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We present a divide-and-conquer method that efficiently finds a near-optimal distribution
of sensing locations for free-form surface digitization. We formulate a next-best-point
problem and transform the uncertainty of a B-spline surface into a higher-dimensional
B-spline surface. This technique allows the use of the convex hull and subdivision prop-
erties of B-spline surfaces in the divide-and-conquer algorithm. It thus greatly reduces
the search time for determining the next best sensing location.
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Introduction

Free-form surfaces appear widely in products from various
anufacturing industries. Reverse engineering, the process of re-

onstructing the computer representation of physical surfaces, has
ecome indispensable in the development of these products. Geo-
etric shape acquisition is a first step in reverse engineering, and

t provides 3D coordinates of physical objects for the reconstruc-
ion process.

The reconstructed surface has uncertainty due to sensor noise.
ensing localization is a process aiming to determine the sensing
ocations to reduce the uncertainty of the reconstructed surface.
nappropriate choices of sensing locations can lead to unnecessar-
ly large uncertainty in the resulting surface. Ineffective sensing
ocalization may require lengthier time for sensing.

Existing methods for sensing localization in free-form surface
igitization are either gradient based or exchange based �1–5�.
hese methods tend to either produce locally optimal sensing lo-
ations or converge slowly and work in a nondeterministic man-
er.

We present a sensing localization method for point sensors that
cquire data on a point-by-point basis, such as tactile probes in
oordinate measurement machines �CMM� or point laser scanners.
he key insight in our method is the transformation of the uncer-

ainty distribution of a B-spline free-form surface into a higher-
imensional B-spline surface. The surface point of maximal un-
ertainty can then be efficiently located based on the convex hull
nd subdivision properties of B-spline surfaces. Based on this
echnique, we incrementally obtain near-optimal sensing locations
hrough a divide-and-conquer strategy. The steps in this approach
re as follows.

1. Formulate the sensing localization problem as a next-best-
point �NBP� problem.

2. Transform the uncertainty of the reconstructed surface into a
higher-dimensional B-spline surface. The NBP is thus natu-
rally interpreted as the highest point on the new surface.

3. Use a divide-and-conquer strategy to locate the NBP based
on the subdivision and the convex hull properties of a
B-spline surface.
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4. Repeat the above process to obtain multiple sensing
locations.

Due to its computational efficiency, this approach has been used
in online sensing localization, where the next sensing location is
dynamically determined and the sensed data are used to steer the
next sensing location.

The remainder of this paper is organized as follows. Section 2
reviews prior work in sensing localization. Section 3 introduces
surface reconstruction and uncertainty computation. Section 4 de-
scribes the principle of uncertainty-based sensing localization and
our divide-and-conquer based sensing localization algorithm. Sec-
tion 5 presents experimental validation results. Section 6 analyzes
the algorithm efficiency. This paper concludes in Sec. 7.

2 Literature Review
Sensor planning for point sensors has been an active research

topic for over a decade �6–11�. Uniform distribution of sensing
locations is often adopted �5,12� and surface features such as
patch size and mean curvature are also considered in distributing
the sensing locations �13�. However, in these cases, the uncer-
tainty of the resulting surface is not minimized.

High-level control of sensing locations is demonstrated in Ref.
�14� based on the uncertainty of a regression model. However,
only a simple superellipsoid model is employed to represent the
object and a gradient method is used to search for locally optimal
sensing locations. Closed B-spline section curves are utilized to
model the 3D free-form object and uncertainty-based sensing lo-
calization is proposed in Ref. �15�, but there is no discussion on
how to search the optimal sensing location space. Sensing local-
ization considering reconstructed surface uncertainty has been at-
tempted in Refs. �2,5�, and simulated annealing and conjugate
gradient methods were introduced to reduce the surface uncer-
tainty. The results based on gradient methods are locally optimal
and the simulated annealing approach is slow and nondeterminis-
tic.

Sensing localization is also an important research topic in many
other applications such as fixture design �3,16�, and workpiece
localization �4,17�, where interchange methods are used to opti-
mize sensing locations on the discretized point-set domain. In the
design of experiment community, sensing localization is recog-
nized as a general measurement design problem, and Fedorov
exchange �18,19� is often adopted to determine sensing locations.

