Computational approach for optimal sensor setup
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1 Introduction standoff distancéSD), baseline distancéBD), and three

Over the past two decades, optical measurement has gaineg@/e€ntation anglegazimuth, elevation, and twistthe cam-
increasing popularity in all aspects of manufacturing and eras receive different dynamic ranges of light, resulting in
quality inspection processes. Despite its wide usage, opticald'ﬁ_‘l?ﬁlent m?qt()el tc':overa}gteh.. nclude that we find th
measurement is very sensitive to the relative position and € contributions ot this paper inciude that we find the
orientation between the part and the sensor. Sensors ar@€St Sensor setup for multiple cameras simultaneously,
often designed/selected without a detailed analysis of geo-"/Nilé Most previous works only consider one camera. In
metric and optical properties of the part. This may lead to ad_dltlon, based on nove! spherlcgl algo'rl'ghms Qt?vglopeq n
high signal dynamic range, and consequently poor modelth's paper, signal dynamic range is explicitly minimized via
coverage and low measurement accuracy. This is especially”In Iﬂptﬂgl?é ;Zhﬁgérsgft?ﬁé aper. Sec. 2 reviews the existin
true for surface inspection with an area sensor, where SUr- - thods for ol tical sensofsgtu’ and the ;/élg\t/ed setuXI téc%-
faces may possess different surface finish at different spots.ni ues in diﬁgrent A Iicationg In Secs. 3 and 4p we
At the smooth and shiny spots, there is high specular re- q PP : : ’

flection and low diffuse reflection. At the rough spots, there PréSent the problem formulation, outline the overall proce-
is low specular and high diffuse reflection. An area sensor dures, and detail each step involved in this computational

: . . s . approach. We first transform the dynamic range minimiza-
gfsgxellyhg?gfegrtg a"atrrt]sev(\j/ilmufj?ﬁreerZﬁft;fotehIf?n?gre] gﬁlgn tion issue into a camera view angle optimization problem.
lead to .hi h si nal,dp hamic ranae when inspected with areawe then consider the relative orientation of laser and cam-

ghsig y inge whe P eras on the blade’s spherical map. A geometric reasoning
sensors. Two examples are given in Fig. 1, where two gray-

scale images with underbrightness and oversaturation areapproach is developed to seek the near-optimal setup. Then,

. : an iterative approach is employed to find the optimal setup.
shown. Consequently, there are large defective gaps in theg, o rimental results are presented in Sec. 5 and conclu-
corresponding reconstructed 3-D images.

: ; sions in Sec. 6.

In this paper, we present a computational approach for
the optimal sensor setup that takes into account the sensor/ )
part interaction to decrease signal dynamic range and to2 Literature Review
increase model coverage for structured light or similar op- The part and sensor setup issue is an important problem for
tical inspection systems. 3-D measurement. An overview of 3-D measurement sys-

A schematic diagram of the measurement system we usetems and their applications is presented in Ref. 1. Sensor
is shown in Fig. 2. In this measurement system, two cam- planning considering where the sensor should be placed has
eras are deployed next to a laser source in a triangulation-been explored from many perspectives. The lighting issues
type system. The part to be inspected is a blade such asand how parts reflect light for optical measurements in gen-
those used in compressors or turbines. By varying the eral are discussed in Ref. 2. A general description of ad-
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Fig. 3 Gaussian map of a blade.

a. Gray image
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Fig. 1 Limited sensor dynamic range and poor model coverage.

vanced laser gage applications including speed and resolu-

tion issues is discussed in Ref. 3. Methods for speckle

reduction for laser line gages are presented in Ref. 4. A The problem addressed in this paper differs from the

visibility-based approach is presented in Ref. 5. The opti- above in that it finds the best sensor setup for signal dy-

mal setup for measurement related to edges is explored innamic range minimization as opposed to finding the fewest

Ref. 6. However, none of these works explicitly explored number of setups. It considers multiple cameras simulta-

the setup impact on signal dynamic range even though lim- neously while most previous works only consider one cam-

ited sensor dynamic range remains a challenge for manyera. It develops novel spherical algorithms for spherical

optical applications. A review of current methods for ex- convex hull and minimal maximum distance search. For

panding sensor dynamic range is reported in Ref. 7. example, Fig. 3 shows a blade and its corresponding Gauss-
Gaussian mapping is a technique often used to solveian map. The concave surface, fillet, and platform on the

setup orientation issues. A Gaussian map is a set of surfaceconcave side are to be inspected in one setup, and the con-

normals projected onto a unit sphere. It has been exten-vex surface, fillet, and platform on the convex side are to be

sively used in many setup applications, such as molding inspected in a second setup. The methodology presented in

and die processing and ECM machinfig® An algorithm this paper finds an optimal setup for each side.

