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The recent advancement of 3D non-contact laser scanners enables fast measurement of
parts by generating a huge amount of coordinate data for a large surface area in a short
time. In contrast, traditional tactile probes in the coordinate measurement machines can
generate more accurate coordinate data points at a much slower pace. Therefore, the
combination of laser scanners and touch probes can potentially lead to more accurate,
faster, and denser measurements. In this paper, we develop a dynamic sensing-and-
modeling approach for integrating a tactile point sensor and an area laser scanner to
improve the measurement speed and quality. A part is first laser scanned to capture its
overall shape. It is then probed via a tactile sensor where the probing positions are
dynamically determined to reduce the measurement uncertainty based on a novel next-
best-point formulation. Technically, we use the Kalman filter to fuse laser-scanned point
cloud and tactile points and to incrementally update the surface model based on the
dynamically probed points. We solve the next-best-point problem by transforming the
B-spline surface’s uncertainty distribution into a higher dimensional uncertainty surface
so that the convex hull property of the B-spline surface can be utilized to dramatically
reduce the search speed and to guarantee the optimality of the resulting point. Three
examples in this paper demonstrate that the dynamic sensing-and-modeling effectively
integrates the area laser scanner and the point touch probe and leads to a significant
amount of measurement time saving (at least several times faster in all three cases). This
dynamic approach’s further benefits include reducing surface uncertainty due to the
maximum uncertainty control through the next-best-point sensing and improving surface
accuracy in surface reconstruction through the use of Kalman filter to account various
sensor noise. �DOI: 10.1115/1.2714585�

Keywords: dynamic shape sensing, reverse engineering, Kalman filter, B-spline surface,
sensor fusion, coordinate metrology
Introduction
The recent advancement of 3D non-contact laser sensors en-

bles fast measurement of parts by generating a huge amount of
oordinate data for a large surface area. For example, an area laser
canner, a laser-based 3D sensing device that can measure a sur-
ace area in one setup, can produce hundreds of thousands of data
oints in less than 1 min with accuracy on the order of a hun-
redth of a millimeter. Its rapid data acquisition rate and the con-
inuously improving measurement accuracy have led to the wide
doption of 3D laser sensors in automotive, aerospace, and con-
umer industries �1,2�. However, despite being a rapid sensing
ool, an area laser scanner is vulnerable in shiny surface regions
ue to the specular reflection, in parts of complex shape due to the
cclusion, and in high curvature area due to the large incidence
ngle and limited sensor resolution. Note that an area scanner is
specially susceptible to occlusion due to the large baseline dis-
ance between the energy beam source and the detector, which
equires the object surface to be in the line-of-sight to both the
ource and the detector �3�. Figures 1–3 demonstrate the poor data
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quality or missing data, due, respectively, to high curvature, oc-
clusion, and the shiny surface when an area laser scanner is used
to measure two parts.

On the other hand, conventional touch probes in coordinate
measuring machines �CMMs� enable more accurate measurement
of parts at a much slower speed. The touch probes can only gen-
erate coordinate points approximately at the speed of 60 points per
minute with accuracy ranging from hundreds of nanometers to
several micrometers. Although faster analog probes are also avail-
able, they are still much slower than optical area sensors. How-
ever, due to the contact mode and the small probe size of tactile
sensing, touch probes are not sensitive to surface reflection con-
ditions and able to produce more reliable results on the high cur-
vature areas.

Therefore, due to the complementary characteristics of area
laser scanners and point touch probes in sensing speed, coverage,
accuracy, accessibility, surface conditions, and surface geometry,
the integration of a laser scanner with a touch probe can poten-
tially dramatically improve the ways that parts are currently mea-
sured. An integrated multisensor coordinate measurement system
can benefit in measurement accuracy from touch probes, in mea-
surement speed from area laser sensors, and in part versatility
from the availability of multiple sensors.

In this paper, we term the integration of multiple sensors with
different dimensionalities in terms of sensor spatial coverage, such
as the integration of an area sensor with a point sensor, as dimen-

sionally heterogeneous sensor integration. This forms a contrast
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o prior multisensor integration wherein the emphasis is on how to
ntegrate multiple dimensionally homogeneous sensors �either
oint sensors alone or area sensors alone�. Even though the inte-
ration of area vision sensors and tactile probes has been explored
n the past, such integration tends to be cooperative where area
ensors provide approximate shape to enable the automatic plan-
ing for the point sensing. In our approach, we focus on competi-
ive integration where the area laser scanned point cloud and point
ensed data are fused according to their respective noise to reduce
he surface uncertainty. In addition, point sensing is used to im-
rove the coverage loss in area sensing.

More specifically, area scanning is conducted first to construct
he base surface. A next-best-point (NBP) problem is then formu-
ated to dynamically determine where the best point-sensing loca-
ion is to reduce the overall surface uncertainty. The newly sensed
oint is added to the earlier reconstructed surface through the
alman filter and the next best point-sensing location is again
etermined based on its uncertainty value in the updated surface.
he process continues until the overall surface uncertainty distri-
ution meets the specified value. The overall flowchart of the
oint- and area-sensor integration is shown in Fig. 4.

Figure 5 shows that, for a set of surfaces with the same rms
rrors, they are very different in shape due to the missing data.
urther, larger surface uncertainty can be observed on the missing
ata areas, indicating that additional data points are required to
mprove surface quality in these areas �see Fig. 5�e��. The surface
ncertainty distribution is thus utilized to determine where to ac-
uire additional points using point sensors in this paper.

In the dimensionally heterogeneous sensor integration process,
he amount of data from different sensors is asymmetric due to the
ifference in their sensing coverage domain. That is, the amount
f points scanned by an area laser scanner is much larger than that
rom a point sensor. Therefore, an effective means to process the

ig. 1 Inaccurate data on the feature edges by area scanners

ig. 2 Incomplete data caused by occlusion in area scanners

ig. 3 Incomplete data in shiny surface measurement through

rea scanners
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asymmetric amount of heterogeneous data is needed for such sen-
sor integration. In this paper, the Kalman filter is introduced to
dynamically update the shape with the point-probed data to avoid
reconstructing the whole shape from scratch when each time a
new measurement point is added. The technical contribution of
this paper includes the following:

• We extend the classical Kalman filter, a set of mathematical
equations for estimating the process state, to surface recon-
struction. It allows the incorporation of a priori information,
along with new measurement information, for the state �sur-
face� updating. Therefore, the large number of laser scanned
data points can be reduced to a compact prior surface rep-
resentation. This enables efficient surface updating by al-
lowing the tactile points to be dynamically and incremen-
tally added into the surface without reference to the laser
scanned data.

• We mathematically transform the uncertainty distribution of
a B-spline surface into a tensor B-spline form, which en-
ables the rapid and accurate computing of the surface point
with the largest uncertainty, hereinafter the next-best-point
(NBP). This forms the basis of our dynamic sensing-and-
modeling approach.