However, it converges slowly and is nondeterministic. Acceler-
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ted algorithms have been proposed, for example, by increasing
he number of exchange pairs and deleting the candidate points
hat are less desirable �20�.

B-Spline Surface Reconstruction, Uncertainty, and
ensing Localization
This section first describes the B-spline representation for free-

orm surfaces and its uncertainty computation. We then proceed to
nalyze the uncertainty-based sensing localization.

3.1 B-Spline Surface. The B-spline surface representation is
common form for modeling free-form shapes �21�. We use this

epresentation for the surface reconstructed from the sensed data.
A bicubic B-spline surface such as the one seen in Fig. 1 can be

epresented as

S�u,v� = �
i=1

nu

�
j=1

nv

Bi�u�Bj�v�Pij �1�

here B is a B-spline shape function, nu is the number of control
oints along u direction, nv is the number of control points along
direction, and Pij is the ijth control point. The equation can also

e expressed as the inner product of two vectors as follows:

S�u,v� = ATP �2�

here A=A�u ,v� is the B-spline shape function vector �A�Rn,
=nu ·nv�, and P is the collection of control points �P�Rn, n
nu ·nv�.

3.2 B-Spline Surface and Uncertainty From
easurements. Given k measurements z1 ,z2 , . . . ,zk with uncer-

ainty �z1
,�z2

, . . . ,�zk
and a B-spline surface structure �the num-

er of control points, knot vector, and degree�, we can reconstruct
B-spline surface from those measurements via a weighted least

quares method. The objective function f�Pk� will be defined as
he weighted distance between the surface and the measurements
s follows:

f�Pk� = �
i=1

k
�zi − Ai

TPk�2

�zi

�3�

he vector Pk contains the control points for the B-spline surface
rom k measurements, and Ai is the B-spline shape function vector
or the ith measurement zi.

The gradient of f�Pk� is

�f�Pk� = ���
i=1

k
�zi − Ai

TPk�2

�zi

� = − 2�
i=1

k
Ai�zi − Ai

TPk�
�zi

= − 2��
i=1

k

Ai��zi
�−1zi − �

i=1

k

Ai��zi
�−1Ai

TPk� �4�

Fig. 1 B-spline surface representation
The zero of the gradient is given by
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Pk = �Âk�Zk

−1Âk
T�−1Âk�Zk

−1Zk �5�

where Âk= �A1A2¯Ak�, �Zk
=diag��z1

,�z2
, . . . ,�zk

�, and Zk

= �z1z2¯zk�T.
It is reasonable to assume that the measurements in Zk are

samples from a Gaussian probability distribution with zero mean.
From Eq. �5�, we can get the distribution of control points Pk,
would then likewise satisfy a Gaussian distribution.

Let Mk= Âk�zk

−1Âk
T. The uncertainty covariance matrix is given

by

�Pk
= �Mk

−1Âk�zk

−1��Zk
�Mk

−1Âk�zk

−1�T = Mk
−1Âk�zk

−1Âk
T�Mk

−1�T = Mk
−1

�6�

The matrix Mk is known as the Fisher information matrix �22�.
The uncertainty, �p, of a surface point p at the surface’s para-

metric domain �u ,v� can be defined by

�p = AT�Pk
A �7�

When all measurements are taken by the same sensor and have
identical variances, i.e., �z��zi

, �1� i�k�, the uncertainty cova-
riance and Fisher information matrices can be simplified to

�Pk
= �z�ÂiÂi

T�−1 and Mk = ��z�−1ÂiÂi
T �8�

3.3 Uncertainty Based Sensing Localization. Since the con-
trol points Pk of the reconstructed surface satisfy a Gaussian prob-
ability distribution, the uncertainty �Pk

constitutes a measure of
information contained in the Gaussian probability distribution
Q�Pk��R describing the parameter errors

Q�Pk� = �Pk − P̂k�T�Pk
�Pk − P̂k� �9�

where P̂k is the maximum likelihood estimate of control points Pk.
Given a confidence level � �a distribution probability of Pk�, we
can find a Q� from the distribution. Moreover, the true model
must lie in the hyperellipsoid defined by Q�. In Eq. �9�, it can be
seen that a hyperellipsoid of smaller volume implies that the re-
constructed surface has higher confidence and better approximates
the underlying shape. The size of the hyperellipsoid is dependent
only on �Pk

�or Mk�. There are various criteria to characterize �Pk
�or Mk� such as determinant, eigenvalue, and trace �19�, and
among those criteria, D-optimality has been widely used due to its
simple updating formulas �19,20�. These formulas are as follows.

