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ABSTRACT 

Occlusion detection is a fundamental and important 
problem in optical sensor inspection planning. Many view-
planning algorithms have been developed for optical 
inspection, however, few of them explicitly develop practical 
algorithms for occlusion detection. This paper presents a 
hierarchical space partition approach that divides both 
positional and surface normal space of an object for fast 
occlusion detection. A k-d tree is used to represent this 
partition. A novel concept of δ – occlusion is introduced to 
detect occlusion for objects in an un-organized point cloud 
representation. Based on the δ – occlusion concept, several 
propositions regarding to a range search on a k-d tree have been 
developed for occlusion detection. Implementation of this 
approach demonstrated that significant time can be saved for 
occlusion detection using the partition of both positional and 
surface normal space. 

 
Keywords: Visibility, Occlusion Detection, Spherical Map, K-
d Tree 

 

1 introduction 
Optical sensors have been used in many 3D shape 

measurement applications such as optical metrology and 
reverse engineering. Effective and efficient inspection planning 
of these sensor systems is a critical task in optical applications. 
Many planning systems have been developed for this purpose.  

The task of inspection planning is to seek a set of 
viewpoints for the sensor so that all the points on the part can 
be inspected optimally from these viewpoints. It involves the 
determination of extrinsic and intrinsic parameters for the 
sensors, optical illumination parameters for the lasers, and 
optimal placement of lasers and sensors so that part surfaces 

can be inspected without occlusion or collision. In this paper, 
we focus on one aspect of inspection planning: developing fast 
algorithms to ensure occlusion-free inspection. 

 

Figure 1 A valid inspection point for an optical inspection 
system 

To ensure a point on an object is inspectable, this point 
must satisfy certain requirements (Figure 1). They include 1) 
the point must lie within the measurement volume MV, formed 
by the field of view (FOV) and the depth of field (DOF); 2) the 
point must be visible to both the laser and the camera, 3) the 
point must be accessible, that is, there should be no occlusion 
between the point and the laser or between the point and the 
camera. 

The second condition is often referred to as a visibility 
constraint. In this paper, we refer to a point as locally visible 
when the angle of incidence of this point (angle between the 
surface normal of a point and the line-of-sight formed by the 
point and the laser or camera) is smaller than 90 degrees.  We 
refer to a point as globally visible when 1) the angle of 
incidence of this point is smaller than 90 degrees, and 2) no 
point in the object occludes this point. From a given set of 
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points that are locally visible to both a laser and a camera, we 
need to find out those points that are not occluded by any 
object. In other words, we need to find all the points that are 
globally visible. These are the points that can be inspected 
under a given viewpoint. 

In a typical sensor inspection planning system, candidate 
views are generated first. A model coverage test is then 
conducted to ensure the object is fully covered. Often times, the 
occlusion check is not explicitly explored. Thus, some locally 
visible points may not be inspected due to occlusion. 

This paper presents an efficient approach for fast occlusion 
check based on space partition. Position space partition is often 
used for collision detection. However, the occlusion detection 
involves the surface normal check. The approach in our paper is 
based on a hierarchical partitioning of both position space and 
surface normal space of an object. The object to be inspected is 
represented in a tessellated model with each point having a 
position coordinate and a surface normal.  

We transform the occlusion problem using the δ – 
occlusion concept, so that we can use a k-d tree based space 
partition for occlusion detection. For a constructed k-D tree, we 
use the line-of-sight to intersect the 3d bucket. A k-d tree of six 
dimensions, consisting of the position value and the surface 
normal of each point, is constructed for the object. For each 
candidate view point, the problem of finding the points from 
the object falling into the measurement volume and satisfying 
the visibility constraints is transformed into a range search 
problem in a k-d tree.  

In the remaining of this paper, Section 2 reviews prior 
work on inspection planning and occlusion detection. Section 3 
details our approach, including δ – occlusion, a simple 
algorithm for point inspectability check and an improved 
algorithm based on space partition. Section 4 presents the 
implementation of the algorithms and computational results. 
The paper is concluded in Section 5.  
 