The remainder of this paper is organized as follows. Section 2
reviews prior work in multisensor coordinate metrology. Section 3
presents the theoretical formulation in using Kalman filter for dy-
namic surface reconstruction. Section 4 details the technique on
determining the NBP. Section 5 describes how to sense the dy-
namically determined optimal point and how to update the surface
with the sensed point. Section 6 presents the experimental results.
This paper concludes in Sec. 7.

2 Literature Review
Sensor planning for range sensors has been researched in the

past. Sensor planning �4�, including the next-best-view problem to
minimize the number of range views �5,6�, and the optimal setup
for area laser scanners �7�, has been explored. High-level control
of data acquisition is demonstrated in �8� based on the uncertainty
of a regression model. However, only simple super-ellipsoid
model is employed to represent the object. B-spline surface is
utilized to modeling the 3D free-form object and uncertainty
based viewpoint plan is proposed in �9�. However, in these ap-
proaches, only area range sensors are considered.

Inspection planning for tactile probes in CMM has been an
active research topic, wherein various methods are proposed to
shorten inspection time and to automate the inspection process
�10–12�. Among various inspection planning tasks, surface sam-

Fig. 4 A dynamic sensing-and-modeling approach for inte-
grating dimensionally heterogeneous sensors
Fig. 5 Reconstructed surface and uncertainty
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ling has also been studied to minimize the number of required
ampled points and to reduce the resulting uncertainty. In particu-
ar, uniform sampling pattern and ten-times ratio between the
umber of measured data and the number of model parameters are
ften adopted �13�. A few researchers have tried to optimize the
ample size based on user skills �14�, and to seek the optimal
ocations of sample points in �15,16�. Even though the sample size
nd locations are optimized to improve the reconstructed surface
uality and the inspection efficiency using probe sensors in a
MM, all these approaches use single tactile point sensors.
Despite the fact that multisensor sensors have been found co-

xisting in some advanced CMM systems such as OGP and Mahr
ystems, information automation is not yet available. Therefore,
ooperative sensor integration has been proposed to automate the
oordinate acquisition, in which vision systems are used to create
n approximate shape to guide the tactile sensing �17–19�. Re-
ently, vision and touch probe sensors are integrated to improve
oordinate acquisition speed �15,20�. Algorithms were also devel-
ped for estimating and reasoning unknown surface areas �21�. In
his paper, we use the competitive combination of a laser scanner
nd a touch probe to improve inspection speed and to reduce
easurement uncertainty.
In the computer vision community, a probabilistic surface
odel in combination with the Kalman filter has been proposed to

uild tensor parametric surface �22–24� and lines and planes �25�.
n our approach, we extend the underlying surface representation
rom single level to multilevel �26�. More importantly, we use the
alman filter to reduce the large number of scanned data into one

urface in an efficient mode so that the surface state can be effi-
iently updated without reference to the scanned data when addi-
ional sensed points are available. Further, we use Kalman filter to
ynamically, actively, and incrementally update the surface based
n the point-probe data.

Dynamic Surface Reconstruction With the Kalman
ilter
This section gives the mathematical basis for the dynamic sur-

ace reconstruction, including �1� B-spline surface representation,
nd �2� Kalman filter for surface reconstruction and its properties.
ere, the dynamic surface reconstruction refers to a surface re-

onstruction process in which the surface is dynamically con-
tructed or updated based on prior information and the new mea-
urement data.

3.1 B-spline Surface. The B-spline surface has been widely
sed in product design and manufacturing. Therefore, it is selected
o represent the surface reconstructed from the point-cloud.

A bi-cubic B-spline surface has the form

S�u,v� = �
i,j

n

Ni�u�Nj�v�Pij �1�

here N is B-spline shape function and Pij is the ijth control
oint. The equation can also be expressed in matrix form

S�u,v� = A�u,v�P �2�

here A�u ,v� is the B-spline shape function matrix, and P means
he collection of control points.

To model the surface from the point-cloud, most shape recon-
truction methods are based on least-squares fitting, and they do
ot explicitly consider data noise incurred during the measure-
ent process. It is often assumed the noise corrupting the data is

f zero mean. This has two immediate ramifications. First, recon-
tructing surfaces from measurement data would lead to inaccu-
ate surfaces if data uncertainty is not properly accounted for.
umerous studies have shown that least-squares estimates may be

ompletely perturbed when the data contains noise of different
ariances, or non-Gaussian �27�. Therefore, such single surface

epresentation without quality description is not sufficient for
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many subsequent applications. To account for data uncertainty
and to result in more robust surfaces, the Kalman filter is intro-
duced to produce the optimal estimate of the surface and its
uncertainty.

3.2 Kalman Filter. The Kalman filter was first proposed by
Kalman in 1960 �28�. It is a method to recursively estimate the
internal state of a system based on the observation of the system’s
external behaviors �29�. To do this, a state-space model needs to
be first set up to describe the system.

State-Space Model. A mechanical or electrical system can be
characterized by several finite variables, which are called the in-
ternal state. Usually, the internal state cannot be directly measured
but its external behavior can be sensed. The Kalman filter �29�
addresses the general problem of trying to recursively estimate the
state of a discrete-time controlled process that is governed by the
linear stochastic difference equation

xl = Cxl−1 + Bul−1 + wl−1 �3�

where xl and xl−1 are the states of the time step l and �l−1�,
respectively, C is the state transition matrix of the process from
previous time step �l−1� to the current step l, and ul−1 is the
system input of the time step �l−1�. Matrix B relates the system
input ul−1 and the state xl, and wl−1 is the associated independent,
white, and Gaussian noise.

Observations on the internal state can be modeled in the form

zl = Hxl + vl �4�

where zl is the external measurement of x at the lth time step, H is
the measure matrix relating the current state xl to the external
measurement zl, and vl is the associated measurement error, which
is again assumed to be independent, white, and Gaussian.

Kalman Gain. With the state-space model, Kalman filter opti-
mally estimates the internal state using the Kalman gain.

Let x̂l
− be the a priori state estimate at the step l with uncertainty

�xl
−, and x̂l be the a posteriori state estimate with uncertainty �xl.

We can estimate x̂l through a linear combination of x̂l
− and the

residual between the actual measurement zl and a measurement
prediction Hx̂l

− is given by

x̂l = x̂l
− + K�zl − Hx̂l

−� �5�

where K is the Kalman gain, which is determined by minimizing
the a posteriori uncertainty �xl �30�. Let �zl be the uncertainty of
measurement zl, the optimal Kalman gain K can be obtained by
�29�

K = �xl
−HT�H�xl

−HT + �zl�−1 �6�

From Eqs. �5� and �6�, we see that x̂l weighs more on x̂l
− when

�xl
−→0. Otherwise, x̂l weighs more on the residual between Hx̂l

−

and zl. Moreover, measurement uncertainty �zl is explicitly ac-
counted for to obtain the optimal state estimate.