based on central projection of surface normals was devel-

oped8 to obtain the_spherical convex h_uII of the Gaussian 3 prgplem Formulation

map? The complexity of the algorithm i©(nlogn). The

algorithm involves rotating point sets to avoid singularities, 1€ Systém we consider in this paper is shown in Fig. 2.

doing a central projection for the top and bottom halves of The solution der_lved for th's_ system can be Qdapted to other
the point sets so that they are not close to the equator, and?YStEMS accordingly. Atypical laser inspection system has
checking to see if they are intersecting. If the point sets do V€ Stup parameters: standoff distance SD, baseline dis-
intersect, a great circle needs to be found to separate thd@nce BD, part azimuth and elevation angles, and camera
two halves. However, due to the complexity in its imple- (WISt angle. The objective is to adjust these parameters to
mentation and the singularity problem when points are increase the model coverage by minimizing the signal dy-

close to the equator, an alternate algorithm is developed inN@Mic range on each camera, without degrading the sys-
this paper. tem’s ability to make the desired measurements. That is,

Gaussian mapping is also used in layered manufacturingSiMPly making all the angles very small is not a viable
to find an optimal build orientation to increase surface OPtion since the resolution of the system per triangulation
quality!® It has also been used to determine the fewest gff_ect would then be very poor. So, there must exist a suf-
number of setups for optical inspection. A near-optimal ficiently large a_ngle between_ the cameras to make the mea-
view planning method for optical sensors is presented in SUréments, while aiso keeping the dynamic range of light

Ref. 12. For a given object, the Gaussian map was used to/€V€!S Within acceptable limits.

find the minimal number of orientations so that the object !N Fig. 4, we highlight one poinp; , its surface normal
could be fully covered. A method for the Gaussian map N left camera view vectoi.CV), right camera view vector

calculation for a free-form surface is reported in Ref. 13.
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Fig. 2 Schematic diagram of light gauge measurement system. Fig. 4 Laser incidence angle and camera view angles.
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(RCV), and laser vectofLV). The camera view angle is
acos(N-LV) and the laser incident angle écosCV-N).

The light intensity received by a camera can be repre-
sented by*

I cog Ok, @
(D5ptDgp)*ky’
In this equationg is a camera view anglé&, is the aperture
length factor, andg is diffusion coefficient.
As shown in Eq.(1), signal dynamic range is predomi-
nantly determined by the camera view angle. The standoff

distance and baseline distance only have a marginal effect.

For a typical optical system, the ratio between the standoff
distance and the depth of volume is larger than 5:1. Assum-
ing a baseline that is 5 times the depth of the volume being
measured, then E@l) can be simplified to:

co Ok,

=
Ksp ep*Kd

In the above equation, the coefficidady gp represents the

distance factor, which is approximately a constant factor for
all the points within the measurement volume. The devia-
tion of ksp gp is less than 2% throughout the measurement

volume.

Dynamic range is defined as the ratio of maximum light
intensity and minimum light intensity received by each
camera:
DR=max(!;_y,)/min(l;_y,). 2)
By calculating Eq.(2) for all the surface pointsi & 1..n)
and for different diffuse coefficientsk{=1 for complete
diffuse reflection,ky=0.05 for diffuse reflection at shiny

spotg, we can obtain signal dynamic range received by
each camera. From E), for any given SD and BD, the

issue of minimizing dynamic range can be considered as an

issue of minimizing camera view angles.
In order to find the optimal setup to minimize the cam-
era view angles for all the cameras, we transfer all five

Laser

k*BD/SD
Right
camera

'
.....

Fig. 5 Setup parameters in a Gaussian map.

P and laser vector. They respectively correspond to the
right camera view angle, left camera view angle, and laser
incidence angle. The angles can be calculated via

0=2si -1

sin™ .
The impact of the standoff distance and baseline distance
change over dynamic range variation can be easily de-
duced. That is, under the constraints of sensor sensitivity
and geometric magnification error, the larger the distances
are, the smaller the signal dynamic range is. These dis-
tances are primarily determined by optical constraints other
than dynamic range. So in this paper, we focus on the ori-
entation’s impact on signal dynamic range.