�1� Equations for updating �Pk
, Mk, and their determinants

when adding or withdrawing a single data point z with
B-spline shape function matrix Az and uncertainty �z as
follows:

Mk� = Mk � Az��z�−1Az
T �10�

�Pk�
= „I � �Pk

Az��z � Az
T�Pk

Az�−1Az
T
…�Pk

�11�

det�Mk�� = det�Mk � Az��z�−1Az
T�

= det�Mk� · det„I � AzAz
T�Mk�−1��z�−1

… �12�

Since the rank of AzAz
T�Mk�−1��z�−1 is one and has

only one nonzero eigenvalue Az
T�Mk�−1Az��z�−1; there-

fore, det(I�AzAz
T�Mk�−1��z�−1)= (1�Az

T�Pk
Az��z�−1),

det�Mk��=det�Mk�(1�Az
T�Pk

Az��z�−1), and

det��Pk�
� =

1

det�Mk��
=

det��Pk
�

1 � Az
T�Pk

Az��z�−1 �13�

where Mk� and �Pk�
are the updated uncertainty matrices of
Mk and �Pk
.
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�2� The computation of the change in the
determinant,� det�Mk�, when exchanging the point z with
z� �19�,

� det�Mk� = det„Mk − Az��z�−1Az
T + Az���z�−1Az�

T
…

= ��z�−1
„Az�

T �Pk
Az� − Az

T�Pk
Az�1

+ Az�
T �Pk

Az���z�−1
… + �Az�

T �Pk
Az�2��z�−1�

�14�

where Az� is the B-spline shape function matrix for z�, and
�z� is the variance of z�.

Using a B-spline surface representation and the D-optimality
riterion, the sensor location problem can also be defined as fol-
ows: Given a free-form surface, B-spline surface structure, and a
umber of measurements k determine the sensing locations of k
easurements to maximize det�Mk� or minimize det��Pk

�.
Equations �12� and �13� are highly nonlinear since the B-spline

lending function Az is a bicubic function of the parameter pair
u ,v� and may have multiple peaks and valleys. When the number

is large, these equations are also of high dimension. Conse-
uently, it is difficult to find the globally optimal distribution of
ultiple sensing locations. It is therefore beneficial to develop a
ethod that can obtain near-optimal solutions in an efficient man-

er.

NBP Based Sensing Localization Algorithm
Our next-best-point �NBP� method based on the D-optimal cri-

erion obtains near-optimal sensing locations by iteratively choos-
ng a sensing location that minimizes the surface uncertainty in
he acquired data. We use a divide-and-conquer approach based on
he subdivision and convex hull properties of the B-spline surface
o rapidly find the NBP in the parametric domain.

4.1 Problem Formulation. At step i in the sensing process,
e have an estimated surface and uncertainty. We will choose the
ext sensing location as the point that minimizes the determinant
f the covariance matrix.

Let �Pi
be the covariance matrix of current estimated control

oints, and zi+1 be the next measurement on the free-from surface
rom Eqs. �11� and �13�, the updated uncertainty covariance ma-

rix is found to be

�Pi+1
= „I − �Pi

Azi+1
��zi+1

+ Azi+1

T �Pi
Azi+1

�−1Azi+1

T
…�Pi

�15�

nd its determinant as

det��Pi+1
� = det��Pi

�/„1 + Azi+1

T �Pi
Azi+1

��zi+1
�−1

… �16�

here Azi+1
is the B-spline shape function related to zi+1.

