
 1 Copyright © 2003 by ASME

Proceedings of DETC’03
ASME 2003 Design Engineering Technical Conferences and

Computers and Information in Engineering Conference
Chicago, Illinois USA, September 2-6, 2003

DETC2003/DAC-48779

PARTITIONING POSITIONAL AND NORMAL SPACE
FOR FAST OCCLUSION DETECTION

Xiaoping Qian
qian@crd.ge.com

Inspection & Manufacturing Technologies
GE Global Research

P.O. Box 8, Niskayuna, NY 12309

Kevin G. Harding
harding@crd.ge.com

Inspection & Manufacturing Technologies
GE Global Research

P.O. Box 8, Niskayuna, NY 12309

ABSTRACT

Occlusion detection is a fundamental and important
problem in optical sensor inspection planning. Many view-
planning algorithms have been developed for optical
inspection, however, few of them explicitly develop practical
algorithms for occlusion detection. This paper presents a
hierarchical space partition approach that divides both
positional and surface normal space of an object for fast
occlusion detection. A k-d tree is used to represent this
partition. A novel concept of δ – occlusion is introduced to
detect occlusion for objects in an un-organized point cloud
representation. Based on the δ – occlusion concept, several
propositions regarding to a range search on a k-d tree have been
developed for occlusion detection. Implementation of this
approach demonstrated that significant time can be saved for
occlusion detection using the partition of both positional and
surface normal space.

Keywords: Visibility, Occlusion Detection, Spherical Map, K-
d Tree

1 introduction
Optical sensors have been used in many 3D shape

measurement applications such as optical metrology and
reverse engineering. Effective and efficient inspection planning
of these sensor systems is a critical task in optical applications.
Many planning systems have been developed for this purpose.

The task of inspection planning is to seek a set of
viewpoints for the sensor so that all the points on the part can
be inspected optimally from these viewpoints. It involves the
determination of extrinsic and intrinsic parameters for the
sensors, optical illumination parameters for the lasers, and
optimal placement of lasers and sensors so that part surfaces

can be inspected without occlusion or collision. In this paper,
we focus on one aspect of inspection planning: developing fast
algorithms to ensure occlusion-free inspection.

Figure 1 A valid inspection point for an optical inspection
system

To ensure a point on an object is inspectable, this point
must satisfy certain requirements (Figure 1). They include 1)
the point must lie within the measurement volume MV, formed
by the field of view (FOV) and the depth of field (DOF); 2) the
point must be visible to both the laser and the camera, 3) the
point must be accessible, that is, there should be no occlusion
between the point and the laser or between the point and the
camera.

The second condition is often referred to as a visibility
constraint. In this paper, we refer to a point as locally visible
when the angle of incidence of this point (angle between the
surface normal of a point and the line-of-sight formed by the
point and the laser or camera) is smaller than 90 degrees. We
refer to a point as globally visible when 1) the angle of
incidence of this point is smaller than 90 degrees, and 2) no
point in the object occludes this point. From a given set of

Laser

Camera

P

Measurement volume

Part

Laser

Camera

P

Measurement volume

Part

 2 Copyright © 2003 by ASME

points that are locally visible to both a laser and a camera, we
need to find out those points that are not occluded by any
object. In other words, we need to find all the points that are
globally visible. These are the points that can be inspected
under a given viewpoint.

In a typical sensor inspection planning system, candidate
views are generated first. A model coverage test is then
conducted to ensure the object is fully covered. Often times, the
occlusion check is not explicitly explored. Thus, some locally
visible points may not be inspected due to occlusion.

This paper presents an efficient approach for fast occlusion
check based on space partition. Position space partition is often
used for collision detection. However, the occlusion detection
involves the surface normal check. The approach in our paper is
based on a hierarchical partitioning of both position space and
surface normal space of an object. The object to be inspected is
represented in a tessellated model with each point having a
position coordinate and a surface normal.

We transform the occlusion problem using the δ –
occlusion concept, so that we can use a k-d tree based space
partition for occlusion detection. For a constructed k-D tree, we
use the line-of-sight to intersect the 3d bucket. A k-d tree of six
dimensions, consisting of the position value and the surface
normal of each point, is constructed for the object. For each
candidate view point, the problem of finding the points from
the object falling into the measurement volume and satisfying
the visibility constraints is transformed into a range search
problem in a k-d tree.