Therefore, the best setup issue has been transformed into
an issue of finding an optimal configuration on a sphere so
that the camera 1 view angle distand& and camera 2
view angle distancé2 are minimized. That is, for a given
SD and BD, we need to have the following optimization:

min{ max{ d1( 0twist, eazimuth,velevatior) i

d2( Ouwist, aazimuth,velevatior) il } .

setup parameters into the part's Gaussian map. Figure 3
shows an airfoil surface and a platform surface of a turbine The maximum view angle distance for each camera needs
blade that needs to be inspected. The surface normals aso be minimized. This is a minimal maximum problem.
mapped onto the Gaussian map are shown on the right sideTypical gradient methods only give local optimal solutions.
of Fig. 3. In order to minimize dynamic range, we may naively cal-
All five setup parameters can be represented in the culate these angles for all the points on the surfaces for all
Gaussian map(see Fig. $ The azimuth and elevation configurations and then optimize it. This is computationally
angles determine the laser orientation while the twist angle prohibitive. Therefore, in this paper, we use spherical con-
determines the camera twist positions. The ratio of baselineyex hull (SCH) to find out the points that may lead to
distance and standoff distance corresponds to the radius ofnaximal signal dynamic range instead of calculating dy-
the circles. The laser vector corresponds to the center of thenamic range for each point on the surface.
circle, with the two camera vectors corresponding to two  Once the spherical convex hull is obtained, a method is
points on the two circles. Note that the two camera posi- needed to find the beglowesh camera view angles. For
tions are off by a fixed angle around the laser source posi- multiple cameras, finding the best camera view angles is a
tion, depending on the actual position of two cameras. In complex and nonlinear problem. It is also a minimal maxi-
the situation shown in Fig. 2, they are off by 180 deg. For mum problem since we want to ensure the maximum angle
a given pointP on the Gaussian map, there are three dis- distance of all the cameras to be minimized. Even though

tances: distancdl between poinP and right camera vec-
tor, d2 betweerP and left camera vector, ardB between

1240 Optical Engineering, Vol. 42 No. 5, May 2003

the variable space is simplified to a spherical convex hull,
the objective function is still a minimal maximum problem,
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Fig. 6 Procedures for optimal sensor setup. ¢ d

Fig. 7 Angle span of point set S at point P.

so an efficient optimization method is needed. In order to
overcome local optimum, first we use geometric reasoning o ) ) o ) ]
to obtain a near-optimal solution. We then use a numerical ~ EXisting orientation refers to the existing orientation
iterative method to obtain the optimal solution. used before optimization.

The overall procedures are shown in Fig. 6. For a given
part to be measured, it is first discretized to obtain a point 4 Computational Approach for Optimal Sensor
cloud and its Gaussian map. In order to simplify the calcu- Setup
lation of maximum angle distance between cameras and . ) )
points on the surface, we calculate the spherical convex4-1 Hemispherical Test and Spherical Convex Hull
hull. Next, a minimum enclosing circle containing all the To simplify the calculation of maximum camera view
surface normals is found. We use the minimal enclosing angles and maximum laser incident angles for all the points
circle to find the minimal laser incident angle. Under this on the part surfaces, we use the spherical convex hull of
condition, we use an algorithm for minimal maximum surface normals. The first step of finding a spherical convex
angle distance to analytically find the camera orientations. hull is to determine whether the point set of surface nor-
This gives us the near-optimal orientation. We then use the mals lies on a hemisphere. We propose the use of the angle
gradient method with perturbation to find a free-optimal span of a point set to decide whether the point set on a
orientation under which there exists the best possible cam-sphere is hemispherical. Further, if it is hemispherical, we
era view angles. Finally, a grid method is employed to find use a rotating “cutting plane” method to form the spherical
a constrained optimal solution where the optical constraints convex hull.
are satisfied.

In this paper, we make distinctions of four orientations: 4.1.1  Hemispherical test
near-optimal, free-optimal, constrained-optimal, and exist-
ing orientations.

Near-optimal orientation refers to an orientation that has
the minimal camera view angle under the condition of
minimal laser incident angle. The center of the minimal
enclosing circle determines the azimuth and elevation
angles of the laser. When the laser is fixed at the center of
the minimal enclosing circle, the camera twist obtained by surface. . _ . .
the angle distance optimization is the best camera angle FOF @given poinp;, (Xp,,yp,Zp,), in the point ses of
possible for minimal signal dynamic range under the opti- surface normals, there is a principal plaggoing through
mal laser angle. In this orientation, the laser incident angle (0,0,0 and with normal &, ,y, .z, ). If we project all the
is minimal. ! ane.

