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Abstract. Optical metrology has been widely used in quality inspection.
However, the sensor setup during part inspection is often done in an ad
hoc way. This leads to unnecessarily high signal dynamic range. Conse-
quently, optical sensors do not have sufficient light dynamic range capa-
bilities especially for shiny surface measurement. We present a compu-
tational approach for optimal sensor setup that takes into account the
sensor/part interaction to decrease signal dynamic range and to increase
model coverage for structured light or similar optical inspection systems.
First, we transform the signal dynamic range issue into a distance prob-
lem in a spherical map. We then present novel algorithms on the spheri-
cal map to search a near-optimal sensor orientation. Based on this near-
optimal orientation, we use a gradient method to obtain the free-optimal
solution that gives the lowest possible dynamic range. Experimental re-
sults demonstrated that under the optimal orientation, there is lower sig-
nal dynamic range and better model coverage. Future work on extending
this method to multiple sensor planning, sensor design, and stage design
for large part inspection is also discussed. © 2003 Society of Photo-Optical
Instrumentation Engineers. [DOI: 10.1117/1.1566777]

Subject terms: spherical convex hulls; Gaussian maps; signal dynamic ranges;
optical sensor setups; sensor planning.
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1 Introduction

Over the past two decades, optical measurement has ga
increasing popularity in all aspects of manufacturing a
quality inspection processes. Despite its wide usage, op
measurement is very sensitive to the relative position
orientation between the part and the sensor. Sensors
often designed/selected without a detailed analysis of g
metric and optical properties of the part. This may lead
high signal dynamic range, and consequently poor mo
coverage and low measurement accuracy. This is espec
true for surface inspection with an area sensor, where
faces may possess different surface finish at different sp
At the smooth and shiny spots, there is high specular
flection and low diffuse reflection. At the rough spots, the
is low specular and high diffuse reflection. An area sen
effectively collects all the diffuse reflection within the fie
of view. Therefore, parts with different surface finish oft
lead to high signal dynamic range when inspected with a
sensors. Two examples are given in Fig. 1, where two gr
scale images with underbrightness and oversaturation
shown. Consequently, there are large defective gaps in
corresponding reconstructed 3-D images.

In this paper, we present a computational approach
the optimal sensor setup that takes into account the sen
part interaction to decrease signal dynamic range an
increase model coverage for structured light or similar
tical inspection systems.

A schematic diagram of the measurement system we
is shown in Fig. 2. In this measurement system, two ca
eras are deployed next to a laser source in a triangulat
type system. The part to be inspected is a blade suc
those used in compressors or turbines. By varying
1238 Opt. Eng. 42(5) 1238–1248 (May 2003) 0091-3286/2003/$15
d

l

e
-

l
y
-
.

e
e

r/

e

-
s

standoff distance~SD!, baseline distance~BD!, and three
orientation angles~azimuth, elevation, and twist!, the cam-
eras receive different dynamic ranges of light, resulting
different model coverage.

The contributions of this paper include that we find t
best sensor setup for multiple cameras simultaneou
while most previous works only consider one camera.
addition, based on novel spherical algorithms develope
this paper, signal dynamic range is explicitly minimized v
an optimal sensor setup.

In the remainder of the paper, Sec. 2 reviews the exis
methods for optical sensor setup and the related setup t
niques in different applications. In Secs. 3 and 4,
present the problem formulation, outline the overall proc
dures, and detail each step involved in this computatio
approach. We first transform the dynamic range minimi
tion issue into a camera view angle optimization proble
We then consider the relative orientation of laser and ca
eras on the blade’s spherical map. A geometric reason
approach is developed to seek the near-optimal setup. T
an iterative approach is employed to find the optimal set
Experimental results are presented in Sec. 5 and con
sions in Sec. 6.

2 Literature Review

The part and sensor setup issue is an important problem
3-D measurement. An overview of 3-D measurement s
tems and their applications is presented in Ref. 1. Sen
planning considering where the sensor should be placed
been explored from many perspectives. The lighting iss
and how parts reflect light for optical measurements in g
eral are discussed in Ref. 2. A general description of
.00 © 2003 Society of Photo-Optical Instrumentation Engineers
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Qian and Harding: Computational approach . . .
vanced laser gage applications including speed and res
tion issues is discussed in Ref. 3. Methods for spec
reduction for laser line gages are presented in Ref. 4
visibility-based approach is presented in Ref. 5. The op
mal setup for measurement related to edges is explore
Ref. 6. However, none of these works explicitly explor
the setup impact on signal dynamic range even though l
ited sensor dynamic range remains a challenge for m
optical applications. A review of current methods for e
panding sensor dynamic range is reported in Ref. 7.