2 Literature Review 
Many sensor planning systems have been developed for the 

best placement of sensors and parts to ensure full model 
coverage, to enhance inspection quality and to decrease build 
time. The planning methods behind these systems largely fall 
into two categories: 1) a generate-and-test approach, and 2) a 
synthesis approach (Tarabanis 1995). In a generate-and-test 
approach, the sensor configurations are generated and then 
evaluated with respect to task objectives. In order to limit the 
number of candidate sensor configurations, the configuration 
space is discretized. For example, an approach using known 
imaging sensors and feature-based object model to compute the 
optimal positions for inspection tasks is reported in (Trucco 
1997). In the synthesis approach, the task requirements are 
characterized analytically and the sensor parameter values that 
satisfy the task constraints are directly determined from these 
analytical relationships. For example, a computational approach 
for best sensor setup to minimize signal dynamic range is 
reported in (Qian 2003). 

In all these inspection planning systems, computing 
occlusion-free view points is a complex task and consumes a 
lot of computing time. Most of the inspection planning systems 
do not provide efficient methods for occlusion detection. For 
example, a general planning system is developed for laser 
scanning, in which occlusion check is done for every view 

points in the scan plan, but with no explicit mentioning of the 
algorithm’s efficiency (Son 2002). A cone visibility based 
method is used to determine a near optimal decomposition of 
free form surfaces according to surface normal (Elber 1998). In 
the context of NC machining, spherical geometry based 
visibility has been extensively explored (Chou 1992). However, 
in these approaches, only local visibility is addressed and 
global visibility is not addressed. 

Methods to calculate the occlusion-free loci in terms of 
boundary representation and CSG representation were 
developed in (Tarabanis 1996). Exact aspect graphs have also 
been used to analyze CAD models to obtain exact and 
continuous visibility regions covering the whole space 
(Petitjean, 1990). However, these methods are rarely applied in 
practice, in part because of their computational and 
representational complexity (Trucco 1997).  

A concept similar to occlusion detection is collision 
detection. If the geometry of two objects is intersecting with 
each other, there is collision between these two objects. Many 
algorithms have been developed for efficient collision 
detection. Fast collision detection algorithms typically employ 
a divide-and-conquer scheme by sub-dividing the object’s 3D 
space (Lin 1998). For example, a tessellated representation with 
a hierarchy space division is developed for collision detection 
in (Gottschalk 1996). In this approach, they used a Discrete 
Orientation Polytope (DOP). A hierarchical adaptive space 
subdivision scheme, the BoxTree, and an associated divide-
and-conquer traversal algorithm were developed for interactive 
virtual prototyping (Zachmann 1997). Typically hierarchical 
schemes outperform the non-hierarchical schemes as long as 
the hierarchies are not required to re-build dynamically. 

Occlusion check differs from collision check in that 
occlusion can happen even when there is no collision. 
Occlusion happens when line-of-sight from a source point is 
intersecting with any object geometry before it hits the target 
point. In collision detection, typically only position space 
partition is required. In the paper, we explore the partition of 
both positional and surface normal space partition for fast 
occlusion detection. 

In this paper, we use a k-D tree (k-dimensional binary-
search tree) based representation for partitioning both positional 
and surface normal space. A k-D tree is a common data 
structure used to find a point’s closest neighbor in a point set 
(Friedman 1977, Preparata 1988). A k-D tree partitions space 
into a set of buckets. A hyper-sphere is then used to intersect 
the bucket to find the closest neighbor. The computational 
complexity is O(nlogn) for constructing a k-D tree, and O(logn) 
for searching such a tree. 

 

3 Overview of The Fast Occlusion 
Detection Approach 

In this section, we first introduce the concept of δ – 
occlusion. We then present a simple algorithm for point 
inspectability check and an improved algorithm based on space 
partition. 
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3.1 Proposition for point cloud based 
occlusion test 

 

Figure 2 Assumptions about the object and the tesselation 

When a line-of-sight intersects with an object, there would 
be at least two intersection points. One of the intersection 
points would be invisible to the source point. For example, in 

Figure 2, the line-of-sight sp  intersects with the objects at the 
point x1 and the point x2, both x1 and x2 are invisible to 
sensors. Therefore, we have the following lemma for the 
occlusion test. 
Lemma 1: If among all the points in the point cloud of an 
object, if we can find one point x, which meets the following 
conditions: 1) it is on the line-of-sight, and 2) its surface 

normal forms an angle with incidence vector sp  smaller than 
90, we then know that point p is occluded and point x is an 
occluding point.  