Free-optimal orientation refers to the best orientation for
the minimal camera view angles. This orientation corre-

sponds to the best orientation for minimizing the signal : . X
dynamic range. In this orientation, the laser angle may not is defined as the minimal angle of two vectors starting from

be minimal. point p; and bounding all the vectorg;p;, i=1, n, and

Constrained-optimal orientation refers to the best orien- Pj#Pi. The angle betweenp;p; and thex axis is ¢
tation for low dynamic range and low camera view angle =acos@p-X). For any pointp; € S, i # ], there is such an
while satisfying the field of view, resolution, and magnifi- angle 6, as shown in Fig. (&). Clearly, angle span is inde-
cation constraints. pendent of the choice of axis.

By definition, if a point set is not hemispherical, its spheri-
cal convex hull is the whole sphefdn practice, since all
the visible points have view angles smaller than 90 deg,
they all lie on a hemisphere. Therefore a general hemi-
spherical test is needed to obtain the spherical convex hull
for the situations where the SCH is not the whole sphere

points in the se onto the plane along the directi@p;,
we get the projected point s&. For any pointq in S',
p;q forms a vector. The point s&'s angle span at poir;

Optical Engineering, Vol. 42 No. 5, May 2003 1241
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The procedures for obtaining the angle span of a point
setSof surface normals at poimtcan be divided into three
steps:

1. Project all the points on thg’s principal pIaneij.

2. Calculate the angle differeneed. Let 0,,, and O,
be the low and high bound angleSf= 6 ax— Omin -

. Calculate the amended angle differenk@’ if the
angle differenceA § obtained in step 2 is larger than
180 deg. For any anglé<180 deg, it is amended by
the addition of 360 deg, i.eq’ =6+ 360. If we de-
note the maximum and minimal amended angles as
Omax @Nd 0., we have Ao’ =6, ..~ 0. Angle

span iSsAS=min(A§,A¢").

In Fig. 7(a) pointp and setSare on a unit sphere. In Fig.
7(b) points are projected to principal plari,;. In Fig.
7(b), pjp1 andp;p, are two bounding vectors. In Fig(d,
the angle span is the angle betwggp; andp;p,, not the
angle betweem;p; and p;p,, since the angle between
p;P; andp;p, is larger than 180 deg.

With the above definition of angle span, we have the
following lemma for the hemispherical test.

Lemma 1. If one point in a point set has an angle span
less than 180 deg, the point set is hemispherical. If none of

SN

e

b. Rotating cutting plane

a. Point Cloud

Fig. 8 Rotating cutting plane for spherical convex hull.

4.1.2 Rolling cutting plane method for spherical
convex hull

Based on the angle span concept, we have the following
lemma to obtain convex points on the spherical convex
hull.

Lemma 2 For a hemispherical point s& a pointp
e S is a convex point on the spherical convex hull if and
only if the angle span of the point s8tat pointP is less
than 180 dedspherical convex hull

From the hemispherical test, we can have one pojnt
upon its principal plan@pj; the rest of the points have an

angle span smaller than 180 deg. Let us denote a cutting

the points has an angle span less than 180 deg, the point se?lane going through three points: pojsit, pointp;, which

is nonhemisphericalhemispherical tegt
The pseudocode algorithm for the hemispherical test can

be described as follows:
Algorithm 1: An angle span based hemispherical test

Input: surface normal point set S

Output: whether S is hemispherical

For each point pin S

Calculate its principal plane B

For all the points p in S, j=1...n, j#i
Project p onto plane R,

Calculate angled; with respect to an X-axis
Endfor
Find the angle differencé 8= 0,3~ Omin- If A6
<180, return true.
For all the points p in S, j=1...n, j#i
Amend the angl®; = ¢;+ 360 if #;<<180
Endfor
Find the amended angle differenckf’ =40
- 0rcnin
If A <180, return true.
ENDFor
Return False
The hemispherical test has the worst case complexity of
O(n?) when the point seBis not hemispherical, but is far
easier to implement. If the spherical polygon is hemispheri-
cal, its computational complexity is expected to be
O(n?/F) wheren is the size of point se§ andF is the
number of convex points d&

!
max

1242 Optical Engineering, Vol. 42 No. 5, May 2003

has the minimal bounding angle, and the origin paint
This cutting plane cuts the sphere into two parts. If we let
the normal of the plane point ©p; X 0p;, the point setS

lies on the left side of plane. If we obtain the principal
plane of pointp; and project all the points on the principal
plane ofp;, then the point that has minimal angle is the
next convex point. We can repeat this process until all the
convex points are found.