Update Equations. The Kalman filter estimates the state by us-
ing a form of prediction and correction, which includes predictor
equations and corrector equations.

Predictor equations have the following form.

The a priori state prediction equation: x̂l
− = Cx̂l−1 + Bul−1

�7�

The a priori state uncertainty equation: �xl
− = C�xl−1CT + Q

�8�

where Q is the uncertainty covariance of process noise wl−1. When
l=1, the initial state estimate x̂0 and its uncertainty �x̂0 can be
given by prior information, which is able to integrate a priori
estimate of internal state.
Corrector equations have the following form.

JUNE 2007, Vol. 129 / 625

E license or copyright, see http://www.asme.org/terms/Terms_Use.cfm



w

T
u
a
p
t
r
w
u
I
m
d
s

m
w

w

s
n
i
s
t
�

=

T

w

S

I
a

t
w
c
a
m
w

s
a
a
fi

s

6

Downloa
Kalman gain: Kl = �xl
−HT�H�xl

−HT + �zl�−1 �9�

The estimate updating equation with measurement zl:

x̂l = x̂l
− + Kl�zl − Hx̂l

−� �10�

here Kl is the same as K in Eq. �5�.

The state uncertainty updating equation:�xl = �I − KlH��xl
−

�11�
he predictor and corrector equations form a basis for recursive
pdating. The predictor equations are to predict the a priori state
nd its uncertainty based on the previous state estimate. The a
riori state estimate is then corrected in the corrector equations by
he new measurement to obtain a posteriori state estimate. This
ecursive nature of Kalman filter is a very appealing feature,
hich makes it possible to apply newly measured data for state
pdating without requiring all previous data kept in storage �29�.
n addition, The Kalman filter combines all available measure-
ent data, plus prior knowledge about the system and measuring

evices, to produce an estimate of the desired internal state in
uch a manner that the error is minimized statistically �31�.

3.3 Kalman Filter for Surface Reconstruction. For one
easurement point z�Q on the surface with parameter �uz ,vz�,
e can get

z = A�uz,vz�P + � �12�

here � is measurement noise.
In the terminology of Kalman filter, the B-spline surface repre-

ents a linear system between the internal surface state and exter-
al observations. The collection of control points P constitutes the
nternal state of the object shape. The point-cloud measured from
urface forms the external observations of B-spline surface. Thus,
he measurement z is the measured surface point with uncertainty
z. A�uz ,vz� corresponds to the measure matrix H in Eq. �4�.
From the state-space model of surface fitting, we have x= P, z

z, ul−1 and wl−1=0, and the state transition matrix C= I.
The predictor equations of the Kalman filter changes to

x̂l
− = x̂l−1 = Pl−1 �13�

�xl
− = �xl−1 = �Pl−1 �14�

he corrector equations changes to

x̂l = Pl = Pl−1 + Kl�z − A�uz,vz�Pl−1� �15�

�Pl = �I − KlA�uz,vz���Pl−1 �16�

here Kl is the Kalman gain, which changes to

Kl = �Pl−1A�uz,vz�T�A�uz,vz��Pl−1A�uz,vz�T + �z�−1 �17�

ubstituting Kl, we get the new form of Eq. �16� ��30��

�Pl
−1 = �Pl−1

−1 + A�uz,vz�T��z�−1A�uz,vz� �18�

ncrementally fitting all the measurement points with the Eqs. �15�
nd �16�, we then obtain the uncertainty �P of control points P.

Further, we put forward the following two lemmas in the con-
ext of applying the Kalman filter for surface reconstruction. Here
e define the surface reconstruction in batch fitting mode as pro-

essing all available measured points and a priori surface estimate
t once to produce the surface, and define its incremental fitting
ode as iteratively updating the estimated surface one by one
ith measured data.
LEMMA 1. For a given set of measurements �zi� and the corre-

ponding noise �zi, the reconstructed surface, its control point Pn
nd its uncertainty covariance �Pn, can be obtained by fitting in
batch mode and it is equal to that obtained by incrementally

tting with Eqs. (15) and (16).
Proof. If all the measurements are available, the final recon-
tructed surface can be computed in the batch fitting mode for the

26 / Vol. 129, JUNE 2007
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Kalman filter by the following equations �the deducing process
can be seen in Appendix A�

Pn = ���P0�−1 + �
i=1

n

Ai
T��zi�−1Ai	−1���P0�−1P0

+ �
i=1

n

Ai
T��zi�−1zi	 �19�

�Pn = ���P0�−1 + �
i=1

n

Ai
T��zi�−1Ai	−1

�20�

where P0, �P0 is the initial estimate of surface and its uncertainty
estimate, Ai is the B-spline shape function matrix corresponding to
the measurement zi, �zi is the uncertainty of measurement zi.

LEMMA 2. Pn and �Pn are independent on the measurement
sequence of zi ,zj , �i� j�.

Proof. This can be easily seen from the batch processing Eqs.
�19� and �20�.

For the same measurements and parameterization, we can also
reconstruct a B-spline surface with same number of control points
by employing the weighted least-squares method. The recon-
structed surface can be represented by

Pn = ��
i=1

n

Ai
T��zi�−1Ai	−1

�
i=1

n

Ai
T��zi�−1zi �21�

Comparing Eqs. �19� and �21�, we can see that the two fitting
surfaces are actually equivalent when the initial estimate P0=0
and its uncertainty 
�P0
→� or more likely that P0 and �P0 are
computed directly from the weighted least-squares method. In
summary, the Kalman filter for surface reconstruction has the fol-
lowing properties:

• The resulting surface is independent of the sampling
sequence.

• The surface can be incrementally updated and the resulting
surface is equivalent to the batch reconstructed surface.

These two properties form the basis of our proposed dynamic
sensing-and-modeling approach. That is,

• The final surface is independent of the fitting sequence of
any two of sampled probing points zi ,zj , i� j, which en-
sures the dynamic and sequential sensing-and-modeling ap-
proach would lead to the same final surface and surface
uncertainty for the same set of measurement points, regard-
less of the order of the measurement.

• When sequentially sampling n number of probing points
zi , i=1, . . . ,n, the end reconstructed surface using Eqs. �15�
and �16� in incremental fashion is equivalent to that ob-
tained from Eqs. �19� and �20� in the batch processing
fashion.

Furthermore, the two fitting modes of Kalman filter will facili-
tate the dimensionally heterogeneous sensor integration. Suppose
m is the number of large amount of scanned data points, n is the
number of fitting surface’s control points. From Eqs. �15� and
�16�, it can be seen that the computational complexity for the
Kalman filter is O�n2� when fitting each single data point in in-
crementally fitting mode, and is O�m�n2� when fitting all of the
point-cloud. On the other hand, only O�m+n3� is required for the
Kalman filter in the batch processing mode to fit the whole point-
cloud �see Eqs. �19� and �20��. Therefore, the two modes have the
following significance in the dimensionally heterogeneous sensor
integration:

• The batch processing capability allows the large amount of

the laser-scanned point-cloud �m�n� to be processed effi-
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ciently at once �its computational complexity is O�m+n3��
as opposed to the large number of iterative use of incremen-
tal updating �its computational complexity is O�m�n2��.