Gaussian mapping is a technique often used to so
setup orientation issues. A Gaussian map is a set of sur
normals projected onto a unit sphere. It has been ex
sively used in many setup applications, such as mold
and die processing and ECM machining.8–10 An algorithm
based on central projection of surface normals was de
oped to obtain the spherical convex hull of the Gauss
map.8 The complexity of the algorithm isO(n logn). The
algorithm involves rotating point sets to avoid singularitie
doing a central projection for the top and bottom halves
the point sets so that they are not close to the equator,
checking to see if they are intersecting. If the point sets
intersect, a great circle needs to be found to separate
two halves. However, due to the complexity in its impl
mentation and the singularity problem when points a
close to the equator, an alternate algorithm is develope
this paper.

Gaussian mapping is also used in layered manufactu
to find an optimal build orientation to increase surfa
quality.11 It has also been used to determine the few
number of setups for optical inspection. A near-optim
view planning method for optical sensors is presented
Ref. 12. For a given object, the Gaussian map was use
find the minimal number of orientations so that the obje
could be fully covered. A method for the Gaussian m
calculation for a free-form surface is reported in Ref. 13

Fig. 1 Limited sensor dynamic range and poor model coverage.

Fig. 2 Schematic diagram of light gauge measurement system.
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The problem addressed in this paper differs from t
above in that it finds the best sensor setup for signal
namic range minimization as opposed to finding the few
number of setups. It considers multiple cameras simu
neously while most previous works only consider one ca
era. It develops novel spherical algorithms for spheri
convex hull and minimal maximum distance search. F
example, Fig. 3 shows a blade and its corresponding Ga
ian map. The concave surface, fillet, and platform on
concave side are to be inspected in one setup, and the
vex surface, fillet, and platform on the convex side are to
inspected in a second setup. The methodology presente
this paper finds an optimal setup for each side.

3 Problem Formulation

The system we consider in this paper is shown in Fig.
The solution derived for this system can be adapted to ot
systems accordingly. A typical laser inspection system
five setup parameters: standoff distance SD, baseline
tance BD, part azimuth and elevation angles, and cam
twist angle. The objective is to adjust these parameters
increase the model coverage by minimizing the signal d
namic range on each camera, without degrading the s
tem’s ability to make the desired measurements. That
simply making all the angles very small is not a viab
option since the resolution of the system per triangulat
effect would then be very poor. So, there must exist a s
ficiently large angle between the cameras to make the m
surements, while also keeping the dynamic range of li
levels within acceptable limits.

In Fig. 4, we highlight one pointpi , its surface normal
N, left camera view vector~LCV!, right camera view vector

Fig. 3 Gaussian map of a blade.

Fig. 4 Laser incidence angle and camera view angles.
1239Optical Engineering, Vol. 42 No. 5, May 2003
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Qian and Harding: Computational approach . . .
~RCV!, and laser vector~LV !. The camera view angle i
a cos(N•LV) and the laser incident angle isa cos(CV•N).

The light intensity received by a camera can be rep
sented by:14

I 5
cos2 u* kc

~DSD
2 1DBD

2 !* kd
. ~1!

In this equation,u is a camera view angle,kc is the aperture
length factor, andkd is diffusion coefficient.

As shown in Eq.~1!, signal dynamic range is predom
nantly determined by the camera view angle. The stan
distance and baseline distance only have a marginal ef
For a typical optical system, the ratio between the stand
distance and the depth of volume is larger than 5:1. Ass
ing a baseline that is 5 times the depth of the volume be
measured, then Eq.~1! can be simplified to:

I 5
cos2 u* kc

kSD–BD* kd
.

In the above equation, the coefficientkSD–BD represents the

distance factor, which is approximately a constant factor
all the points within the measurement volume. The dev
tion of kSD–BD is less than 2% throughout the measurem

volume.
Dynamic range is defined as the ratio of maximum lig

intensity and minimum light intensity received by ea
camera:

DR5max~ I i 51,n!/min~ I i 51,n!. ~2!

By calculating Eq.~2! for all the surface points (i 51...n)
and for different diffuse coefficients (kd51 for complete
diffuse reflection,kd50.05 for diffuse reflection at shiny
spots!, we can obtain signal dynamic range received
each camera. From Eq.~2!, for any given SD and BD, the
issue of minimizing dynamic range can be considered a
issue of minimizing camera view angles.

In order to find the optimal setup to minimize the cam
era view angles for all the cameras, we transfer all fi
setup parameters into the part’s Gaussian map. Figu
shows an airfoil surface and a platform surface of a turb
blade that needs to be inspected. The surface norma
mapped onto the Gaussian map are shown on the right
of Fig. 3.