From Eq. �16�, we can see that minimizing det��Pi+1
� is equiva-

ent to maximizing Azi+1

T �Pi
Azi+1

. Thus, the NBP problem can be
ast as finding the point on the reconstructed B-spline surface that

Fig. 2 Geometric interpretation o
as the maximal uncertainty.
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4.2 NBP Search on a Free-Form Curve. Before describing
the NBP search on a free-form surface, we will describe the pro-
cess on a free-form curve.

4.2.1 Uncertainty Surface for a Reconstructed B-Spline
Curve. Assume as given a reconstructed B-spline curve with con-
trol points P and the uncertainty covariance matrix �P. The point
p with parameter u the B-spline curve has uncertainty

�p = AT�u��PA�u� �17�

where A�u� is the B-spline shape function vector for a B-spline
curve. Equation �17� can also be written as

�p = AT�u��PA�v� �v = u� �18�

Let S�u ,v�=A�u��PAT�v�. We can see the following.

• S�u ,v� is a B-spline height surface defined by the uncer-
tainty matrix �P on the domain �= 	�u ,v� 
0�u ,v�1�. We
call S�u ,v� an uncertainty surface.

• The distribution of the uncertainty of the B-spline curve
p�u� over u forms a space curve Cp on S�u ,v� at 	v=u ,u
� �0,1���� �see Fig. 2�. The uncertainty p�u� is �p

=S�u ,u�.

The problem of finding the NBP with maximal uncertainty on a
B-spline curve is equivalent to finding the highest point on the
space curve Cp on S�u ,v�, which we find using the following two
properties of B-splines �21�.

• The convex hull property, meaning that a B-spline curve is
completely enclosed in the convex hull defined by its con-
trol points P.

• The subdivision property, meaning that a B-spline curve can
be subdivided into pieces, each of which retains the B-spline
form.

4.2.2 NBP Search Through a Divide-and-Conquer Strategy.
The core ideas of our divide-and-conquer method are �1� to elimi-
nate the curve segments of lower uncertainty through the convex
hull property of the B-spline uncertainty surface, and �2� to further
subdivide each remaining B-spline curve segment into smaller
segments.

For example, the uncertainty surface shown in Fig. 3�a� has one
surface patch, and the blue diagonal line is the curve �v=u� on the
uncertainty surface that corresponds to the B-spline curve’s uncer-
tainty. To find the point on the B-spline curve with the maximal
uncertainty, subdivision is performed on the uncertainty surface

e uncertainty of a B-spline curve
f th
Fig. 3 Subdivision and extraction of uncertainty surface
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atch and the corresponding B-spline curve segment. Thus, four
atches in Fig. 3�b� and two B-spline curve segments can be ob-
ained. Among the four patches, only the two diagonal surface
atches containing the curve �v=u� need to be extracted. Among
he extracted patches, any patch whose maximum is smaller than
he minimum of another patch is eliminated.

Repeating the subdivision, extraction, and elimination process,
e will find that the final subdivided curve segment converges to

he optimal point within a user-specified tolerance �. The � in-
ludes two elements. One is the height �c of the uncertainty sur-
ace’s convex hull along its uncertainty height axis, and the other
s the maximal interval length �l of subdivided patches in the
arametric domain as in Fig. 4.

Figure 5 details an example of the NBP computing process on a
-spline curve. In the upper-level pictures, the gray areas repre-
ent, in the parametric domain, the remaining subdivided patches
fter the elimination. The lower-level pictures show that the dis-
ribution of uncertainty for remaining patches after each elimina-
ion step converges to the NBP with the color corresponding to the
ncertainty value.

4.3 NBP Search on a Free-Form Surface. Corresponding to
he uncertainty equation for free-form curves, the uncertainty of a
-spline surface point is

�p = AT�u,v��PA�u,v� �19�

hich is on a B-spline surface in R4 defined by

S�u1,v1,u2,v2� = AT�u1,v1��PA�u2,v2� �20�

here S�u1 ,v1 ,u2 ,v2� is a higher-dimensional B-spline uncer-
ainty manifold defined on the domain �= 	�u1 ,v1 ,u2 ,v2� 
0

Fig. 4 Tolerance for the NBP
Fig. 5 An example of a NBP computing process
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�u1 ,v1 ,u2 ,v2�1�, and A�u1 ,v1� and A�u2 ,v2� are the B-spline
shape function vectors. The distribution of the uncertainty of the
B-spline surface point p�u ,v� forms a space surface on the R4

uncertainty surface S with u1=u2, v1=v2.
This higher-dimensional B-spline uncertainty surface also has

the strong convex hull and subdivision properties. As such, the
NBP search method on a curve can be directly extended to the
NBP search on a reconstructed B-spline surface.