• The incremental update allows any additional point probing
data to be dynamically and efficiently fused to the recon-
structed surface model without reference to the large amount
of laser data �its computational complexity is O�n2��.

Note that even though the Kalman filter has these advantages
nd can be used to achieve the robust estimate from measured
oint-cloud if the underlying model is known, the underlying
odel structure typically cannot be known previously. Inappropri-

te model selection tends to under-fit or over-fit noisy measure-
ent data. To circumvent the model selection issue, the multilevel
alman filter is proposed in �26� to determine the initial surface
odel estimation, and the Kalman filter can be used to fit to the

ew measurements based on the selected model.

Next-Best-Point Determination
Based on the above introduction of Kalman filter, we choose

he multilevel Kalman filter �26� to reconstruct the initial surface
rom available measurement points. Any additional sensing is
laced at lowest quality location �the largest uncertainty point� of
he initial reconstructed surface to improve the final reconstructed
urface quality. This section details how to dynamically determine
he NBP.

4.1 Next-Best-Point Problem Formulation. Due to sensor
oise and finite measured points of the surfaces, it is not possible
o find a reconstructed surface from those measurements to ex-
ctly represent the true surface. Since the internal state-control
oints �k of the reconstructed surface satisfy Gaussian probability
istribution, the uncertainty ��k constitutes a measure of infor-
ation contained in the Gaussian probability distribution Q��k�

escribing the parameter errors

Q��k� = ��k − �̂k�T��k��k − �̂k� �22�

iven a confidence level �, we can find a number Q��r� from the
istribution. In addition, the true model must lie in the hyper-
llipsoid defined by Q��r�. From Eq. �22�, it can be seen that
maller size of the ellipsoid means the reconstructed surface has
igher confidence and approximates the underlying true model
etter. Thus, reducing the size of hyper-ellipsoid means improving
he confidence or the quality of the reconstructed surface. Actu-
lly, the size of hyper-ellipsoid is only dependent of the recon-
tructed surface uncertainty ��k, and the determinate of the un-
ertainty covariance matrix ��k is proportional to the square of
he volume of the hyper-ellipsoid �8,15�.

Therefore, the next-best-point �NBP� problem can be formu-
ated as: finding a next optimal point to maximally reduce the

eterminant of uncertainty covariance matrix ��̃k �denoted as

et���̃k��.
Let the optimal point be p with parameter �uzp

,vzp
�, and uncer-

ainty be �zp. For the single level Kalman filter

���̃k�−1 = ���k�−1 + �A�uzp
,vzp

��T��zp�−1A�uzp
,vzp

�

= ���k�−1�I + ��k�A�uzp
,vzp

��T��zp�−1A�uzp
,vzp

��

�23�

here A�uzp
,vzp

� is the B-spline shape function matrix. Hence

��̃k = ��k�I + ��k�A�uz ,vz ��T��zp�−1A�uz ,vz ��−1 �24�

p p p p
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det���̃k� = det���k�/det��I + ��k�A�uzp
,vzp

��T��zp�−1A�uzp
,vzp

���

�25�

Because A�uzp
,vzp

� is only one row matrix and �zp is a value, I
+��k�A�uzp

,vzp
��T��zp�−1A�uzp

,vzp
� has only one non-unitary ei-

genvalue 1+A�uzp
,vzp

���k�A�uzp
,vzp

��T��zp�−1 �8�.

det���̃k� = det���k�/�1 + A�uzp
,vzp

���k�A�uzp
,vzp

��T��zp�−1�

�26�
From Eq. �26�, we can see that

min�det���̃k�� � max�A�uzp
,vzp

���k�A�uzp
,vzp

��T� �27�

Thus, the NBP problem can be formulated as finding an optimal
point on the reconstructed B-spline surface with maximal uncer-
tainty. It is clear that the NBP problem is a global optimization
problem.

To our best knowledge, until now there is no efficient determin-
istic solution to solve such a general problem. The Fedorov ex-
change method is often used in the random optimization sense to
find the optimal point �15,32�, but the global optimal point cannot
be guaranteed to be found since the point is randomly sampled on
the domain.

Fortunately, B-spline has many unique geometric properties
such as continuity, local modification, and strong convex hull
properties �33�, which are very beneficial in B-spline curve/
surface boundary box computing, intersection algorithm, and
rapid test of geometry interference. We will show in the section
below that the uncertainty of B-spline curve/surface can be repre-
sented in a tensor B-spline form and therefore a convex hull based
NBP searching method is presented.

To help illustrate the basic NBP searching approach, we intro-
duce it in the context of reconstructing a B-spline curve.

4.2 Geometric Interpretations of the Uncertainty of a Re-
constructed B-Spline Curve. Assuming a reconstructed B-spline
curve with control points Pn and uncertainty covariance matrix
�Pn. The point p with parameter u on the B-spline curve has the
uncertainty

�p = A�u��Pn�A�u��T �28�

where A�u� is the B-spline shape function matrix. Equation �28�
can also be written as

�p = A�u��Pn�A�v��T �v = u� �29�

Letting S�u ,v�=A�u��Pn�A�v��T, we can see that

• S�u ,v� is actually a B-spline surface defined by uncertainty
matrix �Pn �here we call S�u ,v� an uncertainty surface�.

• The distribution of the uncertainty of the B-spline curve
p�u� over u forms a space curve Cp on S�u ,v� corresponding
to a pcurve �v=u ,u� �0,1�� in the parametric domain �see
Fig. 6�. That is, the uncertainty value of curve point p�u� is
�p=S�u ,u�.

Thus, the problem of finding NBP with maximal uncertainty is
equivalent to finding the highest point on the space curve Cp on

Fig. 6 Geometric interpretation of the uncertainty of a B-spline
curve
S�u ,v�. We can find the highest point in a B-spline surface using
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he geometry property such as strong convex hull property of
-spline. This new insight forms the basis of our novel geometric
lgorithm for the NBP determination.

4.3 Convex Hull Property of B-Spline Curve Uncertainty.
ne important geometric property for B-spline curve/surface is

he strong convex hull property, which means that the B-spline
urve is completely enclosed in the convex hull defined by its
ontrol points.