In the remaining of this paper, Section 2 reviews prior
work on inspection planning and occlusion detection. Section 3
details our approach, including δ – occlusion, a simple
algorithm for point inspectability check and an improved
algorithm based on space partition. Section 4 presents the
implementation of the algorithms and computational results.
The paper is concluded in Section 5.

2 Literature Review
Many sensor planning systems have been developed for the

best placement of sensors and parts to ensure full model
coverage, to enhance inspection quality and to decrease build
time. The planning methods behind these systems largely fall
into two categories: 1) a generate-and-test approach, and 2) a
synthesis approach (Tarabanis 1995). In a generate-and-test
approach, the sensor configurations are generated and then
evaluated with respect to task objectives. In order to limit the
number of candidate sensor configurations, the configuration
space is discretized. For example, an approach using known
imaging sensors and feature-based object model to compute the
optimal positions for inspection tasks is reported in (Trucco
1997). In the synthesis approach, the task requirements are
characterized analytically and the sensor parameter values that
satisfy the task constraints are directly determined from these
analytical relationships. For example, a computational approach
for best sensor setup to minimize signal dynamic range is
reported in (Qian 2003).

In all these inspection planning systems, computing
occlusion-free view points is a complex task and consumes a
lot of computing time. Most of the inspection planning systems
do not provide efficient methods for occlusion detection. For
example, a general planning system is developed for laser
scanning, in which occlusion check is done for every view

points in the scan plan, but with no explicit mentioning of the
algorithm’s efficiency (Son 2002). A cone visibility based
method is used to determine a near optimal decomposition of
free form surfaces according to surface normal (Elber 1998). In
the context of NC machining, spherical geometry based
visibility has been extensively explored (Chou 1992). However,
in these approaches, only local visibility is addressed and
global visibility is not addressed.

Methods to calculate the occlusion-free loci in terms of
boundary representation and CSG representation were
developed in (Tarabanis 1996). Exact aspect graphs have also
been used to analyze CAD models to obtain exact and
continuous visibility regions covering the whole space
(Petitjean, 1990). However, these methods are rarely applied in
practice, in part because of their computational and
representational complexity (Trucco 1997).

A concept similar to occlusion detection is collision
detection. If the geometry of two objects is intersecting with
each other, there is collision between these two objects. Many
algorithms have been developed for efficient collision
detection. Fast collision detection algorithms typically employ
a divide-and-conquer scheme by sub-dividing the object’s 3D
space (Lin 1998). For example, a tessellated representation with
a hierarchy space division is developed for collision detection
in (Gottschalk 1996). In this approach, they used a Discrete
Orientation Polytope (DOP). A hierarchical adaptive space
subdivision scheme, the BoxTree, and an associated divide-
and-conquer traversal algorithm were developed for interactive
virtual prototyping (Zachmann 1997). Typically hierarchical
schemes outperform the non-hierarchical schemes as long as
the hierarchies are not required to re-build dynamically.

Occlusion check differs from collision check in that
occlusion can happen even when there is no collision.
Occlusion happens when line-of-sight from a source point is
intersecting with any object geometry before it hits the target
point. In collision detection, typically only position space
partition is required. In the paper, we explore the partition of
both positional and surface normal space partition for fast
occlusion detection.

In this paper, we use a k-D tree (k-dimensional binary-
search tree) based representation for partitioning both positional
and surface normal space. A k-D tree is a common data
structure used to find a point’s closest neighbor in a point set
(Friedman 1977, Preparata 1988). A k-D tree partitions space
into a set of buckets. A hyper-sphere is then used to intersect
the bucket to find the closest neighbor. The computational
complexity is O(nlogn) for constructing a k-D tree, and O(logn)
for searching such a tree.

3 Overview of The Fast Occlusion
Detection Approach

In this section, we first introduce the concept of δ –
occlusion. We then present a simple algorithm for point
inspectability check and an improved algorithm based on space
partition.

 3 Copyright © 2003 by ASME

3.1 Proposition for point cloud based
occlusion test

Figure 2 Assumptions about the object and the tesselation

When a line-of-sight intersects with an object, there would
be at least two intersection points. One of the intersection
points would be invisible to the source point. For example, in

Figure 2, the line-of-sight sp intersects with the objects at the
point x1 and the point x2, both x1 and x2 are invisible to
sensors. Therefore, we have the following lemma for the
occlusion test.
Lemma 1: If among all the points in the point cloud of an
object, if we can find one point x, which meets the following
conditions: 1) it is on the line-of-sight, and 2) its surface

normal forms an angle with incidence vector sp smaller than
90, we then know that point p is occluded and point x is an
occluding point.