Consider the reconstructed surface over the parametric domain
�0,1�	 �0,1� and its uncertainty shown in Fig. 6, the divide-and-
conquer process is demonstrated in Fig. 7. Since the uncertainty
surface for a B-spline surface is defined in R4, only the patches
with larger uncertainty that are not eliminated are shown.

4.4 Summary of NBP Search. The process of the NBP
search method is summarized in Fig. 8. The input of an NBP
search is a B-spline surface representation and its uncertainty co-
variance matrix from prior measurements. The output is the NBP.
The search process involves several steps.

1. Transform the B-spline surface’s uncertainty into a B-spline
tensor form, referred to as a higher-dimensional uncertainty
surface.

2. Subdivide the uncertainty surface into smaller patches and
extract the individual subdivided B-spline patches.

3. Compare the convex hull of these patches and eliminate
patches of which the largest uncertainty value is smaller than
the smallest uncertainty value of another patch.

4. Terminate the search process if both the parametric interval
length and the height of the uncertainty patches are smaller
than some given tolerance values. If not, keep iterating Steps
2–4.

4.5 Properties of the Individual NBP Search. This section
analyzes the global optimality and monotonous convergence of
the individual NBP search.

Property I (global optimality). The point found by the NBP
method is less than �l �any prior given tolerance� away from the

Fig. 6 A reconstructed surface and its uncertainty
Fig. 7 NBP search process in a B-spline surface
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lobally optimal point in the parametric domain, and less than �c
any prior given turbulence� from the uncertainty value of the
lobally optimal point.

Proof. Denote the true globally optimal point as 
* with un-
ertainty value �
*, and the point found by the NBP method as 


ith uncertainty value �
. We claim



 − 
*
 � �l and 
�
 − �
*
 � �c �21�

rom the NBP search introduced in Secs. 4.2 and 4.3, we see that
1� the NBP method searches the entire parametric domain, and
2� the maximum patch size where the next point is located is
elow the user specified tolerance �l and �c. It means that the
istance between the obtained NBP 
 and the true point 
* sat-
sfies 

−
*
��l, and the deviation between the uncertainties


 and �
* of the true point 
* satisfies 
�
−�
*
��c. There-
ore, the found point is globally optimal both on the parametric
omain and in the uncertainty value.

Such global optimality enables the maximal increase of det�Mk�
or each NBP search and leads to fast convergence of localization
f multiple sensing positions.

Property II (guaranteed monotonic convergence). The gradu-
lly decreasing parametric search interval and the subdivided un-
ertainty surface will converge to the true globally optimal point
onotonically.
Proof. Let m be the number of subdivisions, lm be the maximal

nterval length after m subdivisions, and hm be the height between
aximal uncertainty value and that of the found point along the

ncertainty height axis.
The parametric domain for the NBP search is monotonically

onvergent and the interval length can be represented as lm
2−m / �nu−3� where nu is the number of control points in the u
irection. A similar equation can be derived in the v direction. It is
lear that limm→� lm=0.

Let 
m be the convex hull of an uncertainty surface patch after
he mth subdivision. From the B-spline subdivision property, we
now that 
m�
m−1. As such, we have 0�hm�hm−1, and
imm→� hm /h0=0.

These properties hold true for surface patches because the con-
rol points of the subdivided patches are convex �and positive�
ombination of a subset of the original control points �21�.