As shown in Fig. 7, a cubic B-spline curve is defined by four
ontrol points, and the B-spline curve is completely enclosed in
he convex hull. The B-spline surface has the same strong convex
ull property since it is a tensor product scheme of B-spline curve
Fig. 8�. Thus, the B-spline surface S�u ,v� is in the convex hull
efined by the elements of uncertainty covariance matrix �Pn.
As we know, the B-spline curve’s uncertainty is a space curve

n the B-spline surface S�u ,v�. Therefore, the B-spline curve un-
ertainty is fully contained in the convex hull of the B-spline
urface S�u ,v�, and each B-spline curve segment’s uncertainty is
n the convex hull of the elements of covariance matrix of defin-
ng the curve segment. The strong convex hull property can be
mployed to compare the uncertainty of the two curve segments.

Thus, we have the following lemma.
LEMMA 3. Let Cseg 1 and Cseg 2 be the two B-spline curve seg-

ents with uncertainty matrix of control points as �PCseg 1
and

PCseg 2
. If maxij��PCseg 1

�ij �minij��PCseg 2
�ij, then the uncer-

ainty of any point on the curve segment Cseg 1 is no greater than
hat of any point on the curve segment Cseg 2.

As shown in Fig. 9, Cseg 1 and Cseg 2 are the two B-spline curve
egments with respective uncertainties �PCseg 1

and �PCseg 2
. If

axij��PCseg 1
�ij �minij��PCseg 2

�ij, then the uncertainty of any

Fig. 7 B-spline curve and its convex hull
Fig. 8 B-spline surface and its convex hull
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point p1 on the curve segment Cseg 1 is no greater than that of any
point p2. The conclusion can be easily obtained from the convex
hull property of B-spline curve uncertainty �detailed proof can be
seen in Appendix B�.

4.4 Convex Hull-Based Next-Best-Point Determination.
Based on the analysis of B-spline curve uncertainty property, a
convex hull-based NBP determination method is proposed based
on a divide-and-conquer strategy. The core idea is �1� to discard
�filter� the curve segments of lower uncertainty through the con-
vex hull property of the uncertainty surface, and �2� to further
subdivide each B-spline curve segment into more segments where
the curve cannot be discarded.

As shown in Fig. 10, the uncertainty surface has only one sur-
face patch. To find the exact point on the B-spline curve with
maximal uncertainty, subdivision is performed on the uncertainty
surface patch and the corresponding B-spline curve segment.
Thus, four subdivided uncertainty surface patches and two
B-spline curve segments can be obtained. Among the four
patches, only two surface patches and the corresponding subdi-
vided B-spline curve segment uncertainty need to be extracted. If
we repeat the subdivision, extraction, and discarding process, the
subdivided curve segment finally converges to the optimal point

Fig. 10 Uncertainty surface subdivision and extraction

Fig. 9 Uncertainty comparison of two B-spline curve
segments
Fig. 11 An example NBP computing process
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ithin a user-specified tolerance 	, and thus the corresponding
ncertainty surface converges to the uncertainty of optimal point.
igure 11 details such an example NBP computing process on a
-spline curve.
As described, the B-spline surface is a tensor product scheme of

-spline curves. The uncertainty of B-spline surface has the same
roperties such as convex hull and subdivision property. Thus, a
onvex hull based optimal point location procedure can be easily
xtended to find the optimal point on the B-spline surface. The
ncertainty surface defined by control point’s covariance is two
imensional for a B-spline curve. The uncertainty “surface” cor-
esponding to the B-spline surface will be in R4.

For example, for a given reconstructed surface and its uncer-
ainty �Fig. 12�, and the threshold of maximal knot interval length
kl=1.0�10−6 �the surface domain is �0,1�� �0,1��. Because of
he uncertainty surface for a B-spline surface is defined in R4, only
he surface patches not filtered out are shown in the following
ptimal point searching process.

From Fig. 13, we can see that the convex hull-based NBP
ethod has the following advantages when compared with the
edorov exchange method:

• The obtained NBP is guaranteed to be less than 	 �any prior
given tolerance� from the true globally optimal point.

• Multiple optimal solutions can be obtained if there are more
than one point that has the same uncertainty on the B-spline
curve/surface.

These two characteristics enable efficient NBP computing to
upport the overall dynamic sensing-and-modeling approach.

Fig. 12 A reconstructed surface and its uncertainty
Fig. 13 NBP search process in a B-spline surface
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5 Dynamic NBP Sensing and Incremental Surface
Update

Given the computed NBP, it can then be sensed, and the recon-
structed surface can be updated. Then the next optimal point can
be determined, sensed, and the surface can then be updated. These
steps constitute a dynamic process to achieve a high quality sur-
face, as shown in Fig. 4. How to sense the next optimal point, how
to update the fitting surface with sensed points, and when to ter-
minate the procedure are described in this section.

5.1 Dynamic NBP Sensing. After the next point to be sensed
is found through the convex hull-based optimal point determina-
tion method, the optimal point needs to be transformed from de-
sign coordinate system �DCS� to the measurement coordinate sys-
tem �MCS� as the next sensing location on the physical part. In
DCS, the point-cloud is modeled and used to reconstruct surface.
The MCS is the coordinate system where physical part is sensed
by the CMM probe.

The transformation can be determined by registrating the key
features such as the attached spheres or planes. Then the actual
estimate position in MCS can be computed through the transfor-
mation. With the transformed position, a touch probe can be
driven to the nearest location of the target point and the actual
point can be probed on the physical part.

5.2 Incremental Surface Update. With the sensed point�s�
and the knowledge on the point sensor uncertainty, the surface
needs to be rapidly updated to re-evaluate the surface and to de-
termine the next optimal point. The Kalman filter is employed to
update the reconstructed surface in an incremental fashion.

For single level Kalman filter, the updated surface can be com-
puted using Eqs. �15� and �16� directly. The incremental fashion
means that the end reconstructed surface can be obtained in real-
time without reconstructing the whole surface from scratch. As
described in Sec. 3.3, the incremental updating of the Kalman
filter is very efficient even in the case of large amount of laser
scanner data.

5.3 Terminating Criterion. In the dynamic sensing-and-
modeling framework, there is a need to determine how many
points need to be sensed to achieve the desired quality surface.
Traditionally, the number of sampled points is required to be ten
times the number of parameters in the model �13�. Since the dy-
namic sensing-and-modeling procedure works in the iterative
fashion, we essentially answer the question as to when to stop
further point sensing.

In this paper, several terminating criteria are used. Assuming
the model has been properly reconstructed, a terminate criterion is
suggested based on the largest uncertainty value on the surface.
That is, given the maximal surface uncertainty threshold 
us, the
terminating criterion of uncertainty can be defined as follows:
checking if the maximal surface uncertainty satisfies ��
us. If
��
us, the dynamic sensing-and-modeling procedure would be
terminated. Otherwise the process repeats until the maximal un-
certainty is below the specified uncertainty threshold 
us. Herein
�1� the maximal uncertainty can be obtained from the convex
hull-based optimal point determination algorithm, �2� uncertainty
threshold 
us can be taken as the average uncertainty value of
sampled low uncertainty points to make the surface uncertainty
uniformly distributed, �3� to compute the average value of low
uncertainty points on the surface, we uniformly sample N points
and view the uncertainty of each point as intensity, and extract the
points with low “intensity” through isodata algorithm developed
by Ridler and Calvard �34�.