The line-of-sight in theory has an infinite-small diameter.
The direction application of an intersection test between a line-
of-sight and a point cloud does not always produce the
occluding points. In order to conduct the occlusion test for the
point cloud representation of an object, we make the following
assumptions about the point cloud representation of an object:

1) distance between each point no larger than δ,
2) minimal feature size δ,

3) curvature radius >
π
δ2

 .

These assumptions ensure that, if there is any intersection
between a line-of-sight and an object and the intersections
points are within the δ distance from the line-of-sight, at least
one point invisible to the sensor will be in the point cloud.

Based on these assumptions, we have the following
proposition for occlusion check for point cloud.

Figure 3 Occlusion test

Proposition 1 δ – occlusion

Let sensor point s and candidate point pi from an object

point set P form a line-of-sight isp . For any point pj from the

object point set P, let the distance between the point pj and the

line-of-sight be d, and let the pj′ be the closest point from the

isp to pj. Let the angle between the surface normal in at point

pi and the line-of-sight to be θ. That is,).cos(
i

i
i sp

sp
na=θ .

If the following conditions are met,
1) δ<d ,

2) 0'' <⋅ sppp jij ,

3) 90<=θ ,
then candidate point pi is either occluded by the surface

patch around the point pj or at most δ distance away from being
occluded by the surface patch. We refer to this “occlusion” as δ
– occlusion.

Proof:

According to the 1st condition, we know point pj is within δ
distance from the line-of-sight. From the 3rd condition, we
know the point pj is invisible to the sensor s. From the 2nd
condition, we know the shortest point between the line segment

isp and the point pj lies within the line segment. If we move

the line-of-sight isp by d distance, so that point pj lies on top

of isp , then we can know the moved line-of-sight is occluded

by point pj. That is, the point pj is at most d distance away from
being occluded by the surface patch around the point pj. Due to
the sample rate of δ distance, point pi is occluded by the surface
patch or at most δ distance away from being occluded by the
patch.

From the above proposition, we know for a given point pi,
if any one point satisfies the conditions, then the point pi is δ–
occluded. If no point from the object set meets the
requirements, then the point pi is occlusion-free. That is, point
pi is globally visible and accessible for optical inspection. So
the complexity of occlusion test for any given candidate point
is O(n) where n is the number of points in the point set.

Note that the δ–occlusion may overshoot the occlusion test
by distance δ. However, typically δ can be made very small
when the object is sampled into a point cloud. Due to the
manufacturing tolerance and the inaccuracy during the part
setup, it is often expected the inspection point to be some
distance away from being occluded.

3.2 Simple algorithm for part
inspectability test

A part is fully inspectable when all the points on the part
can be inspected. In order to check if all the points can be
inspected for a given inspection plan, all the points need to be
checked against the inspectability requirements. That is, each
point has to 1) lie within measurement volume, 2) be locally
visible to both the laser and the camera, 3) be accessible or
occlusion-free.

A simple algorithm for part inspectability check is as
follows (Algorithm 1).

d

Line of sight

p1 p2
p3

p4

x1 x2 sp
d

Line of sight

p1 p2
p3

p4

x1 x2 sp

s
pi

pj

pj'
s

pi

pj

pj'

(a) (b)

s
pi

pj

pj'
s

pi

pj

pj'
s

pi

pj

pj'

s
pi

pj

pj'

(a) (b)

 4 Copyright © 2003 by ASME

ALGORITHM 1: A SIMPLE ALGORITHM FOR PART
INSPECTABILITY CHECK
For each view point Vi in the view plan
 1.0 Obtain the measurement volume MVi from the view point Vi
 2.0 For each point pj from the part P

 If ij MVp ∈ , then add pj to the “within” point set W1.

 Endfor

 3.0 For each point pj within the measurement volume, 1Wp j ∈

 If point pj is visible to both the laser and camera,
 then add pj to the local visible set W2.

 Endfor

 4.0 For each locally visible point pj, 2Wp j ∈

 If point pj is occlusion free,
 then mark this point as inspectable.

 Endfor
Endfor
5. 0 For each point pj from the part P
 If pj is not marked inspectable,
 then add pj to the un-inspected point set U.
Endfor

The input is a set of view plans. The output is a point set U
that contains all the points not covered by any viewpoint. It
involves the following five steps.
1. Obtain the measurement volume for each view point.
2. Find all the points within the measurement volume.