Figure 8 shows how the spherical convex hull of a set of
point cloud can be obtained by this method. Figufe) 8
shows the Gaussian map of the airfoil and platform sur-
faces of a turbine blade. On the principal plane of ppint
PaPp, forms the low bound of the point set. $g becomes
the convex point. On the principal plane pf, p. has the
minimal angle, sq. becomes the next convex point. This
process repeats until the first poipt is hit. Every time a
new minimal angle point is found, a cutting plane is
formed. For example, corresponding to the poings pe,
andpy are plane®p,py,, 0pP,P:, andop.py. We refer to
this method of rotating the principal plane to obtain SCH as
a rotating cutting plane method.

So we have the following algorithm for obtaining the
spherical convex hull.

Algorithm 2 for Spherical Convex Hull

Input: a point set S of surface normals
Output: spherical convex hull (SCH) of the set S
1. for each point in the point set of the surface
normals
a. calculate its angle span.
b. If angle span is less than 180, record the
convex point as p, break;
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To minimize the signal dynamic range, we assume point
L is fixed in this step, which corresponds to the SCH's
minimal enclosing circle center. At this point, the laser
angle is minimal and the camer8sndT can rotate around
point L on their respective circles. We need to find an op-
timal camera twist so that the larger ong|Bf| and||PT]| is
minimal. We draw an arbitrary axIsX so thatL X1 OX and
O is the origin point of the unit sphere. The angle distance
between a poinP on the spherical polygon and the camera
_ . . T while T is rotating on the circle can be described by a
Fig. 9 Angle distance calculation. function of 6, where 6 is the angle betweehX and LT.
PointP is projected to poinP’ on the plane of pointé_, X,
T). The angle betweehX andLP’ is denoted a%),, the
angle betweem.P andLP’ asB. For a given poinf and
the camera centéf and the chosen poirX, 6, and 3 are
known by the following equations:

c. Else, continue.

endfor

2. if no convex point p is found, it is not hemi-
spherical, return the whole spherical surface

3. record point p as first convex point and add it to
SCH

4. find the low bound point g from the convex point #0=¢0S
p’s principal plane

5. if q is the same point as first convex point, the ( — — )

1

complete convex hull is found and return SCH;
6. otherwise, add q into SCH and record q as p and
goto step 4
The complexity of the algorithm i©(n®) andn is the The angle betweehP and LT can be obtained from the
number of points irfS. This spherical convex hull algorithm  following equation:
has the worst complexit®(nF) if an initial convex point

p is given. cosa=cog §— 6) - cosp. ?)
4.2  Minimal Enclosing Circle So the camerd’s angle distance to poing is

Once we find SCH, we need to get an orientation that gives

minimal camera view angles for all the cameras. In order to [P T|?=|PL|?+|LT|[?=2-|PL|-|LT|- coser. (4)

overcome the local optimum, we use a near-optimal orien-
tation as the initial position for iteration. This near-optimal A similar equation can be derived for camea
orientation corresponding to minimal laser incident angle
can be obtained analytically using a geometric reasoning||pg|?=||PL||?+||LS|?>—2-||PL[|-|[LS|- cosas.
method. This minimal laser incident angle corresponds to a
laser vectoL, which has the minimal distanckto reach all If we substitute Eq(3) into Eq. (4), we have camera view
the surface points on the Gaussian map. This laser vector gngles as a function of:
corresponds to the center of the minimal enclosing circle.
We use an algorithM to obtain minimal enclosing circle, IPTI2=]PL|2+|LT|?
which has a complexity o®(n logn).

—2-|[PL[-[ILT]- cog 6~ 6p) - cosp. ©)
4.3 Minimal Maximum Angle Distance Algorithm