All five setup parameters can be represented in
Gaussian map~see Fig. 5!. The azimuth and elevation
angles determine the laser orientation while the twist an
determines the camera twist positions. The ratio of base
distance and standoff distance corresponds to the radiu
the circles. The laser vector corresponds to the center o
circle, with the two camera vectors corresponding to t
points on the two circles. Note that the two camera po
tions are off by a fixed angle around the laser source p
tion, depending on the actual position of two cameras
the situation shown in Fig. 2, they are off by 180 deg. F
a given pointP on the Gaussian map, there are three d
tances: distanced1 between pointP and right camera vec
tor, d2 betweenP and left camera vector, andd3 between
1240 Optical Engineering, Vol. 42 No. 5, May 2003
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P and laser vector. They respectively correspond to
right camera view angle, left camera view angle, and la
incidence angle. The angles can be calculated via

u52 sin21
d

2
.

The impact of the standoff distance and baseline dista
change over dynamic range variation can be easily
duced. That is, under the constraints of sensor sensiti
and geometric magnification error, the larger the distan
are, the smaller the signal dynamic range is. These
tances are primarily determined by optical constraints ot
than dynamic range. So in this paper, we focus on the
entation’s impact on signal dynamic range.

Therefore, the best setup issue has been transformed
an issue of finding an optimal configuration on a sphere
that the camera 1 view angle distanced1 and camera 2
view angle distanced2 are minimized. That is, for a given
SD and BD, we need to have the following optimization

min$max@d1~u twist,uazimuth,yelevation! i ,

d2~u twist,uazimuth,yelevation! i ] %.

The maximum view angle distance for each camera ne
to be minimized. This is a minimal maximum problem
Typical gradient methods only give local optimal solution
In order to minimize dynamic range, we may naively ca
culate these angles for all the points on the surfaces fo
configurations and then optimize it. This is computationa
prohibitive. Therefore, in this paper, we use spherical c
vex hull ~SCH! to find out the points that may lead t
maximal signal dynamic range instead of calculating d
namic range for each point on the surface.

Once the spherical convex hull is obtained, a method
needed to find the best~lowest! camera view angles. Fo
multiple cameras, finding the best camera view angles
complex and nonlinear problem. It is also a minimal ma
mum problem since we want to ensure the maximum an
distance of all the cameras to be minimized. Even thou
the variable space is simplified to a spherical convex h
the objective function is still a minimal maximum problem

Fig. 5 Setup parameters in a Gaussian map.
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Qian and Harding: Computational approach . . .
so an efficient optimization method is needed. In order
overcome local optimum, first we use geometric reason
to obtain a near-optimal solution. We then use a numer
iterative method to obtain the optimal solution.

The overall procedures are shown in Fig. 6. For a giv
part to be measured, it is first discretized to obtain a po
cloud and its Gaussian map. In order to simplify the cal
lation of maximum angle distance between cameras
points on the surface, we calculate the spherical con
hull. Next, a minimum enclosing circle containing all th
surface normals is found. We use the minimal enclos
circle to find the minimal laser incident angle. Under th
condition, we use an algorithm for minimal maximu
angle distance to analytically find the camera orientatio
This gives us the near-optimal orientation. We then use
gradient method with perturbation to find a free-optim
orientation under which there exists the best possible c
era view angles. Finally, a grid method is employed to fi
a constrained optimal solution where the optical constra
are satisfied.

In this paper, we make distinctions of four orientation
near-optimal, free-optimal, constrained-optimal, and ex
ing orientations.

Near-optimal orientation refers to an orientation that h
the minimal camera view angle under the condition
minimal laser incident angle. The center of the minim
enclosing circle determines the azimuth and elevat
angles of the laser. When the laser is fixed at the cente
the minimal enclosing circle, the camera twist obtained
the angle distance optimization is the best camera a
possible for minimal signal dynamic range under the op
mal laser angle. In this orientation, the laser incident an
is minimal.

Free-optimal orientation refers to the best orientation
the minimal camera view angles. This orientation cor
sponds to the best orientation for minimizing the sign
dynamic range. In this orientation, the laser angle may
be minimal.

Constrained-optimal orientation refers to the best ori
tation for low dynamic range and low camera view ang
while satisfying the field of view, resolution, and magni
cation constraints.

Fig. 6 Procedures for optimal sensor setup.
l

-

f

Existing orientation refers to the existing orientatio
used before optimization.

4 Computational Approach for Optimal Sensor
Setup

4.1 Hemispherical Test and Spherical Convex Hull

To simplify the calculation of maximum camera vie
angles and maximum laser incident angles for all the po
on the part surfaces, we use the spherical convex hul
surface normals. The first step of finding a spherical con
hull is to determine whether the point set of surface n
mals lies on a hemisphere. We propose the use of the a
span of a point set to decide whether the point set o
sphere is hemispherical. Further, if it is hemispherical,
use a rotating ‘‘cutting plane’’ method to form the spheric
convex hull.