6 Experimental Implementation
Three examples are presented below to validate the dynamic

sensing-and-modeling procedure. The first example is a synthetic

surface and it shows how the large uncertainty of reconstructed
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urface caused by missing data in laser scanning can be reduced to
chieve higher quality surface. The other two examples are based
n the measurement of two physical parts using Minolta Vivid
10 �Accuracy: X : ±0.22 mm, Y : ±0.16 mm, z : ±0.10 mm;
orking distance: 40 to 500 mm; Field of view: 0.6 to 1.2 m;
easurement speed �Fine mode�: one scan/2.5 s� and Mitutoyo
MM BH303 �Travel distance: 304.8 mm�304.8 mm
304.8 mm�. They illustrate how dynamic sensing can be used to

mprove the area measurement of surface impaired by occlusion,
hiny reflection, or high curvature areas such as feature edges.

6.1 Examples. In Fig. 14, 1�106 data points �Fig. 14�b�� are
niformly sampled from a known B-spline surface �7�7 control
oints� �Fig. 14�a�� and are added to the Gaussian noise �variance
zx=�zy =�zz=0.01�. In the noisy data, only 102,063 data points

Fig. 14�c�� are then selected to simulate the measurement with
ata missing on the surface.

First, we assume the model is not known. The multilevel Kal-
an filter is applied to reconstruct the surface model. According

o the proposed model selection criteria in �26�, the five-level
-spline surface is reconstructed with 19�19 control points as

hown in Fig. 15.
Given the surface’s maximum uncertainty threshold 
us

0.0012, which can be the average value of uniformly sampled
oints’ uncertainty, the dynamic sensing-and-modeling procedure
s employed to determine the optimal CMM sensing points �as-
uming Gaussian noise �zx=�zy =�zz=0.0001� to reduce the sur-
ace uncertainty.

The two actual examples shown in the introduction section are
lso used to demonstrate the dynamic sensing-and-modeling ap-
roach. Since our current experimental setup does not allow pro-
rammable CMM sampling, only limited points are probed at the
urface area whereby there is missing information during laser
canning. With those additional measured points, a dynamic pro-
edure is applied to select the optimal points and incrementally
pdate the surface.

To measure the nozzle part �83 mm�203 mm�108 mm�

Fig. 14 Sampled incomplete data point-cloud

ig. 15 Reconstructed surface and its uncertainty before and

fter dynamic update
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shown in Figure 2, a 3D laser scanner �Minolta VIVID 910� is
used to scan the whole part surface with total 12 range views. One
airfoil surface can be completely covered by laser scanning and
the other airfoil surface has incomplete coverage from laser scan-
ning due to occlusion �Fig. 2�. In Fig. 3, the mechanical part
�63.5 mm�58.8 mm�34.9 mm� surface is shiny, when project-
ing the laser on the shiny surface, very little diffuse light can be
returned, especially in the high curvature area; consequently, there
is a lack of laser scanned data in the those areas.

As processed for the simulation surface in Fig. 15, the initial
surface is first reconstructed with the multilevel Kalman filter
from scanned point-cloud as the base surface, and the maximum
uncertainty threshold in these two parts can be estimated by
0.000434 and 0.000885. The dynamic sensing-and-modeling pro-
cedure is then used to modeling the surface based on shape un-
certainty as shown in Figs. 16 and 17.

6.2 Validation Criteria. To further validate the proposed dy-
namic sensing and modeling approach, we now compare the effi-
ciency and final reconstructed surface accuracy. The measurement
time and modeling surface accuracy computation criteria are
given as follows.

Measurement Efficiency

Single sensor measurement time. In order to quantify the time
saving of multisensor inspection, a two-criteria comparison is
made between the multisensor inspection and the single tactile
probe inspection since tactile sensing in CMM is still the preva-
lent coordinate measurement tool. The first criterion is that the

Fig. 16 Reconstructed surface and its uncertainty before and
after dynamic update

Fig. 17 Reconstructed surface and its uncertainty before and

after dynamic update
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umber of measured points should be ten times the number of
arameters in the model �13� �Criterion I�. The second criterion is
ased on the fact the uncertainty is inversely proportional to the
umber of points N �35� and the surface uncertainty is propor-
ional to the uncertainty of measurement �see the weighted least
quares in Appendix A� �Criterion II�, which is denoted by

�U �
�z

N
�30�

ith these two criteria, the time of single touch probe sensing to
roduce the required number of measurement points can be com-
ared with the combined time of 3D laser scanning and dynamic
MM probing.

Measurement speed estimate. To estimate the time for the syn-
hetic surface, we assume the laser 3D scanner scanning speed is
0,000 points per second �1�, and one point per second �36� for
MM probe.
In the two actual parts measuring process, the actual scanning

peed of the whole part is about 2.117 min for the Minolta scan-
er with six views for each part. To scan enough points for nozzle
irfoil to reduce occlude area, an additional six views are used for
canner to scan the reversal airfoil part. Again, we assume touch
robe senses the parts at the speed of one point per second.

Surface Accuracy. To validate the final surface quality, we use
he root mean square �RMS� error distance to check the recon-
tructed surface f accuracy

RMS =
��

ij=1

M,N

�d�pij
f ,pij

g ��2

MN
�31�

here pij
f is the ijth uniformly sampled point on the reconstructed

urface f , pij
g is the ijth projected point of pij

f to the nominal
urface g, d�pij

f , pij
g � is the distance between the point pij

f and its
rojected point pij

g on the surface g, and M and N are the numbers
f sampled points along u ,v directions on the parametric domain
here, M =N=50�.

In practice, the actual surface may not be known. A large num-
er of CMM probing points can be sampled as the reference
oints on the actual surface. The RMS can than be obtained by

RMS =
��

i=1

N

�d�pi
s,pi

f��2

N
�32�

here pi
s is the sampled point using CMM probe, N is the number

f

Table 1 Measurem

Sensing method N

Simulation
surface

3D laser scanner and
CMM

CMM Criterion I
CMM Criterion II

Shiny part 3D laser scanner and
CMM

CMM Criterion I
CMM Criterion II

Nozzle part
�considering two

surfaces�

3D laser scanner and
CMM

CMM Criterion I �
CMM Criterion II
f those sampled points. pi is the projected point to the recon-
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structed surface f , and d�pi
s , pi

f� is the distance between pi
s and pi

f.
For the same data points, we can also employ least-squares to

fit a surface and compare RMS error between the reconstructed
surface and the nominal surface. This would give us a perspective
of the surface accuracy using the Kalman filter and the simple
least-squares method.

6.3 Comparison. Based on above criteria, we examine the
performance of the dynamic sensing and modeling in terms of
measurement time, algorithm efficiency, and final reconstructed
surface accuracy.