4.6 NBP Based Sensing Localization. The NBP method is
mmediately applicable to dynamic sensing localization where a
ingle point needs to be determined to guide the subsequent sens-

Fig. 8 Flowch
ng. This has led to a new data acquisition and surface reconstruc-
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tion methodology, called dynamic sensing-and-modeling �23�.
This section thus focuses on the NBP method in offline sensing

planning where multiple sensing locations need to be determined.
Given a B-spline surface structure and the number of data

points k to be measured, we can determine multiple sensing loca-
tions as follows.

Step 1. Generate k design points on the domain and compute
�Pk

and Mk.
Step 2. Withdraw the ith point �i=1,2 , . . . ,k� and update the

surface uncertainty covariance and Fisher information matrices
with Eqs. �10� and �11�.

Step 3. Search for the next point with the NBP method.
Step 4. Update the surface uncertainty covariance and Fisher

information matrices by adding the found point obtained from
Step 3 with Eqs. �10� and �11�.

Step 5. Compute the increase of determinant with Eq. �14�.
Step 6. Repeat Steps 2–5 and record the maximal determinant

increase of Mk until all k design points are replaced.
Step 7. Repeat Steps 2–6 until the maximal determinant in-

crease of Mk is below a given tolerance.
The stopping criterion in Step 7 checks the maximal determi-

nant increase of Mk rather than its increase for each individual
sensing location. This has been found to be effective in bypassing
configurations of sensing locations in which individual sensing
locations are close to the optimal locations and lead to very minor
increases in det�Mk� while other sensing locations are far from
their optimal locations.

5 Experimental Validation
Experimental examples are presented below to demonstrate the

efficiency of the sensing localization method and the accuracy of
the resulting sensing locations.

To validate the efficiency of the developed method, we compare
it with other methods such as basic Fedorov exchange �18,19�,
simulated annealing �2�, interchange �16�, accelerated interchange
�20�, and a conjugate gradient method �5�. The accuracy compari-
son requires true global optimal locations. Since it is not easy to
find the globally optimal solution, we use a hybrid method to
produce the “true” optimal solution to validate the accuracy of our
algorithm. We combine the developed divide-and-conquer and ba-
sic Fedorov exchange algorithm. All four examples are tested on a
Dell Dimension DIM4700 with the dual Intel Pentium IV
2.8 GHz processors and 512 Mbyte RAM.

of NBP search
5.1 Example 1: A Benchmark Example. In Ref. �2�, the
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-spline surface model for a free-form surface is given as the
niform bicubic B-spline surface �6	6 control points� with k
360 data points to be taken. We define the experimental condi-

ions for various methods in Table 1. Note that the looser conver-
ence condition � det�Mk����=0.01 is selected for the random
earch methods such as basic Fedorov exchange and simulated
nnealing methods because they converge very slowly. Their com-
utational time is found to be still larger than the divide-and-
onquer based method, which uses � det�Mk����=0.0001.

In Table 1, Nc is the size of the candidate points from which
ach of the k sensing locations will be exchanged to identify one
ood sensing location, q is the number of exchanged points for
ach individual sensing location, a is the ratio of the remaining
oints after comparison, and �l, and �c are the domain and uncer-
ainty value tolerance. The resulting sensing locations of the 360

easurements are given in the parametric domain and they are
hown in Fig. 9.

The computational time and the determinant of the Fisher in-
ormation matrix det�Mk� are also compared in Table 2.

From Fig. 9 and Table 2, we can see the following.

• The basic Fedorov exchange and simulated annealing meth-
ods require longer time to converge and the results are not
as good as the NBP method.

• As with the application of basic Fedorov exchange method
on a discrete point-set domain, the interchange method also
converges slowly, and deviates much from the best solution.
However, the accelerate interchange converges faster than
the basic method, but as not fast as the NBP method.

• Even though the conjugate gradient converges very fast, its
solution is far from the optimal solution. This confirms that
its result is seriously biased by the initial values.

Table 1 Experimental conditions for various methods

Localization method Experimental conditions

Basic Fedorov
exchange

Nc=1000, ��=0.01

Simulate annealing q=1000, ��=0.01
Interchange Nc=10,000, ��=0.0001
Accelerated
interchange

Nc=10,000, ��=0.0001, q=180, a=0.9

Conjugate gradient ��=0.0001
Iterative NBP �INBP� �l,�c=0.0001, ��=0.0001
INBP and then basic

Fedorov exchange
�l,�c=0.0001, ��=0.0001, Nc=1000
Fig. 9 Sensing locations on
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• The divide-and-conquer based NBP not only converges
faster than all other methods but also gives the sensing dis-
tribution closest to the true optimal solution.