For a given view point, the measurement volume is
typically a trapezoid volume (Figure 1) and it can be
represented as a collection of six planar half-spaces

}6,1|0){(=<=⋅−= inppMV ii , where each plane is

represented by a point pi and a plane normal ni. So whether a
point lies within the measurement volume can be determined
through a set of half-space calculations.
3. Check if all the “within” points are locally visible to both
the laser and the camera.

The local visibility can be determined through the surface
normal comparison. For a candidate point p with surface

normal n , if 0)(>−⋅ psn , where s is either the laser
position or the camera position, then point p is visible to the
sensor s.
4. For all the points that are locally visible, we check if they

are occlusion free.
The occlusion test is based on the δ-occlusion proposition

in the last section. For a given sensor (either laser or camera)
position S and a candidate point pj, we have this occlusion
check algorithm. The output of this algorithm is whether the
candidate point pj is occluded.

Algorithm 2: A Simple Algorithm for Occlusion Check

For each point pi from the part P
 Project point pi onto the line pjs and obtain the projected point
pi′

 Calculate distance d between pi and pi′, 'ii ppd =

 Calculate the angle θ between pjs and surface normal
in ,

).cos(
i

i
i sp

sp
na=θ

 If δ<d , 0'' <⋅ sppp jij , and 90<=θ

 Return True
Endfor
Return False.

5. Check if any point is not covered by all the viewpoints.

Algorithm 2 has complexity of O(n) where n is the number
of points in the point cloud of the part. So the Algorithm 1
(Simple algorithm for part inspectability test) has complexity of
O(n2).

3.3 Space partition based algorithm for
part inspectability check

We improve the simple algorithm in last section using

space partition via a k-d tree. We first present the construction
of a k-d tree based on positional space and normal space
partition. We then transform the simple algorithm into a range
search problem on the k-d tree.

3.3.1 Partitioning position and normal space

For many spatial problems, space partition is a common
scheme to increase computational efficiency. Since the
inspectability problem involves both position and surface
normal constraints, we propose the simultaneous partition of
positional and normal space to increase the algorithm
efficiency.
Construction of a k-d tree

We adopt a classical k-d tree construction method
(Preparata 1988) for our problem. In this method, a boundary
box is needed for space partition. Different types of boundary
boxes have been used for a variety of applications. For the
simplicity of implementation, in this paper, we use axis-aligned
boundary box. However, the algorithms presented in this paper
are applicable to other types of boundary boxes.

For each point, three are three positional values (x, y, z)
and three surface normal values (nx, ny, nz). We represent the
six values as a 6-dimensional point (x, y, z, nx, ny, nz). Suppose
that all the points from an object to be inspected lie in a 6-
dimensional box, which has some points identified on its
boundary. We build the data structure inside this box, and
define it recursively as follows. The set of data points is split
into two parts by splitting the box containing them into two
child boxes by a hyper plane, according to some splitting rule
specified by the algorithm; one subset contains the points in
one child box, and another subset contains the rest of the points.
The information about the splitting plane and the boundary
values of the initial box are stored in the root node, and the two
subsets are stored recursively in the two subtrees. When the
number of the data points contained in some box falls below a
given threshold, then we call a node associated with this box a
leaf node, and we store a list of coordinates for these data
points in this node. (Preparata 1988).

In this paper, we split the boundary box sequentially in x,
y, z, nx, ny, and nz order. When the split happens in the
positional space, the surface normal boundary of the set may be
changed. Likewise, when the split happens in the surface
normal space, the boundary box of the positional space may
also change. In order to have a tight boundary box, during the

 5 Copyright © 2003 by ASME

construction process, we calculate and record the new boundary
box after each split.
Range search in a k-d tree

The range search of a k-d tree is handled differently from a
standard k-d tree. We have the following range search
algorithm (Algorithm 3). The output is a set of points, W,
falling within the range R. The algorithm works recursively.
First, it checks if the node is a leaf. If it is a leaf, it finds out all
the points under the leaf falling into the range R and adds then
into W. If it is not a leaf, it checks if the boundary box of the
node, extent, completely lies within the range R. If it does, all
the points under the node fall into the range R. It then checks if
the boundary box overlaps with the range. If it does, it
recursively searches its left sub-tree and right sub-tree. If not, it
returns the point set W.

