focus on the last two steps in the remainder of this
ection.

5.2 Adaptive 2D Contour Generation. Central to the prob-
em of direct slicing of point set surfaces is the generation of 2D
ontours by intersecting the horizontal slicing plane with the un-
erlying MLS surface defined by the input point data. In this
ection, we propose a new methodology to generate 2D contours,
is developed to calculate the intersection points, which creates a
set of ordered points and form a 2.5D layer. �2� The step length
between adjacent boundary points on a slice is adaptive to the
curvature. It enables the control of the error bound of approximat-
ing the MLS surface with polylines from these points, since the
error of piecewise linear approximation functions depends linearly
on the second derivatives and the spacing of points.

This marching based adaptive 2D contour generation algorithm
can be summarized as follows:

Step 1. Given an input point set Q and an initial line l0 on the
slicing plane H, let i=0.

Step 2. Calculate the intersection point pi of the MLS surface S
and the line li.

Step 3. Determine a new line li+1 on the slicing plane H, based
on an adaptively computed step length.

Step 4. If i	2 and 	pi−p0	
�, stop this process and output
P= �p0 ,p1 , . . . ,pi� as the resulting 2D contour. Else let i= i+1 and
go to Step 2.

In Step 1, the initial line l0 could be defined by any suitable
point c0 and direction vector n0. For example, we can find a point
q�Q with the minimum distance to the slicing plane H, then
project q onto plane H to get the start point c0. The direction
vector n0 could be the normal estimated at point c using the al-
gorithm presented in Sec. 4.

In Step 2, computing the intersection point pi is the core of the
adaptive 2D contour generation algorithm. Recall the definition of
the MLS surface in Eq. �1� that the MLS surface S is the station-
ary set of a projection operator �P, we can easily realize that for
any point x on the MLS surface S, we have

	�P�x� − x	 = 0

Then the problem of computing the intersection point pi can be
transformed to find a local minimum of 	�P�x�−x	 over the set
x� li. Suppose the line li is defined by point ci and direction

vector ni, we can further substitute x=ci+ t ·ni into 	�P�x�−x	 to
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acilitate the searching process.
In Step 3, to determine a new line li+1, we first set up a Frenet

ike frame at point pi as shown in Fig. 5, where ni denotes the
irection vector of li. Then we can get a point ci+1 by translating
i along the direction perpendicular to ni as follows:

ci+1 = pi + �p · ti

here ti is the unit vector perpendicular to ni, and �p is the step
ength. To compute the step length �p, we first approximate the
orizontal section of the MLS surface S at point pi as an osculat-
ng circle, as shown in Fig. 6. Then, from Fig. 6, we can derive the
ollowing formula to calculate the step length �p:

Fig. 5 Illustration of adaptive 2D contour generation

Fig. 6 Calculation of the step length �p

Fig. 7 Four cases in determining the lay
in the upper semicircle, k>0; „b… p in th

semicircle, k>0; „d… p in the lower semicircl
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�p = 2�r2 − �r − �s�2 = 2�2r�s − �s
2 �10�

where �s is a prescribed approximation error bound, r=1 / �k� is the
radius of the osculating circle at pi, and k is the horizontal normal
curvature of the MLS surface S at pi, which is computed by Eq.
�8�. Additionally, a minimum radius rmin and a maximum radius
rmax should be given to limit the permissible radius r to ensure the
robustness of the formula in some special cases. For example,
setting rmin=�s will avoid the potential negative value inside the
square root in Eq. �10�; setting a value for rmax will prevent an
oversize step length. Finally, by estimating the normal ni+1 at ci+1,
we can determine the line li+1 with ci+1 and ni+1, i.e., li+1
= lci+1,ni+1

.

5.3 Adaptive Layer Thickness Calculation. In this paper,
we adopt an adaptive layer thickness strategy presented in Ref.
�9�, where the surface accuracy due to the staircase effect was
analyzed, and the accuracy can be controlled by the maximum
allowable cusp height. In this strategy, the vertical section of the
MLS surface at p is approximated with the osculating circle,
whose radius is given by the reciprocal of the absolute value of
the vertical normal curvature at p. This directional curvature can
be computed using the method presented in the previous section.
Then layer thickness d is determined by eight different cases
based on this approximated circle and a prescribed cusp height �.
These eight different cases are a combination of different possible
containment requirements and geometrical conditions, i.e., excess/
deficient deposition, positive/negative curvature, and p lying in
the upper/lower semicircle of the osculating circle.