The line-of-sight in theory has an infinite-small diameter. 
The direction application of an intersection test between a line-
of-sight and a point cloud does not always produce the 
occluding points. In order to conduct the occlusion test for the 
point cloud representation of an object, we make the following 
assumptions about the point cloud representation of an object:  

1) distance between each point no larger than δ,  
2) minimal feature size δ,  

3) curvature radius > 
π
δ2

 .  

These assumptions ensure that, if there is any intersection 
between a line-of-sight and an object and the intersections 
points are within the δ distance from the line-of-sight, at least 
one point invisible to the sensor will be in the point cloud.  

Based on these assumptions, we have the following 
proposition for occlusion check for point cloud. 

Figure 3 Occlusion test 

 
Proposition 1 δ – occlusion 
 

Let sensor point s and candidate point pi from an object 

point set P form a line-of-sight isp . For any point pj from the 

object point set P, let the distance between the point pj and the 

line-of-sight be d, and let the pj′ be the closest point from the 

isp to pj. Let the angle between the surface normal in  at point 

pi and the line-of-sight to be θ. That is, ).cos(
i

i
i sp

sp
na=θ . 

If the following conditions are met, 
1) δ<d ,  

2) 0'' <⋅ sppp jij , 

3) 90<=θ , 
then candidate point pi is either occluded by the surface 

patch around the point pj or at most δ distance away from being 
occluded by the surface patch. We refer to this “occlusion” as δ 
– occlusion. 
 
Proof: 

According to the 1st condition, we know point pj is within δ 
distance from the line-of-sight. From the 3rd condition, we 
know the point pj is invisible to the sensor s. From the 2nd 
condition, we know the shortest point between the line segment 

isp  and the point pj lies within the line segment. If we move 

the line-of-sight isp  by d distance, so that point pj lies on top 

of isp , then we can know the moved line-of-sight is occluded 

by point pj. That is, the point pj is at most d distance away from 
being occluded by the surface patch around the point pj. Due to 
the sample rate of δ distance, point pi is occluded by the surface 
patch or at most δ distance away from being occluded by the 
patch. 

From the above proposition, we know for a given point pi, 
if any one point satisfies the conditions, then the point pi is δ–
occluded. If no point from the object set meets the 
requirements, then the point pi is occlusion-free. That is, point 
pi is globally visible and accessible for optical inspection. So 
the complexity of occlusion test for any given candidate point 
is O(n) where n is the number of points in the point set. 

Note that the δ–occlusion may overshoot the occlusion test 
by distance δ. However, typically δ can be made very small 
when the object is sampled into a point cloud. Due to the 
manufacturing tolerance and the inaccuracy during the part 
setup, it is often expected the inspection point to be some 
distance away from being occluded. 
 

3.2 Simple algorithm for part 
inspectability test 

A part is fully inspectable when all the points on the part 
can be inspected. In order to check if all the points can be 
inspected for a given inspection plan, all the points need to be 
checked against the inspectability requirements. That is, each 
point has to 1) lie within measurement volume, 2) be locally 
visible to both the laser and the camera, 3) be accessible or 
occlusion-free.  

A simple algorithm for part inspectability check is as 
follows (Algorithm 1).  
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ALGORITHM 1: A SIMPLE ALGORITHM FOR PART 
INSPECTABILITY CHECK 
For each view point Vi in the view plan 
     1.0 Obtain the measurement volume MVi from the view point Vi 
     2.0 For each point pj from the part P 

     If ij MVp ∈ , then add pj to the “within” point set W1. 

           Endfor 

     3.0 For each point pj within the measurement volume, 1Wp j ∈  

               If point pj is visible to both the laser and camera,  
     then add pj to the local visible set W2. 

 Endfor 

     4.0 For each locally visible point pj, 2Wp j ∈  

      If point pj is occlusion free,  
     then mark this point as inspectable. 

       Endfor 
Endfor 
5. 0 For each point pj from the part P 
 If pj is not marked inspectable,  
 then add pj to the un-inspected point set U. 
Endfor 
 

The input is a set of view plans. The output is a point set U 
that contains all the points not covered by any viewpoint. It 
involves the following five steps.  
1. Obtain the measurement volume for each view point.  
2. Find all the points within the measurement volume.  