In this section, we present an algorithm for analytically S the angle distance can be abbreviated as
obtaining the minimal camera view angles for all the cam- =& C0SEist— o) +b for a given pointP, in which
eras under the fixed laser orientation. The algorithm is ap-

plicable to a larger number of cameras. a=—2|PL[|-[LT|-cosB, (6)
In Fig. 9, pointL represents the laser vector, and points
SandT represent two camera vectors. As shown in Fig. 2, b=||PL|?+|LT]|>. (7)

the laser source lies in the plane formed by the two princi-

pal axes of the two cameras. Therefd@sandOT are off Thus, each convex point in SCH has a distance function

by 180 deg in Fig. 9. For a poifit that lies on the spherical  gimilar to Eq.(5). When the camera twist angle changes

convex hull, the arc distance suchIaSand PTrepresents  fom 0 to 360 deg, i.e., camefandS can rotate arount

the angle between the surface point normal and camerasor the whole circle, each function describes the angle dis-

principal axes. These camera view angles can be calculateqance of camerd andSto the point. If we intersect all the

from the Eucludian distand§| and||PT]. That is, functions and find the maximum angle distance function for
each intersection interval, we can obtain the maximum

IPS| 1P| angle distance fronT andSto all the convex points when

2 2

— 9% oin—1
fs=27sin ( T and Srotate from 0 to 360 deg.

) and #;=2* sin‘1<

Optical Engineering, Vol. 42 No. 5, May 2003 1243
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Camera View Angle
O = N WA OO N

a. Angle distance function and
intersection points

Camera View Angle
O = NW A O N

b. Maximum angle distance function

Fig. 10 Angle distance function and intersection.

The detailed procedures for obtaining minimal maxi-

mum camera view angle distance are described in the fol-

lowing. We use two camer&sandT to illustrate each step.

Step 1: Obtain camera angle distance functions. For
given pointsP and Q on the spherical polygon and two
camerasSandT, we can have the angle distance functions
represented ad=a cos@ist— 0o) +b. The exact values
of a, b, and 6, are functions of the poirfe and laser vector

L and camera circl& or camera circlel, as described in
Eq. (6) and Eq.(7). Forn number of points in the spherical
polygon andm cameras, we will havem angle distances.
Figure 1@a) illustrates such functions whem=2, m=2.

Step 2: Intersect angle distance function and obtain
maximum angle distance. In this step, there are two

intersection points for two distance functions of points 1
and 2 with camera 1, and poin&andD are intersection
points for camera 2. The complexity of subtask Dign?)
wheren is the number of points in SCH.

The second subtask is to find a maximum angle distance
for each camera when the camera twist changes from 0 to
360 deg. For each pair of distance functions, there are two
possible intersection points. If a spherical polygon has
vertex, so there are possibly X, intersection points and
2-,C,+1 intervals between intersection points. For each
interval, we need to find the maximum distance function
during the interval. Fom curves, it will taken-(2,C,
+1).10g(2,C,+1)=0(n*logn) comparisons to sort the in-
tervals and find the maximum distance function for each
interval. To avoid the complexit@(n®logn) of the sorting

subtasks. Subtask 1 is to intersect all the angle distanceprocess, we use the intersection adjacency relationship to
functions and to obtain the intersection points. Subtask 2 is speed up the sorting process. That is, during the distance

to obtain the maximum camera view angle distance func-

function intersection process, we record the intersection at-

tions among all cameras when the twist angle changes fromtending functions. If we know functiod, andd,, intersect

0 to 360 deg.

For a camera and any point on the spherical polygon,
there is a distance functiod=a cos@,isi— 6p) +b. For
any two points,p and g, on the polygon, we have two
distance functions, noted adh,=a, COSEnyist— 00p)+bp

and d,= a, CoS@nyisi— 00q) +bq. To intersectd, andd,,
we have

ap COY Opyisi— 9op) +bp=a,cos Oryist— ﬁoq) +by.

If we expand it, we have

(ap coseop— aq cosaoq) * COSO1yisi— (ap SIN 90p
—agsin Hoq) - SN Oryist=bg— by .

Denote A=a,cosf, —a;cosf,, B=a,sin Bop—aqsinoq,
and C=(by—b,)/(A*+B?)Y2 So two intersection points
would be at

Orisi= TacogC)+atan B/A).

The intersection points of two distance functions are also
shown in Fig. 10a) for two cameras. Pointa andB are the
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at pointA, let us suppose faf <A, d,(6) <d4(6); then we
know for 6> A, we haved,(#)>d(6). Therefore, we can
use this intersection adjacency relation at pdirtb speed

up the distance function comparison without the need to
calculate the function value for each interval.

Subtask 2 involves these three steps: getting the first
interval with complexityO(n?), finding the curve of high-
est value for the first interval with complexit®(n), and
finding this curve’s conjugate curve through intersection
adjacency relationshi@(n). The expected time of finding
the conjugate curve ©(n). So the algorithm for subtask 2
has complexityO(n?) andn is the number of points in the
spherical polygon.