For clarity, we choose to introduce the four cases with excess
deposition condition as an example. For details of the deficient
deposition cases and other deposition requirements, please refer to
Ref. �9�. These four cases are illustrated in Fig. 7, where d and �
are as defined before, n is the surface normal at the point p, � is
the angle between n and the horizontal plane, � is the radius of the
osculating circle at p, and is given by the reciprocal of the local
vertical normal curvature k at p.

hickness d with excess deposition: „a… p
pper semicircle, k<0; „c… p in the lower
er t
e u
e, k<0
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With these denotations on hand, we can easily derive a formula
f d for each of the four cases illustrated in Fig. 7. Finally, we can
et four formulas corresponding to the four cases shown in Fig. 7:

�a� d = − � sin � + ��2 sin2 � + 2�� + �2

�b� d = − � sin � + ��2 sin2 � + 2�� − �2

�c� d = + � sin � − ��2 sin2 � − 2�� − �2

�d� d = + � sin � − ��2 sin2 � − 2�� + �2

With these layer thickness formulas for one point p on a 2D
orizontal slice, we can find the layer thickness for the whole 2D
lice by solving a nonlinear optimization problem stated as fol-
ows:

�1� Find x
�2� Minimize d�x�
�3� Subject to z�x�=const, g�x�=0

here z�x� equals to the z coordinate of x, and g�x� is defined in
q. �5�.

Implementation and Examples
In this section, we introduce the MATLAB implementation of our

irect slicing algorithm and then present the implementation re-
ults on a variety of synthetic and real data. Five test cases are
ummarized in Table 1 and further analyzed and illustrated later in
his section.

Table 1 Summ

Part Size (inch)

Number

of

points (in

Can 2.0×2.0×2.0 5000 0

Wine

Glass
1.5×1.5×2.0 35109 0.

Vase 4.5×4.7×8.2 68097 0.

Rabbit 1.2×1.4×2.8 67038 0.

Reducer 3.5×4.0×4.3 45326 0.
Following the procedures in Fig. 3, our algorithm is imple-

ournal of Computing and Information Science in Enginee
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mented in MATLAB. Here are several key points during the
implementation.

�1� Projection and intersection. The function fminbnd from
MATLAB’s optimization toolbox is applied to compute the
minimal value of the energy function e�y ,n�x�� when pro-
jecting a point onto a MLS surface in the projection based
MLS scheme in Sec. 3 and the minimal value of 	�P�x�
−x	 when calculating the intersection point of a line and a
MLS surface in adaptive 2D contour generation in Sec. 5.
This function finds a local minimum of one variable
function using a golden section search and parabolic
interpolation.

�2� Step length. The most important part in defining the step
length is the calculation of the curve curvature, which can
be calculated from the curvature formulas developed in the
previous section. Meanwhile, it also can be calculated from
an alternative numerical method, where a circle is approxi-
mated with several �at least three or five in this paper�
neighbor points �distance smaller than the step length �p�
by a least-squares fitting. Such a circle is a good approxi-
mate of the osculating circle.

�3� Layer thickness. The calculation of layer thickness involves
a nonlinear optimization problem in finding a minimal layer
thickness for a 2D slice. During our implementations, we
exhaustively determine the layer thickness for all sliced
points and then find the minimal value as the resulting layer
thickness.

6.1 Curvature Calculation in MLS Surfaces. To validate

y of test data

)

Source Picture

Synthetic data

with random

noise

Synthetic data

with random

noise

Scanned data

from

www.cyberware

.com

Scanned data

from

www.cyberware

.com

Synthetic data

with random

noise
ar

σ

ch

.01

008

008

012

002
the curvature formulas, we use a synthetic example from a known
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-spline surface described as the can surface in Table 1. In this
xample, we select three planar curves determined by the inter-
ection of the original can surface �i.e., the nominal B-spline sur-
ace� and three horizontal planes at z=0.5, z=1, and z=1.5, whose
urvature distribution is shown in Fig. 8�a�.

Applying the curvature formulas derived in the previous sec-
ion, we can calculate curvature distribution of three planar curves
etermined by the intersection of the corresponding MLS surface
nd the same three horizontal planes. The deviation between these
wo groups of curvature distributions is illustrated with a color

ap shown in Fig. 8�b�. Figure 8�b� indicates that larger curvature
eviation between the curvatures computed from the nominal
-spline surface and the curvatures computed from the closed

ormula developed in this paper occurs where the original surface
as larger curvatures. From the small curvature deviation, we can
onclude that �1� the MLS surface approximates the original sur-
ace with a small error and �2� the curvature formulas for planar
urves are correct. Moreover, when increasing the sampling den-
ity of the input point set, the resulting curvature deviation tends
o decrease. Using half of the middle curve �z=1� as an example,
e showed this tendency in Fig. 8�c�.
Applying a similar validation for the alternative numerical
ethod for computing curve curvature through circle fitting shows

hat the result of the alternative method is not as accurate as that
f our analytical method. This accuracy difference is more distinct
n high curvature region, which further demonstrated the advan-
age of our analytical method in terms of accuracy.

Adaptive 2D Contour Generation. To validate the adaptive
D contour generation algorithm, three slices at different heights
=1.2, z=1.5, and z=1.8 are shown in Fig. 9�a�. For better illus-

Fig. 8 Validation of the curvat
Needle plot of curvatures of three
curvature deviation. „c… Compari
different sampling densities of th
ration of the sliced data, we further give the top views of these

31003-8 / Vol. 8, SEPTEMBER 2008
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three slices, as shown in Figs. 9�b�–9�d�. In these figures, the
yellow planes represent the slicing planes, the red dot points rep-
resent the output 2D contours, and the green cross points represent
the input part points with intensity fading away when they are
farther away from the slicing plane. From these figures, we can
see that the distribution of the points is curvature adaptive.