For a given view point, the measurement volume is 
typically a trapezoid volume (Figure 1) and it can be 
represented as a collection of six planar half-spaces 

}6,1|0){( =<=⋅−= inppMV ii , where each plane is 

represented by a point pi and a plane normal ni. So whether a 
point lies within the measurement volume can be determined 
through a set of half-space calculations. 
3. Check if all the “within” points are locally visible to both 
the laser and the camera.  

The local visibility can be determined through the surface 
normal comparison. For a candidate point p with surface 

normal n , if 0)( >−⋅ psn , where s is either the laser 
position or the camera position, then point p is visible to the 
sensor s. 
4. For all the points that are locally visible, we check if they 

are occlusion free.  
The occlusion test is based on the δ-occlusion proposition 

in the last section. For a given sensor (either laser or camera) 
position S and a candidate point pj, we have this occlusion 
check algorithm. The output of this algorithm is whether the 
candidate point pj is occluded. 

 
Algorithm 2: A Simple Algorithm for Occlusion Check 
 
For each point pi from the part P 
  Project point pi onto the line pjs and obtain the projected point 
pi′ 

 Calculate distance d between pi and pi′, 'ii ppd =  

 Calculate the angle θ between pjs and surface normal
in ,  

  ).cos(
i

i
i sp

sp
na=θ  

 If δ<d , 0'' <⋅ sppp jij , and 90<=θ  

  Return True 
Endfor 
Return False. 

 
5. Check if any point is not covered by all the viewpoints. 

Algorithm 2 has complexity of O(n) where n is the number 
of points in the point cloud of the part. So the Algorithm 1 
(Simple algorithm for part inspectability test) has complexity of 
O(n2). 
 

3.3 Space partition based algorithm for 
part inspectability check  

 
We improve the simple algorithm in last section using 

space partition via a k-d tree. We first present the construction 
of a k-d tree based on positional space and normal space 
partition. We then transform the simple algorithm into a range 
search problem on the k-d tree. 
 
3.3.1 Partitioning position and normal space 

For many spatial problems, space partition is a common 
scheme to increase computational efficiency. Since the 
inspectability problem involves both position and surface 
normal constraints, we propose the simultaneous partition of 
positional and normal space to increase the algorithm 
efficiency. 
Construction of a k-d tree  

We adopt a classical k-d tree construction method 
(Preparata 1988) for our problem. In this method, a boundary 
box is needed for space partition. Different types of boundary 
boxes have been used for a variety of applications. For the 
simplicity of implementation, in this paper, we use axis-aligned 
boundary box. However, the algorithms presented in this paper 
are applicable to other types of boundary boxes. 

For each point, three are three positional values (x, y, z) 
and three surface normal values (nx, ny, nz). We represent the 
six values as a 6-dimensional point (x, y, z, nx, ny, nz). Suppose 
that all the points from an object to be inspected lie in a 6-
dimensional box, which has some points identified on its 
boundary. We build the data structure inside this box, and 
define it recursively as follows. The set of data points is split 
into two parts by splitting the box containing them into two 
child boxes by a hyper plane, according to some splitting rule 
specified by the algorithm; one subset contains the points in 
one child box, and another subset contains the rest of the points. 
The information about the splitting plane and the boundary 
values of the initial box are stored in the root node, and the two 
subsets are stored recursively in the two subtrees. When the 
number of the data points contained in some box falls below a 
given threshold, then we call a node associated with this box a 
leaf node, and we store a list of coordinates for these data 
points in this node. (Preparata 1988).  

In this paper, we split the boundary box sequentially in x, 
y, z, nx, ny, and nz order. When the split happens in the 
positional space, the surface normal boundary of the set may be 
changed. Likewise, when the split happens in the surface 
normal space, the boundary box of the positional space may 
also change. In order to have a tight boundary box, during the 
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construction process, we calculate and record the new boundary 
box after each split. 
Range search in a k-d tree  

The range search of a k-d tree is handled differently from a 
standard k-d tree. We have the following range search 
algorithm (Algorithm 3). The output is a set of points, W, 
falling within the range R. The algorithm works recursively. 
First, it checks if the node is a leaf. If it is a leaf, it finds out all 
the points under the leaf falling into the range R and adds then 
into W. If it is not a leaf, it checks if the boundary box of the 
node, extent, completely lies within the range R. If it does, all 
the points under the node fall into the range R. It then checks if 
the boundary box overlaps with the range. If it does, it 
recursively searches its left sub-tree and right sub-tree. If not, it 
returns the point set W. 
 