4.1.1 Hemispherical test

By definition, if a point set is not hemispherical, its sphe
cal convex hull is the whole sphere.8 In practice, since all
the visible points have view angles smaller than 90 d
they all lie on a hemisphere. Therefore a general he
spherical test is needed to obtain the spherical convex
for the situations where the SCH is not the whole sph
surface.

For a given pointpj , (xpj
,ypj

,Zpj
), in the point setSof

surface normals, there is a principal planePp going through
~0,0,0! and with normal (xpj

,ypj
,zpj

). If we project all the

points in the setS onto the plane along the directionopjW ,
we get the projected point setS8. For any pointq in S8,
pjqW forms a vector. The point setS8s angle span at pointpj
is defined as the minimal angle of two vectors starting fro
point pj and bounding all the vectorspj piW , i 51, n, and
pjÞpi . The angle betweenpj piW and the x axis is u
5a cos(pjpiW•xW). For any pointpiPS, iÞ j , there is such an
angleu i as shown in Fig. 7~a!. Clearly, angle span is inde
pendent of the choice ofx axis.

Fig. 7 Angle span of point set S at point P.
1241Optical Engineering, Vol. 42 No. 5, May 2003
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Qian and Harding: Computational approach . . .
The procedures for obtaining the angle span of a po
setSof surface normals at pointp can be divided into three
steps:

1. Project all the points on thepj ’s principal planePpj
.

2. Calculate the angle differenceDu. Let umax andumin

be the low and high bound angles,Du5umax2umin .

3. Calculate the amended angle differenceDu8 if the
angle differenceDu obtained in step 2 is larger tha
180 deg. For any angleu,180 deg, it is amended b
the addition of 360 deg, i.e.,u85u1360. If we de-
note the maximum and minimal amended angles
umax8 and umin8 , we have Du85umax8 2umin8 . Angle
span isAS5min(Du,Du8).

In Fig. 7~a! point p and setSare on a unit sphere. In Fig
7~b! points are projected to principal planePp j . In Fig.
7~b!, pj p1W andpj p2W are two bounding vectors. In Fig. 7~c!,
the angle span is the angle betweenpj p1W andpj p2W , not the
angle betweenpj p18W and pj p28W , since the angle betwee

pj p18W andpj p28W is larger than 180 deg.
With the above definition of angle span, we have t

following lemma for the hemispherical test.
Lemma 1: If one point in a point set has an angle sp

less than 180 deg, the point set is hemispherical. If non
the points has an angle span less than 180 deg, the poin
is nonhemispherical~hemispherical test!.

The pseudocode algorithm for the hemispherical test
be described as follows:
Algorithm 1: An angle span based hemispherical test

Input: surface normal point set S
Output: whether S is hemispherical
For each point pi in S

Calculate its principal plane Ppi

For all the points pj in S, j51...n, j Þ i
Project pj onto plane Ppi

Calculate angleu j with respect to an X-axis
Endfor
Find the angle differenceDu5umax2umin . If Du
,180, return true.
For all the points pj in S, j51...n, j Þ i

Amend the angleu j5u j1360 if u j,180
Endfor
Find the amended angle differenceDu85umax8

2umin8

If Du i8,180, return true.
ENDFor
Return False

The hemispherical test has the worst case complexity
O(n2) when the point setS is not hemispherical, but is fa
easier to implement. If the spherical polygon is hemisph
cal, its computational complexity is expected to
O(n2/F) where n is the size of point setS and F is the
number of convex points ofS.
1242 Optical Engineering, Vol. 42 No. 5, May 2003
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4.1.2 Rolling cutting plane method for spherical
convex hull

Based on the angle span concept, we have the followi
lemma to obtain convex points on the spherical conv
hull.

Lemma 2: For a hemispherical point setS, a point p
PS is a convex point on the spherical convex hull if an
only if the angle span of the point setS at point P is less
than 180 deg~spherical convex hull!.

From the hemispherical test, we can have one pointpj ,
upon its principal planePpj

; the rest of the points have an
angle span smaller than 180 deg. Let us denote a cutt
plane going through three points: pointpj , point pi , which
has the minimal bounding angle, and the origin pointo.
This cutting plane cuts the sphere into two parts. If we l
the normal of the plane point toopjW 3opiW , the point setS
lies on the left side of plane. If we obtain the principa
plane of pointpi and project all the points on the principa
plane of pi , then the point that has minimal angle is th
next convex point. We can repeat this process until all t
convex points are found.