Noisy or Sparse Point Sets. To validate the robustness of MLS
in handling noisy or sparse point sets, we generate six synthetic
data from the nominal can surface by sampling different number
of points �i.e., 2500 and 5000� and by adding random noise with
different standard deviations �i.e., 0.01, 0.02, and 0.03�. Among
them, three data sets that contain 5000 sampling points are further
rendered to illustrate the influence of the added noises, as shown
in Fig. 10. Using the same parameters and slicing these synthetic
data at the horizontal plane of z=1.2, we get six sliced data rep-
resented by red dot points shown in Table 2. Comparing these
sliced data, we can see that there is no significant change in the
sliced data when input points become sparse and noisy, which
demonstrates the robustness of our algorithm in slicing noisy or
sparse point sets.

For better illustrating the difference in the quality of the gener-
ated slices, we employ the maximum error between the nominal
can surface and the sliced data as a quantitative description of the
data quality, as shown in Fig. 11. In Fig. 11, we find that the
maximum error is smaller than the given standard deviation for
each of the six synthetic data, which reveals the denoising ability
of our algorithm.

Adaptive Layer Thickness Calculation. To validate the adap-
tive layer thickness strategy, we utilize an example of a synthetic

formula for MLS surfaces. „a…
nar curves. „b… Color map of the
of the curvature deviation with
put point set.
ure
pla

son
wine glass data described in Table 1. In this example, the wine
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glass data are sliced into 87 layers with a prescribed cusp height �
as listed in Table 3. Figure 12�a� illustrates the input synthetic
data with green points and the slicing planes with black lines,
where a clear variation in the layer thickness is observed. More-
over, to clearly reveal the relationship between the layer thickness
d and the two parameters �the slope angle � and the curvature k�,
three curves that represent d, �, and k as a function of z coordinate
are shown in Fig. 12�b�. Notice that the nominal wine glass sur-
face is generated by revolving a given profile curve about the z
axis and all the vertical section curves on the surface are identical.
Hence, we just use this profile curve to calculate the angle � and

zontal planes. „a… Isoview of the can data
planes. „b… Top view of the slice at z

op view of the slice at z=1.8.

t noise levels and sample densities

ard Deviation

0.02 0.03
Fig. 9 Slicing of the can data with three hori
with resulting 2D contours on three slicing
ig. 10 Rendered models of synthetic can data with different
tandard deviations of noise: „a… �=0.01, „b… �=0.02, and „c…
=0.03
Table 2 Slicing of the can data with differen

StandNumber of

points 0.01

2500

5000
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he curvature k. From Fig. 12�b�, we can observe that when either
he angle � or the curvature k becomes larger, the layer thickness

is smaller.

Direct Slicing Algorithm. Using an excess deposition and
pecifying the cusp height � as listed in Table 3, we obtained our
mplementation results illustrated in Table 3, where the yellow
lanes with black edges represent the slicing planes. These ex-

ig. 11 Illustration of the maximum error between the nominal
an surface and the sliced data with different noise levels and
ample densities

Table 3 Examp

Name

Cusp

height

(inch)

Gaussian factor

h (inch)

Number of

layers Iso

Can 0.02 0.12 61

Wine Glass 0.01 0.02 87

Vase 0.04 0.02 106

Rabbit 0.02 0.06 130

Reducer 0.03 0.035 98
31003-10 / Vol. 8, SEPTEMBER 2008
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amples demonstrate that our algorithm can handle various point
sets, from simple synthetic data to complicated real measured
data.

7 Conclusions
In this paper, we present a MLS based approach for directly

slicing a point set into the LM model. In comparison with tradi-
tional slicing procedures, our method avoids the troublesome sur-
face reconstruction and avoids the potential model conversion in-
duced accuracy loss. When compared with existing direct slicing
procedures, our method circumvents the trade-off between the
projection error and the truncation error. Further, the resulting
contour profile does not depend on the density of the input point
set as in prevalent projection based slicing methods due to the use
of upsampling from MLS surfaces.

Since we employ the MLS as our underlying surface represen-
tation, our algorithm inherits various desirable properties of MLS
surfaces. For example, due to the smoothing effect of MLS, the
slicing procedure is robust against measurement noise.

Further, we present closed formulas for computing the curva-
ture of planar curves based on the implicit definition of the MLS.
As a result, the use of the curvature based adaptive 2D contour
and layer thickness generation algorithms increases the surface
quality of the resulting LM model and allows the control of the
slicing error when approximating the MLS surface with discrete
points.

of direct slicing

Input point set Output LM model

ew Front-view
Front-view of

slices

Rendered

Iso-view
les

-vi
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