Algorithm 3 Range Search based on a k-d tree 
RangeSearch(node N, BoundaryBox Extent, Range R) 
If (type(N) == leaf) 
{ 
 For each point pi in the leaf node 

  If (isWithin(pi, R) == true), then ipW ⇐  

 Endfor 
} 
Else 
{ 
 Axis = node->SplitAxis; 
   
 If(isWithin(Extent, R) == true) 
  Nunder   points  theall⇐W  
 If(isOverlap(Extent, R) == true) 
 { 
  // Left Child 
  TmpExtent = Extent[2*Axis]; 
  Extent[2*Axis] =  N->SplitValue; 
  RangeSearch( N->LeftChild, Extent, R); 
  Extent[2*Axis] = TmpExtent; 
 
  // Right Child 

TmpExtent = Extent[2*Axis]; 
  Extent[2*Axis] =  N->SplitValue; 
  RangeSearch( N->RightChild, Extent, R); 
  Extent[2*Axis] = TmpExtent; 
 } 
} 
 

In the above range search algorithm on a k-d tree, there are 
three basic Boolean interaction tests: 1) whether a point pi lie 
within a range R, isWithin(pi, R), 2) whether a boundary box 
extent falls completely within the range R, isWithin(Extent, 
R), 3) whether the boundary box extent overlaps with the range 
R, isOverlap(Extent, R). The first test is a basic containment 
test. The second and the third tests enable the search time 
saving on a hierarchal tree. For example, in Figure 4, a point set 
is shown in the left figure and its space partition is shown in the 
right figure. In order to find all the points within the range A, 
the k-d tree will be selectively traversed. In this particular case, 
only nodes 6, 3, 2, and 5 will be checked for Range A. This 
information can be obtained through the overlap test 
isOverlap(Extent, R) since the boundary boxes of these nodes 
overlap with the Range A. In order to search the points in 
Range B, the nodes 6, 3, 2, 1, will be checked. Due to the fact 
that Range B falls completely within the boundary box of node 
1’s left child, any points in the left leaf of node 1 is 

automatically within the Range B. This information is obtained 
through the isWithin(Extent, R) test. 

Figure 4 Interaction tests between boundary box and range 

3.3.2 Convert a point inspectability test into a 
range search problem 

In order to take advantage of the computational efficiency 
of a range search based on hierarchal positional and normal 
space partition, we convert the point inspectablity test into a 
range search problem on the k-d tree. We then present several 
propositions related to a range search for occlusion detection. 

We divide the point inspectability problem into a two-step 
problem. During the first step, we seek all the points that lie 
within the measurement volume and are visible to both the 
camera and the laser. We refer to these points as locally 
inspectable points, meaning these points are inspectable in a 
local sense, without knowledge whether they meet the global 
visibility conditions or not. During the second step, we check if 
any point in the locally inspectable point set meets the global 
visibility conditions, i.e. whether it is occluded. 

 
Range search for locally inspectable points 

The problem of finding points within the measurement 
volume, and meeting visibility criteria is essentially equivalent 
to a range search problem. The range is a combination of a 
measurement volume in the positional space and a visibility 
cone in the gaussian map (Qian 2003) in the surface normal 
space. The search time can be saved in two ways when a k-d 
tree is used. One is, when the bounding box does not overlap 
with the measurement volume or the visibility cone, there is no 
need for the inspectability test for the points within the 
measurement volume. None of these points can be inspected. 
The second is, when the bounding box and surface normal 
spherical convex hull are within the measurement volume and 
the visibility cone, there is no need for the test for the points 
within the measurement volume. All the points can be 
inspected. When there is overlap between a node’s boundary 
box and measurement volume (or visibility cone), then we 
recursively conduct a range search for its left and right sub-
trees. 