The algorithm for the maximum angle distance sorting
(subtask 2is described in Algorithm 3.

Algorithm 3 Maximum Angle Distance Function

Sorting

Input: n angle distance curves and the intersection

points’ adjacency

Output: maximum distance function list for all inter-

vals

1) Find the first smallest intersection poifi,;y,

2) Find the curve Cthat has the highest value during

the first interval (06,i)
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Fig. 11 Intersection adjacency used to speed up the sorting process.

3) Find curve G's smallest intersectiord; so that 6;
= Gmin . Let Hmin: 0i .

4) Add G at interval (0,6,,,;,,) to the list

5) Find curve G's next smallest intersection poidt so
that 6,= 0,

6) Find the conjugate curve {®f curve G, which in-
tersects with ¢ at point 6,

7) Add G at internal (6in, ;) to the list

8) Omin=0;, Ci=C;

9) Repeat step 5, step 6, step 7 and step 8 il is

360.

As shown in Fig. 1{a), the distance function for point 1
has the highest value at first interval. The closest intersec-
tion point to the first interval of curve 1 B. Because of the
recorded intersection relationship, we know the conjugate
intersection curve of curve 1 at poiBtis curve 3. There-
fore curve 3 has the highest angle distance during the in-
terval right after poinB. Likewise, we can infer that curve
4 has the highest value for the intervals between pGint
and pointD. We can repeat the process until all the inter-
vals’ maximum distance functions are found.

Step 3: Offset camera twist. In accordance with our
previous description, camera twists for cam8mand T are

off by 180 deg. We offset the maximal distance function for
camera 1 and camera 2 and obtain the results. Figues 12
shows the maximum angle distance function for two cam-
eras. After the function for camera 2 is shifted by 180 deg,
the two functions are shown in Fig. 3.

Step 4: Obtain minimal maximum camera angles. In
this step, we intersect the two maximum angle distance

angle distance for two cameras when the camera twist
angle changes from 0 to 360 deg. The complexity of this
step isO(n) wheren is the number of points on the SCH.
A point on the maximum distance curve that has the lowest
value corresponds to the optimal twist angle, as shown in
point A in Fig. 12.

So the algorithm for analytically obtaining the minimal
camera view angles can be summarized using the following
pseudocode:

Algorithm 4 Minimal Maximum angle distance
Input: n convex points in the SCH, m cameras and the
relative A §; among the cameras
Output: twist angle for the maximal camera view
angles to be minimal for m cameras
Algorithm:
For each camera € i=1...m
For each convex pointjp j=1...n
Calculate camera s view angle distance
function d;
Endfor
Intersect all the distance functions;d j=1..n
and obtain the maximum
distance function [ for camera G (See Al-
gorithm 3).
Shift maximum distance function Moy A 6,
Endfor
Intersect all the maximum distance functiong;Mi
=1...m and obtain the
maximum angle distance function Mor all the

functions for two cameras and obtain the maximum camera cameras (See Algorithm 3)
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Fig. 13 Gradient method for minimal camera view angles.

Return the anglef that has the minimal angle dis- e Find an optimal angle delta #, along the slideX

tance. direction so that the camera view angle for all the
In the above algorithmm is the number of points in the cameras is minimal.
SCH, which is significantly smaller than the number of « Find an optimal angle deltA 6, along slideY, so that
points on the surface. The complexity@G{n?m) andm is the camera view angle is minimal.
the number of cameras. « Find the optimal rotation angle. This can be obtained
using Algorithm 4.

4.4 Gradient and Grid Methods for Optimal Setups « If a local optimal solution is reached, a perturbation is
The sections above describe a method to find a near-  added to slideX slideY, or rotation. Repeat the above
optimal solution, which has the lowest camera view angle process until it converges.

under the condition of minimal laser incident angle. The
optimal orientation where the maximum camera view
angles are minimal may not happen at this initial condition.