Measurement Time Comparison for Sensors. The two criterions
are used to compare the measurement speed using single tactile
probe sensing and using the integration of the two sensors.

From Table 1 , we can see thatdynamic integration of the 3D
laser scanner and CMM leads to much faster measurement than
single tactile probe sensing, at least several times (some times 100
times) better.

Algorithm Efficiency Comparison. For the three examples, a
comparison is also made between the proposed convex hull-based
NBP computing approach and the traditional Fedorov exchange
method on a computer �Dell™ Dimension DIM4700� with two
Intel Pentium® IV 2.8 GHz processors and 512 MB RAM.

In Table 2, in average, the NBP computing takes more time for
the Fedorov exchange to search 10,000 random points to find an
“optimal” point that is comparable to the convex hull-based NBP
computing method. We believe our geometric convex hull-based
NBP method can be further optimized to achieve real-time speed,

Table 2 Computational time comparison of NBP algorithms

Part Fedorov exchange �s� Convex hull �s�

Simulation surface 4.35545 1.98181
Shiny part 6.92026 6.03249
Nozzle part 5.02865 4.38437

Table 3 Initial surface computing time with the Kalman filter in
different modes

Part

Incremental
updating
mode �s�

Batch
fitting

mode �s�

Simulation surface
�102,063 points�

15,472.75 76.703027

Shiny part�74,675 points� 11,641.68 92.548003
Nozzle part�21,763 points� 1076.72 24.826996

t time comparison

ber of measured points Estimated time �min�

102,063+31 0.68

9�19�10=3610 60.1
,063/100+31=1052 17.5

74,675+67 3.20

5�35�10=12250 204.166
,675/100+67=814 13.06

21,763�2+38 2.117�2+0.63=4.867

19�10��2=13,300 221.67
63�2/100+38=785 7.888
en

um

1
102

3
74

35�
21,7
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hich will be explored in our future work.
In addition, it is efficient to use the Kalman filter to estimate the

nitial surface from scanned point cloud in the batch fitting mode
nd to update the surface with one NBP point in the incremental
pdating mode.

As compared in Table 3, the initial surface with the Kalman
lter in the batch fitting mode leads to much higher efficiency,
specially when the number of scanned data points is very large.

Once the initial surface is obtained, it can be easily seen (Table
) that the Kalman filter in the incrementally updating mode ex-
ibits the significant efficiency in reconstructing surface with only
ne single sensing point, and can take place in real time.

Accuracy Comparison Between the Kalman Filter and Simple
east-Squares. The simple least-squares �weight is not considered

n the fitting process� is a common surface reconstruction method.
ere we use the simple least-squares method to validate the re-

onstructed surface accuracy of dynamic sensing-and-modeling
pproach.

From Fig. 18, it can be seen that

• The quality (smoothness and RMS) of reconstructed surface
has improved when additional points are added through ei-
ther Kalman filter or least-squares method.

• The reconstructed surface through the Kalman filter is
smoother and more accurate than that of a simple least-
squares method.

The two actual physical parts also show the same two charac-
eristics. Due to the actual surface geometry is unknown, addi-
ional CMM probing points are sampled to compare the fitting
ccuracy.

As compared in Figs. 19 and 20, we can see that the recon-
tructed surface quality characterized by RMS error improves
ith additional dynamic CMM probing points. The resulting sur-

ace is more accurate than that with the simple least squares
ethod.

able 4 Dynamic surface updating time with one single sens-
ng point

Part

Reconstructing
surface from
scratch with

least-squares �s�

Incremental
updating with
the Kalman

filter �s�

Simulation surface 7.717999 0.003032
Shiny part 19.172001 0.025983
Nozzle part 5.702999 0.009895

ig. 18 Accuracy comparison between reconstructed sur-

aces from the Kalman filter and least-squares
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Accuracy Comparison Between Dynamic Sensing-and-
Modeling and Statically Pre-planned Sensing and Then Post-
sensing Reconstruction Approach. Based on the initial surface and
uncertainty estimated from scanned point cloud with area scanner,
one way is to statically pre-plan all the measurement points’ loca-
tions and then sense these points on the physical surface. The
surface can them be reconstructed from the initial surface and
these additional sensed points. Another way is to dynamically
determine sensing locations and update the surface through the
dynamic sensing-and-modeling approach as developed in this
paper.

In Table 5, It can be seen that the final surface from dynamic
sensing-and-modeling is more accurate than that from statically
pre-planned sensing and then post-sensing reconstruction method
for the same number of additional probed points, even though the
pre-planned points are determined by the exact NBP finding
method—Convex hull-based optimal point determination method
presented in this paper.

In fact, due to the fact that the estimated surface cannot com-
pletely reflect the true shape in the missing data areas �see Fig. 5�,
the sensing locations may be away from the true optimal points on
the physical surface, which tends to make the reconstructed sur-
face deviate from the true surface. Unlike the statically pre-
planned sensing and then post-sensing reconstruction method, dy-
namic sensing-and-modeling can facilitate the reconstructed
surface gradually approximating the actual surface and provide a
more accurate estimate of the sensing point, which again make the
reconstructed surface approximate better to the physical surface.

7 Conclusion
This paper presents a dynamic sensing-and-modeling approach

for integrating an area laser scanner with a tactile point probe to
improve sensing speed and to reduce measurement uncertainty.
The basic idea is to measure the object with area scanning first,

Fig. 19 Accuracy comparison between reconstructed sur-
faces from the Kalman filter and least-squares

Fig. 20 Accuracy comparison between reconstructed sur-

faces from the Kalman filter and least-squares
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ollowed by point probing at the point of highest uncertainty in
he reconstructed surface from scanned data. The surface is dy-
amically updated with the probed data and the next best probing
oint is determined based on the updated surface model. In this
rocess, the surface uncertainty is dynamically computed to find
he NBP until the shape uncertainty meets certain criteria.

The technical core of this dynamic sensing-and-modeling ap-
roach is the use of the Kalman filter for surface reconstruction
nd a novel efficient method to compute maximal uncertainty in
he reconstructed surface. The Kalman filter is used to combine a
arge number of laser-scanned data and a smaller set of tactile
oints into one surface. It allows the incremental update of the
urface model when additional sensed points are available, as op-
osed to reconstructing the surface from scratch. We solve the
ext-best-point problem by transforming the B-spline surface’s
ncertainty distribution into a higher dimensional uncertainty sur-
ace so that the convex hull property of the B-spline surface can
e utilized to dramatically reduce the search speed and to guaran-
ee the optimality of the resulting point.

Experimental study further demonstrates the following:

1. The dynamic integration of two sensors is more efficient
than single sensor sensing in order to obtain the same quality
surface.

2. The different fitting modes of the Kalman filter can be effi-
ciently employed in initial surface estimate from large
amount of scanned pointcloud and in the dynamic sensing-
and-modeling procedure.