Algorithm 3 Range Search based on a k-d tree
RangeSearch(node N, BoundaryBox Extent, Range R)
If (type(N) == leaf)
{
 For each point pi in the leaf node

 If (isWithin(pi, R) == true), then ipW ⇐

 Endfor
}
Else
{
 Axis = node->SplitAxis;

 If(isWithin(Extent, R) == true)
 Nunder points theall⇐W
 If(isOverlap(Extent, R) == true)
 {
 // Left Child
 TmpExtent = Extent[2*Axis];
 Extent[2*Axis] = N->SplitValue;
 RangeSearch(N->LeftChild, Extent, R);
 Extent[2*Axis] = TmpExtent;

 // Right Child

TmpExtent = Extent[2*Axis];
 Extent[2*Axis] = N->SplitValue;
 RangeSearch(N->RightChild, Extent, R);
 Extent[2*Axis] = TmpExtent;
 }
}

In the above range search algorithm on a k-d tree, there are
three basic Boolean interaction tests: 1) whether a point pi lie
within a range R, isWithin(pi, R), 2) whether a boundary box
extent falls completely within the range R, isWithin(Extent,
R), 3) whether the boundary box extent overlaps with the range
R, isOverlap(Extent, R). The first test is a basic containment
test. The second and the third tests enable the search time
saving on a hierarchal tree. For example, in Figure 4, a point set
is shown in the left figure and its space partition is shown in the
right figure. In order to find all the points within the range A,
the k-d tree will be selectively traversed. In this particular case,
only nodes 6, 3, 2, and 5 will be checked for Range A. This
information can be obtained through the overlap test
isOverlap(Extent, R) since the boundary boxes of these nodes
overlap with the Range A. In order to search the points in
Range B, the nodes 6, 3, 2, 1, will be checked. Due to the fact
that Range B falls completely within the boundary box of node
1’s left child, any points in the left leaf of node 1 is

automatically within the Range B. This information is obtained
through the isWithin(Extent, R) test.

Figure 4 Interaction tests between boundary box and range

3.3.2 Convert a point inspectability test into a
range search problem

In order to take advantage of the computational efficiency
of a range search based on hierarchal positional and normal
space partition, we convert the point inspectablity test into a
range search problem on the k-d tree. We then present several
propositions related to a range search for occlusion detection.

We divide the point inspectability problem into a two-step
problem. During the first step, we seek all the points that lie
within the measurement volume and are visible to both the
camera and the laser. We refer to these points as locally
inspectable points, meaning these points are inspectable in a
local sense, without knowledge whether they meet the global
visibility conditions or not. During the second step, we check if
any point in the locally inspectable point set meets the global
visibility conditions, i.e. whether it is occluded.

Range search for locally inspectable points

The problem of finding points within the measurement
volume, and meeting visibility criteria is essentially equivalent
to a range search problem. The range is a combination of a
measurement volume in the positional space and a visibility
cone in the gaussian map (Qian 2003) in the surface normal
space. The search time can be saved in two ways when a k-d
tree is used. One is, when the bounding box does not overlap
with the measurement volume or the visibility cone, there is no
need for the inspectability test for the points within the
measurement volume. None of these points can be inspected.
The second is, when the bounding box and surface normal
spherical convex hull are within the measurement volume and
the visibility cone, there is no need for the test for the points
within the measurement volume. All the points can be
inspected. When there is overlap between a node’s boundary
box and measurement volume (or visibility cone), then we
recursively conduct a range search for its left and right sub-
trees.

In order to use the range search based on a k-d tree, we put
forward the follow propositions with regarding to the
interaction between the range (measurement volume and
visibility cone) and the positional and normal space boundary
box.
Proposition 1: If a positional boundary box does not overlap
with measurement volume, or the boundary box of surface
normal does not overlap with visibility cone of the sensor, none
of the points within the boundary box are valid points for
measurement. (Completely Out)

6
4

1

3

2

5

9 1
1

10

8

7

A

6
4

1

3

2

5

9 1
1

10

8

7

6
4

1

3

2

5

9 1
1

10

8

7

A

6

3 10

2 1 7 9

55 44 88 1111

(b) K-d tree structure(a) Space partition

B

 6 Copyright © 2003 by ASME

Proposition 2: If the bounding box is within the measurement
volume, and all the eight surface normal of the normal
boundary box are within the visibility cone, then all the points
under this k-d tree node are locally effective measurement
points. (Completely Within)

The two propositions respectively correspond to the range
test, isOverlap(Extent, R) and isWithin(Extent, R), in the k-d
tree. The first proposition reveals that the node does not overlap
with the range. The second proposition shows that all the points
in this node are completely within the range. If we substitute
these two functions into Algorithm 3 based on the two
propositions, we get an improved algorithm for finding the
locally inspectable points.