Figure 8 shows how the spherical convex hull of a set
point cloud can be obtained by this method. Figure 8~a!
shows the Gaussian map of the airfoil and platform su
faces of a turbine blade. On the principal plane of pointpa ,
papbW forms the low bound of the point set. Sopb becomes
the convex point. On the principal plane ofpb , pc has the
minimal angle, sopc becomes the next convex point. This
process repeats until the first pointpa is hit. Every time a
new minimal angle point is found, a cutting plane i
formed. For example, corresponding to the pointspb , pc ,
andpd are planesopapb , opbpc , andopcpd . We refer to
this method of rotating the principal plane to obtain SCH a
a rotating cutting plane method.

So we have the following algorithm for obtaining the
spherical convex hull.

Algorithm 2 for Spherical Convex Hull

Input: a point set S of surface normals
Output: spherical convex hull (SCH) of the set S

1. for each point in the point set of the surfac
normals

a. calculate its angle span.
b. If angle span is less than 180, record th

convex point as p, break;

Fig. 8 Rotating cutting plane for spherical convex hull.
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Qian and Harding: Computational approach . . .
c. Else, continue.
endfor

2. if no convex point p is found, it is not hem
spherical, return the whole spherical surface

3. record point p as first convex point and add it
SCH

4. find the low bound point q from the convex po
p’s principal plane

5. if q is the same point as first convex point, t
complete convex hull is found and return SCH

6. otherwise, add q into SCH and record q as p a
goto step 4

The complexity of the algorithm isO(n2) and n is the
number of points inS. This spherical convex hull algorithm
has the worst complexityO(nF) if an initial convex point
p is given.

4.2 Minimal Enclosing Circle

Once we find SCH, we need to get an orientation that gi
minimal camera view angles for all the cameras. In orde
overcome the local optimum, we use a near-optimal ori
tation as the initial position for iteration. This near-optim
orientation corresponding to minimal laser incident ang
can be obtained analytically using a geometric reason
method. This minimal laser incident angle corresponds t
laser vectorL, which has the minimal distanced to reach all
the surface points on the Gaussian map. This laser vectL
corresponds to the center of the minimal enclosing circ
We use an algorithm10 to obtain minimal enclosing circle
which has a complexity ofO(n logn).

4.3 Minimal Maximum Angle Distance Algorithm

In this section, we present an algorithm for analytica
obtaining the minimal camera view angles for all the ca
eras under the fixed laser orientation. The algorithm is
plicable to a larger number of cameras.

In Fig. 9, pointL represents the laser vector, and poin
S andT represent two camera vectors. As shown in Fig.
the laser source lies in the plane formed by the two prin
pal axes of the two cameras. Therefore,OSandOT are off
by 180 deg in Fig. 9. For a pointP that lies on the spherica
convex hull, the arc distance such asPSandPT represents
the angle between the surface point normal and cam
principal axes. These camera view angles can be calcul
from the Eucludian distanceiPSi and iPTi. That is,

us52* sin21S iPSi
2 D and uT52* sin21S iPTi

2 D .

Fig. 9 Angle distance calculation.
a
d

To minimize the signal dynamic range, we assume po
L is fixed in this step, which corresponds to the SCH
minimal enclosing circle center. At this point, the las
angle is minimal and the camerasSandT can rotate around
point L on their respective circles. We need to find an o
timal camera twist so that the larger one ofiPSi andiPTi is
minimal. We draw an arbitrary axisLX so thatLX'OX and
O is the origin point of the unit sphere. The angle distan
between a pointP on the spherical polygon and the came
T while T is rotating on the circle can be described by
function of u, whereu is the angle betweenLX and LT.
PointP is projected to pointP8 on the plane of points~L, X,
T!. The angle betweenLX and LP8 is denoted asu0 , the
angle betweenLP andLP8 asb. For a given pointP and
the camera centerT and the chosen pointX, u0 andb are
known by the following equations:

u05cos21S LXW

iLXi •
LP8W

iLP8i D ,

b5cos21S LPW

iLPi •
LP8W

iLP8i D .

The angle betweenLP and LT can be obtained from the
following equation:

cosa5cos~u2u0!•cosb. ~3!

So the cameraT’s angle distance to pointp is

iPTi25iPLi21iLTi222•iPLi•iLTi•cosaT . ~4!

A similar equation can be derived for cameraS:

iPSi25iPLi21iLSi222•iPLi•iLSi•cosas .

If we substitute Eq.~3! into Eq. ~4!, we have camera view
angles as a function ofu :

iPTi25iPLi21iLTi2

22•iPLi•iLTi•cos~u2u0!•cosb. ~5!

So the angle distance can be abbreviated asd
5a cos(uTwist2u0)1b for a given pointP, in which

a522iPLi•iLTi•cosb, ~6!

b5iPLi21iLTi2. ~7!