• The basic Fedorov exchange method converges rapidly if it
starts from the distribution generated by our divide-and-
conquer algorithm. It also confirms that the divide-and-
conquer method produces the near-optimal result. Moreover,
the benefits of the hybrid method do not justify the program-
ming effort required to implement it.

Therefore, the convex hull based divide-and-conquer method is
a very efficient and accurate method for sensing localization.

5.2 Example 2: Sensing Localization for Turbine Blade
Digitization. In this example, we use the CMM touch probe to
digitize the blade surface. The B-spline surface model is obtained
based on the initial surface reconstruction from the data acquired
through the Minolta Vivid 910 �Fig. 10�.

In Fig. 10, a blade surface is first scanned with the Minolta
scanner. We reconstructed a uniform B-spline surface, and finally
obtained the B-spline surface with 12	11 control points. Based
on the obtained B-spline model structure, we determined 12	11
sensing locations and took the 12	11 measurements on the blade
surface using a high-accuracy tactile point sensor. The results are
shown in Table 3 and Fig. 11.

Again, the NBP method runs much faster than all other methods
other than the gradient method. It also achieves better sensing
locations than all other methods.

5.3 Example 3: Sensing Localization in Dynamic Sensing.
This NBP based divide-and-conquer method can also facilitate
online sensing localization as in dynamic sensing-and-modeling
applications �23�. Since our method can deterministically find the

Table 2 det„Mk… and computational time

Localization method det�Mk� Time �s�

Basic Fedorov exchange −82.104 19,519.549
Simulated annealing −81.891 1,695.609

Interchange −86.160 9,561.078
Accelerated interchange −92.2491 525.453

Conjugate gradient −88.137 510.141
Iterative NBP −81.498 344.954

Iterative NBP and then basic
Fedorov exchange

−81.491 344.954+3.734
the parametric domain
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individual optimal sensing location required in the dynamic sens-
ing process, we only compare below our method against the basic
Fedorov method.

In a simulated example in Fig. 12, dense but incomplete �the
white area is the missing data area in Fig. 12�a� point-cloud data
�102,063 points� can be rapidly scanned with data uncertainty
�x=�y =�z=0.01, and then the initial surface can be recon-
structed. The reconstructed surface �Fig. 12�b�� and its uncertainty
is shown �the red ellipsoids representing the surface uncertainty in
�Fig. 12�c�� on a uniform bicubic B-spline surface �19	19 control
points�. The areas of larger uncertainty can also be seen, corre-
sponding to the incomplete data areas where additional measure-
ments are required.

With the developed sensing localization algorithm, additional
31 NBP points are sensed and the reconstructed surface is up-
dated. With the same experiment conditions as shown in Table 1,
the Fedorov exchange method and our NBP search method are
compared in Table 4.

As seen in Table 4, the dynamic procedure for the NBP algo-
rithm can lead to the optimized sensing locations more efficiently
and achieve a lower uncertainty surface, when compared to the
Fedorov exchange method.

n the parametric domain

Table 4 det„Mk… and computational time

Localization methods det�Mk� Computational time �s�

The Fedorov exchange 2366.8 48.04
The NBP 2368.3 19.28
Table 3 det„Mk… and computational time

Localization method det�Mk� Time �s�

Basic Fedorov exchange −435.40 4,549.36
Simulated annealing −434.62 2,267.14

Interchange −439.508 19,712.92
Accelerated interchange −443.09 772.27

Conjugate gradient −532.73 20.94
Iterative NBP −433.64 685.39

terative NBP and then basic
Fedorov exchange

−433.63 685.39+10.42
ig. 10 Blade surface and estimated B-spline surface
tructure
Fig. 11 Sensing locations o
tainty from incomplete points
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5.4 Example 4: Sensing Localization for Shiny Surface
igitization. A further example of using a touch probe to comple-
ent the optical scanner �Minolta� in a specular reflection area is

hown in Fig. 13. Due to the specular reflection from the shiny
urface part in Fig. 13�a� there are data missing in Fig. 13�c�. A
ynamic-sensing-and-modeling method was therefore developed
n Ref. �23� to dynamically determine the NBP, then drive the
ouch probe to the computed NBP and acquire the data, and to
pdate the surface model based on the acquired data. The process
s repeated until it converges.