3. The reconstructed surface quality is improved due to the
additional optimally and dynamically sensed points, and the
reconstructed surface is more accurate than that of simple
least-squares.

4. The reconstructed surface through dynamic sensing and
modeling approximates better to the actual surface than that
with statically pre-planned then post-sensing and reconstruc-
tion method.

cknowledgment
This work was supported in part by the U.S. National Science

oundation Award No. 0529165.

ppendix A
In this appendix, the Kalman filter and the weighted least-

quares method are compared in surface reconstruction.
Let n be the number of measured points, P0 be the initial esti-
ate, K1 be the Kalman gain when fitting the point z1 into the
-spline surface, and A1 be B-spline shape function matrix.
The internal state estimate can be obtained by

P1 = P0 + K1�z1 − A1P0� �A1�

Table 5 Statically pre-planned sensing and th
sensing-and-modeling

Part Optimal sensing points determin

Simulation
surface

Statically
pre-plan

Fedorov ex
Convex hull-ba

Dynamic sensing and mod

Shiny part Statically
pre-plan

Fedorov ex
Convex hull-ba

Dynamic sensing and mod

Nozzle part Statically
pre-plan

Fedorov ex
Convex hull-ba

Dynamic sensing and mod
he equation can also be written as
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P1 = �I − K1A1�P0 + K1z1 �A2�

From Eq. �A2�, we can further infer P2 as

P2 = �I − K2A2��I − K1A1�P0 + �I − K2A2�K1z1 + K2z2 �A3�

After all the measurements are fused, the end state estimate Pn
can be denoted by

Pn = 
i=1

n

�I − KiAi�P0 + 
i=2

n

�I − KiAi�K1z1 + ¯ + Knzn �A4�

From the uncertainty update equation, we can get

�I − KrAr��Pr−1 = �Pr �A5�

and


i=r

n

�I − KrAr��Pr−1 = �Pn �A6�

Multiplying Eq. �A6� with the matrix ��Pr−1�−1, we can get


i=r

n

�I − KrAr� = �Pn��Pr−1�−1 �A7�

Substituting Eq. �A7� into Eq. �A4�, we get the end state estimate
Pn as

Pn = �Pn��P0�−1P0 + �Pn��P1�−1K1z1 + ¯ + �Pn��Pn�−1Knzn

�A8�

From the uncertainty updating Eq. �18� of the Kalman filter, we
can obtain the state uncertainty covariance by

��Pr�−1 = ��Pr−1�−1 + Ar
T��zr�−1Ar �A9�

Multiplying the matrix Krzr, we can get

��Pr�−1Krzr = ���Pr−1�−1 + Ar
T��zr�−1Ar��Pr−1Ar

T��zr

+ Ar�Pr−1Ar
T�−1zr �A10�

��Pr�−1Krzr = Ar
T��zr�−1��zr + Ar�Pr−1Ar

T���zr + Ar�Pr−1Ar
T�−1zr

�A11�

��Pr�−1Krzr = Ar
T��zr�−1zr �A12�

Substituting Eq. �A12� into Eq. �A8�, we get the end state estimate
Pn as

Pn = �Pn���P0�−1P0 + �
i=1

n

Ai
T��zi�−1zi	 �A13�

post-sensing reconstruction versus dynamic

method
Number of additional

measure points RMS

nge 31 0.059472
method 31 0.055860
g 31 0.049778

nge 67 0.342901
method 67 0.327779
g 67 0.327104

nge 38 0.212925
method 38 0.184523
g 38 0.180986
en

ing

cha
sed
elin

cha
sed
elin

cha
sed
elin
From Eq. �A9�, we can calculate the end state uncertainty by
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��Pn�−1 = ��P0�−1 + �
i=1

n

Ai
T��zi�−1Ai �A14�

ubstituting Eq. �A14� into Eq. �A13�, we can get the end state
stimate Pn as

Pn = ���P0�−1 + �
i=1

n

Ai
T��zi�−1Ai	−1���P0�−1P0

+ �
i=1

n

Ai
T��zi�−1zi	 �A15�

rom Eq. �A15�, we can conclude that �1� the end state estimate of
he Kalman filter is independent of the fusion sequence of the
oint zi, and zj and �2� the final state estimate of the Kalman filter
an be obtained in the batch processing mode with Eq. �A15�.

The weighted least-squares method is also often used to recon-
truct the surface from the measured points in the statistical opti-
al sense. The optimal object function f�Pn� can be defined as

min f�Pn� = �
i=1

n
�zi − AiPn�2

�zi
�A16�

ifferentiating f�Pn� against Pn, we can get

�f

�Pn
= �

i=1

n
Ai

T�zi − AiPn�
�zi

= �
i=1

n

Ai
T��zi�−1zi − �

i=1

n

Ai
T��zi�−1AiPn

�A17�

etting �f /�Pn=0, the optimal value can be calculated by

Pn = ��
i=1

n

Ai
T��zi�−1Ai�−1

�
i=1

n

Ai
T��zi�−1zi �A18�

f all the measure points have the same uncertainty �zi=�zj ,
� j, the end estimate of surface control points Pn has the same
quation of general least-squares

Pn = ��
i=1

n

Ai
TAi�−1

�
i=1

n

Ai
Tzi = �ATA�−1AZ �A19�

here A is the matrix form of Ai , i=1, . . . ,n, Z is the matrix form
f zi , i=1, . . .n. A and Z can be written as

A = �A1

]

An
� Z = �z1

]

zn
� �A20�

omparing the end estimate of the Kalman filter �see Eq. �A15��
nd the weighted least-squares �see Eq. �A18��, we can see that
he Kalman filter equals to the weighted least-squares when the
nitial estimate P0=0 and its uncertainty 
�P0
→� or when P0
nd �P0 are computed directly from measured points using the
eighted least-squares method.

ppendix B
LEMMA. Let Cseg1 and Cseg2 be the two B-spline curve segments

ith uncertainty �PCseg1
and �PCseg2

. If maxij��PCseg1
�ij

minij��PCseg2
�ij, the uncertainty of any point on the curve seg-

ent Cseg1 is no greater than that of any point on the curve seg-
ent Cseg2.
Proof. Assume �p1 is the uncertainty of any one point p1 on

seg1, and �p2 is the uncertainty of any one point p2 on Cseg2.
ccording to the convex hull property of B-spline curve uncer-

ainty, we can get

min��PCseg1
�ij � �p1 � max��PCseg1

�ij �B1�

ij ij

34 / Vol. 129, JUNE 2007
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min
ij

��PCseg2
�ij � �p2 � max

ij
��PCseg2

�ij �B2�

Since maxij��PCseg1
�ij �minij��PCseg2

�ij, then

�p1 � �p2 �B3�

Hence, the uncertainty of any point on the curve segment Cseg1 is
no greater than that of any point on the curve segment Cseg2.
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