Thus, each convex point in SCH has a distance funct
similar to Eq. ~5!. When the camera twist angle chang
from 0 to 360 deg, i.e., cameraT andScan rotate aroundL
for the whole circle, each function describes the angle d
tance of cameraT andS to the point. If we intersect all the
functions and find the maximum angle distance function
each intersection interval, we can obtain the maxim
angle distance fromT andS to all the convex points when
T andS rotate from 0 to 360 deg.
1243Optical Engineering, Vol. 42 No. 5, May 2003
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Fig. 10 Angle distance function and intersection.
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The detailed procedures for obtaining minimal ma
mum camera view angle distance are described in the
lowing. We use two camerasSandT to illustrate each step

Step 1: Obtain camera angle distance functions. For
given pointsP and Q on the spherical polygon and tw
camerasS andT, we can have the angle distance functio
represented asd5a cos(uTwist2u0)1b. The exact values
of a, b, andu0 are functions of the pointP and laser vector
L and camera circleS or camera circleT, as described in
Eq. ~6! and Eq.~7!. For n number of points in the spherica
polygon andm cameras, we will havenm angle distances
Figure 10~a! illustrates such functions whenn52, m52.

Step 2: Intersect angle distance function and obtain
maximum angle distance. In this step, there are two
subtasks. Subtask 1 is to intersect all the angle dista
functions and to obtain the intersection points. Subtask
to obtain the maximum camera view angle distance fu
tions among all cameras when the twist angle changes f
0 to 360 deg.

For a camera and any point on the spherical polyg
there is a distance functiond5a cos(uTwist2u0)1b. For
any two points,p and q, on the polygon, we have two
distance functions, noted asdp5ap cos(uTwist2u0p

)1bp

and dq5aq cos(uTwist2u0q
)1bq . To intersectdp and dq ,

we have

ap cos~uTwist2u0p
!1bp5aq cos~uTwist2u0q

!1bq .

If we expand it, we have

~ap cosu0p
2aq cosu0q

!•cosuTwist2~ap sinu0p

2aq sinu0q
!•sinuTwist5bq2bp .

Denote A5ap cosu0p
2aq cosu0q

, B5ap sinu0p
2aq sin0q

,

and C5(bq2bp)/(A21B2)1/2. So two intersection points
would be at

uTwist56a cos~C!1a tan~B/A!.

The intersection points of two distance functions are a
shown in Fig. 10~a! for two cameras. PointsA andB are the
Engineering, Vol. 42 No. 5, May 2003
-

e

intersection points for two distance functions of points
and 2 with camera 1, and pointsC and D are intersection
points for camera 2. The complexity of subtask 1 isO(n2)
wheren is the number of points in SCH.

The second subtask is to find a maximum angle dista
for each camera when the camera twist changes from
360 deg. For each pair of distance functions, there are
possible intersection points. If a spherical polygon hasn
vertex, so there are possibly 2•nC2 intersection points and
2•nC211 intervals between intersection points. For ea
interval, we need to find the maximum distance functi
during the interval. Forn curves, it will take n•(2nCr

11).log(2nCr11)5O(n3 logn) comparisons to sort the in
tervals and find the maximum distance function for ea
interval. To avoid the complexityO(n3 logn) of the sorting
process, we use the intersection adjacency relationshi
speed up the sorting process. That is, during the dista
function intersection process, we record the intersection
tending functions. If we know functiondp anddq intersect
at pointA, let us suppose foru,A, dp(u),dq(u); then we
know for u.A, we havedp(u).dq(u). Therefore, we can
use this intersection adjacency relation at pointA to speed
up the distance function comparison without the need
calculate the function value for each interval.

Subtask 2 involves these three steps: getting the
interval with complexityO(n2), finding the curve of high-
est value for the first interval with complexityO(n), and
finding this curve’s conjugate curve through intersecti
adjacency relationshipO(n). The expected time of finding
the conjugate curve isO(n). So the algorithm for subtask 2
has complexityO(n2) andn is the number of points in the
spherical polygon.

The algorithm for the maximum angle distance sorti
~subtask 2! is described in Algorithm 3.

Algorithm 3 Maximum Angle Distance Function
Sorting
Input: n angle distance curves and the intersectio
points’ adjacency
Output: maximum distance function list for all inter-
vals
1) Find the first smallest intersection pointumin

2) Find the curve Ci that has the highest value durin
the first interval (0,umin)
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Fig. 11 Intersection adjacency used to speed up the sorting process.
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3) Find curve Ci ’s smallest intersectionu i so that u i

>umin . Let umin5u i .
4) Add Ci at interval (0,umin) to the list
5) Find curve Ci ’s next smallest intersection pointu i so

that u i>umin

6) Find the conjugate curve Cj of curve Ci , which in-
tersects with Ci at point u i

7) Add Cj at internal (umin ,u i) to the list
8) umin5u i , Ci5Cj

9) Repeat step 5, step 6, step 7 and step 8 untilumin is
360.