Range Search for Occlusion-free Points

Once we have the locally visible points, we need to verify
if each point is occlusion-free. The simple algorithm
(Algorithm 2) compares each locally inspectable point against
the whole point cloud and has the complexity of O(n). We
improve this simple algorithm by comparing the locally
inspectable points against the potentially occluding points.

The potentially occluding points are those points falling
into the convex hull formed by the boundary box of the locally
visible points and the sensor. As shown in Figure 5, for a set of
locally inspectable points (left figure), we can form the
boundary box B. We then form a convex hull C between the
sensor and boundary box B. Any point falling into the convex
hull other than the locally inspectable points, if this point is not
visible to the sensor, is a potentially occluding point. Note,
according to δ-occlusion proposition, we only use the point that
is not visible to the sensor as a basis for occlusion detection.
Therefore, the issue of finding potentially occluding points is
again a range search problem. Here, the range is a combination
of convex hull in the positional space and the visibility cone in
the normal space. Substituting this range into Algorithm 3 leads
to improved algorithm for finding potentially occluding points.
In this improved algorithm, we use the following proposition
for range search function isWithin(Extent, R).

Proposition 3: If there is no point within the convex hull
formed by the boundary box of the locally inspectable points
and the sensor, then all the points under this k-d tree node are
globally effective measurement points, i.e. occlusion-free.
(Completely Within)

Figure 5 Seeking potentially occluding points

Once we find potentially occluding points, we compare
each locally inspectable point against the potentially occluding
point set. Such a comparison is also a range search problem. In
the positional space, the range is a cylinder. The cylinder’s
centerline is a line with end points at the locally inspectable
point and the sensor. The radius is δ. In the surface normal
space, the range is the whole space. For each point within the
cylinder, we then compare its normal to see if the angle
between the normal and the line-of-sight (formed between the
sensor and the point) is larger than 90 degrees (the second
condition of Lemma 1).
3.3.3 Range and Bounding box interaction test

We convert the point inspectablity problem, including
occlusion, into a set of range search problem on a k-d tree. It
involves a set of geometric interaction test between the
boundary boxes (of positional and normal space) and the
ranges. The boundary boxes are axis-aligned boxes. In
positional space, the ranges include measurement volumes for
finding locally inspectable points, convex hulls for finding
potentially occluding points, and cylinders for determining if a
point is occluded by the potentially occluding point set. In
surface normal space, the ranges include the visibility cones of
a set of vertices in the boundary boxes of the surface normal.

Due to the page limit, we will not go into details about the
interaction test between the boundary boxes and the ranges.
The basic idea behind our interaction tests is using a dimension
reduction method to convert a 3D geometry model and
bounding box overlap test into a lower dimensional geometry
interaction test. For example, we can convert a 3D cylinder and
3D boundary box interaction test into a problem of a point-line
distance calculation and a line-plane intersection test.
Specifically, we first check the extreme cases. They include: 1)
All the bounding box vertices lie within the cylinder. This can
be tested using point-line distance calculation. 2) The cylinder
centerline lies within the bounding box. This can be easily
known by checking if end points of the centerline lie within the
box. 3) The two end points of the cylinder center lines lie at
least r distance away from the boundary box. After the special
cases processing, we intersect the centerline with the box. For
each boundary plane of the box, we offset the centerline by
distance of cylinder raidus and intersect the offset line with the
plane. If the end points of both the centerline and the offset
centerline lie outside of boundary plane, there is no overlap. If
the intersection point of offset line with the boundary plane lies
beyond the end points of the offset line, there is overlap. If
either intersection point (from center line or from offset lines)
lies within the boundary box, there is overlap. Otherwise, there
is no overlap.

4 Implementation and results

The algorithms have been implemented on an HP-UX 11.0
U9000/785 machine. We compare the computational results of
the algorithms based on one benchmark part (Figure 6). The
tessellated model and its gaussian map are also included in the
figure. The tessellated model includes 16553 points and surface
normal.