In the dynamic sensing-and-modeling approach, the divide-and-
onquer based sensing localization yielded smaller surface uncer-
ainty and a more accurate surface than that through basic Fedorov
xchange with the same experimental condition shown in Table 1.
ote that before the fusion of touch probe points, the initial sur-

ace from the scanner has log det�Mk�=−6.8846	103.
From Table 5 and Fig. 14, we can see that the uncertainty of the

econstructed surface through the NBP method is also lower than
hat through the basic Fedorov exchange method.

ig. 13 Incomplete data in shiny surface through laser
canners

Table 5 log det„Mk… and computational time

Localization method Time �s� log det�Mk�

Fedorov exchange 193.97 −7.0547E+003
The NBP 70.78 −7.0717E+003

Fig. 14 Reconstructed

sensing-and-modeling
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6 Algorithm Efficiency
In this section, for the above examples, we plot the ratio of the

number of patches that cannot be discarded versus the total num-
ber of patches created after subdivisions in the best and worst
NBP search in Fig. 15. Therefore, this chart characterizes the ef-
ficiency of the divide-and-conquer method at each subdivision.
Note that in these four examples, each case involves many times
of NBP search for multiple locations. The best case refers to the
NBP search that converges faster than all other searches, i.e., one
that has the fewest number of cumulative subdivided patches. The
worse case refers to the NBP search with the longest search time.

As shown in Fig. 15, approximately more than 65% of the
subdivided patches can be eliminated in the subdivision process
for all 2198 �=360	4+31+132	5+67� NBPs in four examples
with control points ranging from 6	6 to 35	35, which explains
why the divide-and-conquer based sensing localization algorithm
is very efficient.

To obtain NBP with the same level accuracy as the divide-and-
conquer approach, we can also divide the whole domain into iden-
tical subareas on the parametric domain and find the same NBP by
exhaustively comparing their uncertainty of each subarea �here,
we refer to it as the exhaustive search method�.

In Fig. 16, w represents the number of cumulative not-
eliminated patches, s expresses the number of subdivided subareas
on the domain, and then log�w /s� shows the computation ratio of
the divide-and-conquer method to the exhaustive search method in
all four examples. From the computation ratio chart, we can see
that �w /s� exponentially decreases with the increase of subdivi-
sion times in all four examples. It means that the convex hull of
the uncertainty surface can be used to effectively eliminate low
uncertainty surface patches on the parametric domain and is ex-
ponentially more efficient than the simple exhaustive search.

7 Conclusion
This paper presents an efficient sensing localization method for

free-form surface digitization. The basic idea is to produce a de-
sirable distribution of sensing locations by iteratively finding the
next best sensing location. In each step, a divide-and-conquer
strategy is introduced to efficiently find the NBP.

The theoretical contribution of this approach lies in the trans-
formation of the B-spline surface’s uncertainty distribution into a

faces through dynamic
sur
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Fig. 15 Ratio of not-eliminated patches to the total subdivided patches
Fig. 16 Cumulative patches not eliminated at each subdivision level versus subdivision

times
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igher-dimensional uncertainty surface, expressed as a tensor
-spline form. As such, the convex hull and the subdivision prop-
rties of B-spline can be used for efficiently finding the NBP.
terative use of NBP leads to a good distribution of overall sensing
ocations.

Experimental study demonstrates that the NBP method finds
etter sensing locations faster than many existing methods tested
n this paper. The divide-and-conquer method for the NBP search
onverges exponentially faster than the simple exhaustive search.
ue to the efficiency of the NBP search, it has been successfully
sed in both offline sensing planning and online dynamic sensing
lanning.
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