In order to use the range search based on a k-d tree, we put 
forward the follow propositions with regarding to the 
interaction between the range (measurement volume and 
visibility cone) and the positional and normal space boundary 
box. 
Proposition 1: If a positional boundary box does not overlap 
with measurement volume, or the boundary box of surface 
normal does not overlap with visibility cone of the sensor, none 
of the points within the boundary box are valid points for 
measurement. (Completely Out) 
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Proposition 2: If the bounding box is within the measurement 
volume, and all the eight surface normal of the normal 
boundary box are within the visibility cone, then all the points 
under this k-d tree node are locally effective measurement 
points. (Completely Within) 

The two propositions respectively correspond to the range 
test, isOverlap(Extent, R) and isWithin(Extent, R), in the k-d 
tree. The first proposition reveals that the node does not overlap 
with the range. The second proposition shows that all the points 
in this node are completely within the range. If we substitute 
these two functions into Algorithm 3 based on the two 
propositions, we get an improved algorithm for finding the 
locally inspectable points. 

 
Range Search for Occlusion-free Points 

Once we have the locally visible points, we need to verify 
if each point is occlusion-free. The simple algorithm 
(Algorithm 2) compares each locally inspectable point against 
the whole point cloud and has the complexity of O(n). We 
improve this simple algorithm by comparing the locally 
inspectable points against the potentially occluding points.  

The potentially occluding points are those points falling 
into the convex hull formed by the boundary box of the locally 
visible points and the sensor. As shown in Figure 5, for a set of 
locally inspectable points (left figure), we can form the 
boundary box B. We then form a convex hull C between the 
sensor and boundary box B. Any point falling into the convex 
hull other than the locally inspectable points, if this point is not 
visible to the sensor, is a potentially occluding point. Note, 
according to δ-occlusion proposition, we only use the point that 
is not visible to the sensor as a basis for occlusion detection. 
Therefore, the issue of finding potentially occluding points is 
again a range search problem. Here, the range is a combination 
of convex hull in the positional space and the visibility cone in 
the normal space. Substituting this range into Algorithm 3 leads 
to improved algorithm for finding potentially occluding points. 
In this improved algorithm, we use the following proposition 
for range search function isWithin(Extent, R). 
 
Proposition 3: If there is no point within the convex hull 
formed by the boundary box of the locally inspectable points 
and the sensor, then all the points under this k-d tree node are 
globally effective measurement points, i.e. occlusion-free. 
(Completely Within) 
 
 

Figure 5 Seeking potentially occluding points  

Once we find potentially occluding points, we compare 
each locally inspectable point against the potentially occluding 
point set. Such a comparison is also a range search problem. In 
the positional space, the range is a cylinder. The cylinder’s 
centerline is a line with end points at the locally inspectable 
point and the sensor. The radius is δ. In the surface normal 
space, the range is the whole space. For each point within the 
cylinder, we then compare its normal to see if the angle 
between the normal and the line-of-sight (formed between the 
sensor and the point) is larger than 90 degrees (the second 
condition of Lemma 1). 
3.3.3 Range and Bounding box interaction test 

We convert the point inspectablity problem, including 
occlusion, into a set of range search problem on a k-d tree. It 
involves a set of geometric interaction test between the 
boundary boxes (of positional and normal space) and the 
ranges. The boundary boxes are axis-aligned boxes. In 
positional space, the ranges include measurement volumes for 
finding locally inspectable points, convex hulls for finding 
potentially occluding points, and cylinders for determining if a 
point is occluded by the potentially occluding point set. In 
surface normal space, the ranges include the visibility cones of 
a set of vertices in the boundary boxes of the surface normal. 

Due to the page limit, we will not go into details about the 
interaction test between the boundary boxes and the ranges. 
The basic idea behind our interaction tests is using a dimension 
reduction method to convert a 3D geometry model and 
bounding box overlap test into a lower dimensional geometry 
interaction test. For example, we can convert a 3D cylinder and 
3D boundary box interaction test into a problem of a point-line 
distance calculation and a line-plane intersection test. 
Specifically, we first check the extreme cases. They include: 1) 
All the bounding box vertices lie within the cylinder. This can 
be tested using point-line distance calculation. 2) The cylinder 
centerline lies within the bounding box. This can be easily 
known by checking if end points of the centerline lie within the 
box. 3) The two end points of the cylinder center lines lie at 
least r distance away from the boundary box. After the special 
cases processing, we intersect the centerline with the box. For 
each boundary plane of the box, we offset the centerline by 
distance of cylinder raidus and intersect the offset line with the 
plane. If the end points of both the centerline and the offset 
centerline lie outside of boundary plane, there is no overlap. If 
the intersection point of offset line with the boundary plane lies 
beyond the end points of the offset line, there is overlap. If 
either intersection point (from center line or from offset lines) 
lies within the boundary box, there is overlap. Otherwise, there 
is no overlap. 
 