After we obtain the optimal setups for the minimal camera
view angle and minimal laser incident angles, we use a grid
Therefore, we use a gradient method to iteratively find the Method to obtain the constrained optimal. The configura-

tion space of five degrees of freedom is gridded near the

optimal solution. For a given standoff and baseline dis- : ; . . S
tance, there are three degrees of freedom, which can beopt|mal orientation, and an orientation is found that has the

changed in a sequential order. We decompose these thre&inimal camera view angle while satisfying all the optical

degrees of freedom into the following three movements: constraints.

slide X, slide Y, and rotation as described in Fig. 13. For ) ]

given orientations of camer@and T, there exists a plane 9 Implementation and Experimental Result

that passes through three poi@sS, andT; Xis definedto  An optimal sensor setup system based on the above meth-

be on this plane and perpendiculai@t, while Y is defined odology has been implemented. Given a part model to be

to be perpendicular to this plane and is going through to inspected and the basic optical characteristics of the mea-

OL. Rotation is to change the twist angle arounds de-  surement system, the system can automatically calculate

scribed in Sec. 4.3. the optimal sensor setup for minimizing signal dynamic
The advantage of this decomposition is that for each range. For example, for the blade shown in Fig. 2, four

degree of freedom, we can obtain an analytical solution to orientations and the respective optical characteristics calcu-
minimize the cameras’ view angle. The detailed iteration is

described as follows. From the near-optimal solution we

obtained the following solution: Table 1 Comparison of optical characteristics under different orien-
tations.
Near Free Constrained
Existing optimal optimal optimal
Elevation, 37 45.8427  45.8427 45.8427
Azimuth, 55 459761 35.9761 37.9761
Twist 0 —4.0881 1.91182 7.91182
Dynamic Range 93.257 50.8218 43.3905 46.9631
Sensitivity 0.000569 0.00039 0.00034  0.001217

Camera 1 Angle 68.175 56.3258 51.5178 53.9075
Camera 2 Angle 57.932 51.9584 53.9564 54.696
Laser angle 60.3499  50.5844 51.0399 50.9602
Delta DOF 0.404982 0.37395 0.48252 0.387748
% Magnification 7.50915 6.92779 8.96652 7.1861

Fig. 14 Four orientations in a spherical map.
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Fig. 15 Measurement volume comparison.

lated by the system are shown in Fig. 14 and Table 1. These Figure 16 shows that the gradient method with perturba-
four orientations are the existing setup, the near-optimal tion along three directions gives the optimal solution for a
setup obtained by solely geometric reasoning, i.e., minimal different blade part. The optimal dynamic range obtained
enclosing circle and minimal maximum angle distance cal- by the grid method is 80.87. With two or three iterations,
culation, the free-optimal setup with no optical constraints, this gradient method gives a solution very close to the op-
and the constrained-optimal setup. The four orientations’ timal solution.
relative positions in the Gaussian map of the blade are The dynamic range variation with the three orientation
shown in the Gaussian mdpig. 14). As revealed in the  angles is shown in Fig. 17. As the figure shows, any devia-
figure, the angle distance between the cameras and platforntion from the optimal orientation leads to higher signal dy-
surface in the existing setup is smaller than the angle dis- namic range.
tance between the camera and airfoil. That is to say, the In order to validate the overall methodology presented in
current setup before optimization is biased against the plat-this paper, we conducted an experiment on parts with shiny
form surface. spots. Figure 18 illustrates how the model coverage
Table 1 lists different optical characteristics under four changes over different orientations. The spots circled in the
orientations. The items in the table include setup orienta- figures are shiny. The top row is measurement at the eleva-
tions, dynamic range, sensitivity, maximum right camera tion angle of 30 deg and the bottom row at the elevation
view angle, maximum left camera view angle, maximum angle of 42 deg. Across each row is the measurement at
laser incident angle, depth-of-field difference, and percent- different azimuth angles from 45 to 70 deg. By the optimi-
age of geometric magnification error. As shown in Table 1, zation of the sensor setup, the model coverage has been
all three optimal orientations give lower signal dynamic improved as predicted.
range than before optimization. The near-optimal orienta-
tion gives the lowest laser incident angi®3.38, while 6 Conclusion

free-optimal orientation gives the lowest camera view angle | ths paper, we presented a methodology for the optimal
(53.03, which results in the lowest signal dynamic range sensor setup for an optical metrology system. In particular,
(42.06. Constrained-optimal orientation gives good signal he signal dynamic range received by the cameras is mini-
dynamic range while satisfying optical constraints such as yized by the optimization of the sensor/part relative posi-

sensitivity and depth-of-field difference. tion. On the computation side, we developed novel algo-
Figure 15 shows the part's position relative to the mea- (ithms on a spherical map for obtaining the spherical

surement volumes under four orientations. This is used t0 conyex hull using the angle span and the rotating cutting
check whether a part is out of the measurement volume

under a particular orientation.
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Fig. 16 Gradient method with perturbation. Fig. 17 Dynamic range vs sensor orientation.
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