A snapshot of the first 20 boundary boxes during the k-d
tree construction process is shown in Figure 7 and Figure 8,
respectively illustrating the partitioning of positional space and
surface normal space. Figure 7 shows one picture in which the

Sensor

B

Sensor

C

Locally inspectable points

Occluding points

(a) Find the boundary box of locally
inspectable points

(a) Form the convex hull and find the
potentially occluding points

Sensor

B

Sensor

C

Locally inspectable points

Occluding points

(a) Find the boundary box of locally
inspectable points

(a) Form the convex hull and find the
potentially occluding points

 7 Copyright © 2003 by ASME

tessellated model lies within the boundary box, and one picture
without the tessellated model. Figure 8 shows a wire-frame and
a shaded model of the surface normal space partition. Different
colors represent the boundary box at different levels in the k-d
tree. The time for constructing the k-d tree of 16553 points is
about 0.355 second.

Figure 6 A benchmark part

Figure 7 Partitioning positional space

Figure 8 Partitioning surface normal space

In order to compare the computational time during point
inspectablity check for different algorithms, we select seven
inspection views, under which we calculate 1) the points that
are within the measurement volumes and are locally visible,
and 2) the points that are globally visible, i.e. no occlusion.

We first compare time spent in search of valid points within
measurement volume and locally visible to both the camera and
the laser using either partitioning positional space only or
partitioning both positional and surface normal space. Figure 9
shows the time comparison of these two methods for different
sensor view angles. As the sensor view angle constraints
changes from 55 to 85 degrees, the method using partitioning
both positional and surface normal space consistently

outperformed the method using partitioning positional space
only. Figure 10 shows the time comparison of these two
methods for different field of views. The largest size of the
field of view and depth of field is 24″*24″*18″. We then tried
to set the field size to one half, one fourth, and one sixth of its
original size. The respective results are shown in Figure 10.
Again, the method using the partitioning of both positional and
surface normal space consistently outperformed the method
using the partitioning of positional space only regardless of the
size of the measurement volume.

Figure 9 Time comparison for different sensor view angles

Figure 10 Time comparison for different field of views

Finally, we compare the time consumed in search of both
locally visible points and the occlusion-free points for three
methods under the same sensor view angle and the same
measurement volume constraints. The results are shown in
Table 1. As the table shows, the space partition based approach,
either positional space partition only or the positional and
normal space partition, outperformed the simple algorithm. The
method of partitioning both positional and surface normal space
consumed the least amount of time in search of the locally
visible points. Table 1 also illustrated the time consumed in
search of occlusion-free points for seven viewpoints. The
simple algorithm consumed much more time than the k-d tree
based method, where a set of potentially occluding points were
first sought within the convex hull composed to the boundary
box of locally visible points and the sensor point. In the table,
there are four views, at which no points lie within the

(a) Inspection part (b) Tessellated inspection
surfaces

(c) Surface normal of
inspection surfaces

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 2 3 4 5 6 7

View

T
im

e
(s

ec
)

Partition position
space

Partition position
and normal space

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7

View

T
im

e
(s

ec
)

Partition position
space

Partition position
and normal space

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6 7

View

T
im

e
(s

ec
)

Partition position
space

Partition position
and normal space

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 7

View

T
im

e
(s

ec
)

Partition position
space

Partitional position
and normal space

(a) 1/6 FOV (b) 1/4 FOV

(c) 1/2 FOV (d) FOV

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 2 3 4 5 6 7

View

T
im

e
(s

ec
)

Angle=55

Angle=65

Angle=75

Angle=85

Angle=55

Angle=65

Angle=75

Angle=85

Positional space

Positional & normal space

 8 Copyright © 2003 by ASME

measurement volume. Therefore, the time for occlusion-free
point search is zero.

Table 1Time comparison for different methods

(Time in second)

5 Conclusion
This paper presents a fast approach for occlusion detection

in optical inspection. We first introduced a novel δ – occlusion
concept for occlusion check for tessellated part model. We then
transformed the point inspectability problem into a range search
problem in a k-d tree. We developed several propositions based
on the hierarchical positional and normal space partition. The
results demonstrated that the algorithm using the partition of
positional space of the target objects outperformed the simple
algorithm that does not involve space partition. The method
using both positional space and normal space partitioning
outperformed the method using the positional space partition
only.

The contributions of this paper include a novel δ –
occlusion concept for occlusion check for point cloud, and the
method of hierarchically partitioning both positional space and
surface normal space for occlusion detection.