As shown in Fig. 11~a!, the distance function for point 1
has the highest value at first interval. The closest inters
tion point to the first interval of curve 1 isB. Because of the
recorded intersection relationship, we know the conjug
intersection curve of curve 1 at pointB is curve 3. There-
fore curve 3 has the highest angle distance during the
terval right after pointB. Likewise, we can infer that curve
4 has the highest value for the intervals between poinC
and pointD. We can repeat the process until all the int
vals’ maximum distance functions are found.

Step 3: Offset camera twist. In accordance with our
previous description, camera twists for cameraS andT are
off by 180 deg. We offset the maximal distance function
camera 1 and camera 2 and obtain the results. Figure 1~a!
shows the maximum angle distance function for two ca
eras. After the function for camera 2 is shifted by 180 d
the two functions are shown in Fig. 12~b!.

Step 4: Obtain minimal maximum camera angles. In
this step, we intersect the two maximum angle dista
functions for two cameras and obtain the maximum cam
-

-

angle distance for two cameras when the camera tw
angle changes from 0 to 360 deg. The complexity of t
step isO(n) wheren is the number of points on the SCH
A point on the maximum distance curve that has the low
value corresponds to the optimal twist angle, as shown
point A in Fig. 12.

So the algorithm for analytically obtaining the minim
camera view angles can be summarized using the follow
pseudocode:

Algorithm 4 Minimal Maximum angle distance
Input: n convex points in the SCH, m cameras and
relative Du i among the cameras
Output: twist angle for the maximal camera vie

angles to be minimal for m cameras
Algorithm:
For each camera Ci , i 51...m

For each convex point pj , j 51...n
Calculate camera Ci ’s view angle distance
function di j

Endfor
Intersect all the distance functions di j , j 51..n
and obtain the maximum

distance function Dci for camera Ci (See Al-
gorithm 3).

Shift maximum distance function Mci by Du i

Endfor
Intersect all the maximum distance functions Mci , i
51...m and obtain the

maximum angle distance function MC for all the
cameras (See Algorithm 3)
Fig. 12 Offset camera twist and obtain minimal maximum angle distance.
1245Optical Engineering, Vol. 42 No. 5, May 2003
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1246 Optic
Fig. 13 Gradient method for minimal camera view angles.
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Return the angleu that has the minimal angle dis
tance.

In the above algorithm,n is the number of points in the
SCH, which is significantly smaller than the number
points on the surface. The complexity isO(n2m) andm is
the number of cameras.

4.4 Gradient and Grid Methods for Optimal Setups

The sections above describe a method to find a n
optimal solution, which has the lowest camera view an
under the condition of minimal laser incident angle. T
optimal orientation where the maximum camera vie
angles are minimal may not happen at this initial conditio
Therefore, we use a gradient method to iteratively find
optimal solution. For a given standoff and baseline d
tance, there are three degrees of freedom, which can
changed in a sequential order. We decompose these
degrees of freedom into the following three movemen
slide X, slide Y, and rotation as described in Fig. 13. F
given orientations of cameraS and T, there exists a plane
that passes through three pointsO, S, andT; X is defined to
be on this plane and perpendicular toOL, while Y is defined
to be perpendicular to this plane and is going through
OL. Rotation is to change the twist angle aroundL as de-
scribed in Sec. 4.3.

The advantage of this decomposition is that for ea
degree of freedom, we can obtain an analytical solution
minimize the cameras’ view angle. The detailed iteration
described as follows. From the near-optimal solution
obtained the following solution:

Fig. 14 Four orientations in a spherical map.
al Engineering, Vol. 42 No. 5, May 2003
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• Find an optimal angle deltaDux along the slideX
direction so that the camera view angle for all t
cameras is minimal.

• Find an optimal angle deltaDuy along slideY, so that
the camera view angle is minimal.

• Find the optimal rotation angle. This can be obtain
using Algorithm 4.

• If a local optimal solution is reached, a perturbation
added to slideX, slideY, or rotation. Repeat the abov
process until it converges.

After we obtain the optimal setups for the minimal came
view angle and minimal laser incident angles, we use a g
method to obtain the constrained optimal. The configu
tion space of five degrees of freedom is gridded near
optimal orientation, and an orientation is found that has
minimal camera view angle while satisfying all the optic
constraints.