The algorithms can be enhanced in a few ways in the
future. We will investigate the sequence of split axis involving
both position and surface normal. Currently, a fixed sequence is
used and this may not be the best split sequence. We will
investigate the optimal size of the points in the leaf node of the
k-d tree. We will investigate the use of different boundary box
representation, such as discrete orientation polytope, instead of
axial-parallel boundary box.

REFERENCES
Chou, C. Y., Chen, L. L., and Woo, T. C., ‘‘Separating and

intersecting spherical polygons: computing machinability on
three, four and five-axis numerically controlled machines,’’
ACM Trans. Graphics 12 (4), 305–326, 1993.

Elber, G., and Zussman, E., “Cone visibility decomposition
of freeform surfaces”, Computer-Aided Design 30 (1998) 315–
320.

Friedman, J. H., Bentley, J. L., and Finkel, R. A., “An
algorithm for finding best matches in logarithmic expected
time”, ACM Transactions on Mathematical Software, Vol. 3,
No. 3, Sep 1977, pp. 209-226.

Gonzalez-Banos, H.H. and Latombe, J.C., “A Randomized
Art-Gallery Algorithm for Sensor Placement”. Proc. 17th ACM
Symp. on Computational Geometry (SoCG'01), pp. 232-240,
2001.

Gottschalk S, Lin M, Manocha D, “OBB tree: a hierarchy
structure for rapid interference detection”, SIGRAPPH’96
Visual Proceedings, New Orleans, LA, USA 4-9 Aug 1996.

Lin, M.C, and Gottschalk, S., “Collision detection between
geometric models: a survey”, Proceedings of IMA Conference
on Mathematics of Surfaces, 1998.

Maver, J. and Bajcsy, R., “Occlusions as a Guide for
Planning the Next View”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 15, No. 5, May 1993,
pp. 417-433.

Nene, S. A., and Nayar, S. K., “A Simple Algorithm for
Nearest Neighbor Search in High Dimensions”, Technical
Report, Department of Computer Science, Columbia
University, 1995.

Petitjean, S., Ponce J., and Kriegman, D. J., “Computing
exact aspect graphs of curved objects: Algebraic surfaces”,
International Journal of Computer Vision, 1992, pp. 9.

Preparata, F. P. and Shamos, M. I., Computational
Geometry: An Introduction, Springer-Verlag, 1988.

Qian, X. and Harding, K. G., “A Computational Approach
for Optimal Sensor Setup”, SPIE Journal Optical Engineering,
May 2003.

Son, S., Park, H. and Lee, K. H., “Automated laser
scanning system for reverse engineering and inspection”,
International Journal of Machine Tools & Manufacture, Vol.
42, 2002, pp. 889-897.

Tarabanis, K., Allen, P., and Tsai, R., “A survey of sensor
planning in computer vision,” IEEE Trans. Robot. Automat,
vol. 11, pp. 86–104, 1995.

Tarabanis, K., Tsai, R. Y., and Kaul, A., “Computing
Occlusion-Free Viewpoints”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 18, No. 3, March
1996, pp. 279 – 292.

Tarbox, G. H. and Gottschlich, S. N., “Planning for
Complete Sensor Coverage in Inspection”, Computer Vision
and Image Understanding, Vol. 61, No. 1, Jan, pp. 84 – 111,
1995.

Trucco, E., Umasuthan, M., Wallace, A. M., and Roberto,
V., “Modeling-based Planning of Optimal Placements for
Inspection”, IEEE Transactions on Robotics and Automation,
Vol. 13, No. 2, 1997, pp. 182-194.

Zachmann, G., “Real-time and exact collision detection for
interactive virtual prototyping”, 1997 ASME Design
Engineering Technical Conferences, Sacramento, CA.

Occlusion free

Within
measurement
volume &
locally visible

0024.4850024.27212.14Simple
Algorithm

000.241000.2150.232K-d tree based

0.1750.0140.1750.0160.0450.0860.12K-d tree with
positional and
normal space
partition

0.3790.0150.270.0530.0890.2280.27K-d tree with
position space
partition

0.4070.2530.410.230.30.3320.409Simple
Algorithm

Occlusion free

Within
measurement
volume &
locally visible

0024.4850024.27212.14Simple
Algorithm

000.241000.2150.232K-d tree based

0.1750.0140.1750.0160.0450.0860.12K-d tree with
positional and
normal space
partition

0.3790.0150.270.0530.0890.2280.27K-d tree with
position space
partition

0.4070.2530.410.230.30.3320.409Simple
Algorithm