5 Implementation and Experimental Result

An optimal sensor setup system based on the above m
odology has been implemented. Given a part model to
inspected and the basic optical characteristics of the m
surement system, the system can automatically calcu
the optimal sensor setup for minimizing signal dynam
range. For example, for the blade shown in Fig. 2, fo
orientations and the respective optical characteristics ca

Table 1 Comparison of optical characteristics under different orien-
tations.

Existing
Near

optimal
Free

optimal
Constrained

optimal

Elevation, 37 45.8427 45.8427 45.8427

Azimuth, 55 45.9761 35.9761 37.9761

Twist 0 24.0881 1.91182 7.91182

Dynamic Range 93.257 50.8218 43.3905 46.9631

Sensitivity 0.000569 0.00039 0.00034 0.001217

Camera 1 Angle 68.175 55.3258 51.5178 53.9075

Camera 2 Angle 57.932 51.9584 53.9564 54.696

Laser angle 60.3499 50.5844 51.0399 50.9602

Delta DOF 0.404982 0.37395 0.48252 0.387748

% Magnification 7.50915 6.92779 8.96652 7.1861
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Fig. 15 Measurement volume comparison.
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lated by the system are shown in Fig. 14 and Table 1. Th
four orientations are the existing setup, the near-optim
setup obtained by solely geometric reasoning, i.e., mini
enclosing circle and minimal maximum angle distance c
culation, the free-optimal setup with no optical constrain
and the constrained-optimal setup. The four orientatio
relative positions in the Gaussian map of the blade
shown in the Gaussian map~Fig. 14!. As revealed in the
figure, the angle distance between the cameras and plat
surface in the existing setup is smaller than the angle
tance between the camera and airfoil. That is to say,
current setup before optimization is biased against the p
form surface.

Table 1 lists different optical characteristics under fo
orientations. The items in the table include setup orien
tions, dynamic range, sensitivity, maximum right came
view angle, maximum left camera view angle, maximu
laser incident angle, depth-of-field difference, and perce
age of geometric magnification error. As shown in Table
all three optimal orientations give lower signal dynam
range than before optimization. The near-optimal orien
tion gives the lowest laser incident angle~53.38!, while
free-optimal orientation gives the lowest camera view an
~53.03!, which results in the lowest signal dynamic ran
~42.06!. Constrained-optimal orientation gives good sign
dynamic range while satisfying optical constraints such
sensitivity and depth-of-field difference.

Figure 15 shows the part’s position relative to the m
surement volumes under four orientations. This is used
check whether a part is out of the measurement volu
under a particular orientation.

Fig. 16 Gradient method with perturbation.
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Figure 16 shows that the gradient method with perturb
tion along three directions gives the optimal solution for
different blade part. The optimal dynamic range obtain
by the grid method is 80.87. With two or three iteration
this gradient method gives a solution very close to the o
timal solution.

The dynamic range variation with the three orientati
angles is shown in Fig. 17. As the figure shows, any dev
tion from the optimal orientation leads to higher signal d
namic range.

In order to validate the overall methodology presented
this paper, we conducted an experiment on parts with sh
spots. Figure 18 illustrates how the model covera
changes over different orientations. The spots circled in
figures are shiny. The top row is measurement at the ele
tion angle of 30 deg and the bottom row at the elevati
angle of 42 deg. Across each row is the measuremen
different azimuth angles from 45 to 70 deg. By the optim
zation of the sensor setup, the model coverage has b
improved as predicted.

6 Conclusion

In this paper, we presented a methodology for the optim
sensor setup for an optical metrology system. In particu
the signal dynamic range received by the cameras is m
mized by the optimization of the sensor/part relative po
tion. On the computation side, we developed novel alg
rithms on a spherical map for obtaining the spheric
convex hull using the angle span and the rotating cutt

Fig. 17 Dynamic range vs sensor orientation.
1247Optical Engineering, Vol. 42 No. 5, May 2003
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Qian and Harding: Computational approach . . .
plane method. We also developed an effective method
calculating minimal maximum camera view angles on
unit sphere. The near-optimal analytical solution is o
tained via geometric reasoning, then the constrained o
mal solution is obtained by numerical iteration. On the o
tical side, we developed a methodology for minimizin
signal dynamic range by optimizing the sensor setup. T
is especially useful for the measurement of shiny surfac
Experimental results were presented that validated the
diction from the model.

This methodology is directly applicable to multiple se
sor systems, in which multiple cameras need to be simu
neously optimized to receive minimal signal dynam
range. This methodology can be further extended for sen
design, where different performance measures such
depth of field, magnification error, and resolution need
be verified for a particular part inspection. This method c
also be used for stage design for large part measurem
where the motion envelope of the sensor/part can be
rived based on the optimal setup.
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