4 Implementation and results 
 

The algorithms have been implemented on an HP-UX 11.0 
U9000/785 machine. We compare the computational results of 
the algorithms based on one benchmark part (Figure 6). The 
tessellated model and its gaussian map are also included in the 
figure. The tessellated model includes 16553 points and surface 
normal. 

A snapshot of the first 20 boundary boxes during the k-d 
tree construction process is shown in Figure 7 and Figure 8, 
respectively illustrating the partitioning of positional space and 
surface normal space. Figure 7 shows one picture in which the 

Sensor

B

Sensor

C

Locally inspectable points

Occluding points

(a) Find the boundary box of locally 
inspectable points

(a) Form the convex hull and find the 
potentially occluding points

Sensor

B

Sensor

C

Locally inspectable points

Occluding points

(a) Find the boundary box of locally 
inspectable points

(a) Form the convex hull and find the 
potentially occluding points



 7 Copyright © 2003 by ASME 

tessellated model lies within the boundary box, and one picture 
without the tessellated model. Figure 8 shows a wire-frame and 
a shaded model of the surface normal space partition. Different 
colors represent the boundary box at different levels in the k-d 
tree. The time for constructing the k-d tree of 16553 points is 
about 0.355 second. 
 

 

Figure 6 A benchmark part 

 

Figure 7 Partitioning positional space 

 
 

Figure 8 Partitioning surface normal space 

In order to compare the computational time during point 
inspectablity check for different algorithms, we select seven 
inspection views, under which we calculate 1) the points that 
are within the measurement volumes and are locally visible, 
and 2) the points that are globally visible, i.e. no occlusion.  
 
We first compare time spent in search of valid points within 
measurement volume and locally visible to both the camera and 
the laser using either partitioning positional space only or 
partitioning both positional and surface normal space. Figure 9 
shows the time comparison of these two methods for different 
sensor view angles. As the sensor view angle constraints 
changes from 55 to 85 degrees, the method using partitioning 
both positional and surface normal space consistently 

outperformed the method using partitioning positional space 
only. Figure 10 shows the time comparison of these two 
methods for different field of views. The largest size of the 
field of view and depth of field is 24″*24″*18″. We then tried 
to set the field size to one half, one fourth, and one sixth of its 
original size. The respective results are shown in Figure 10. 
Again, the method using the partitioning of both positional and 
surface normal space consistently outperformed the method 
using the partitioning of positional space only regardless of the 
size of the measurement volume. 
 

Figure 9 Time comparison for different sensor view angles 

Figure 10 Time comparison for different field of views 

Finally, we compare the time consumed in search of both 
locally visible points and the occlusion-free points for three 
methods under the same sensor view angle and the same 
measurement volume constraints. The results are shown in 
Table 1. As the table shows, the space partition based approach, 
either positional space partition only or the positional and 
normal space partition, outperformed the simple algorithm. The 
method of partitioning both positional and surface normal space 
consumed the least amount of time in search of the locally 
visible points. Table 1 also illustrated the time consumed in 
search of occlusion-free points for seven viewpoints. The 
simple algorithm consumed much more time than the k-d tree 
based method, where a set of potentially occluding points were 
first sought within the convex hull composed to the boundary 
box of locally visible points and the sensor point. In the table, 
there are four views, at which no points lie within the 
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measurement volume. Therefore, the time for occlusion-free 
point search is zero. 
 

Table 1Time comparison for different methods  

(Time in second) 

 
 

5 Conclusion 
This paper presents a fast approach for occlusion detection 

in optical inspection. We first introduced a novel δ – occlusion 
concept for occlusion check for tessellated part model. We then 
transformed the point inspectability problem into a range search 
problem in a k-d tree. We developed several propositions based 
on the hierarchical positional and normal space partition. The 
results demonstrated that the algorithm using the partition of 
positional space of the target objects outperformed the simple 
algorithm that does not involve space partition. The method 
using both positional space and normal space partitioning 
outperformed the method using the positional space partition 
only.  

The contributions of this paper include a novel δ – 
occlusion concept for occlusion check for point cloud, and the 
method of hierarchically partitioning both positional space and 
surface normal space for occlusion detection. 

The algorithms can be enhanced in a few ways in the 
future. We will investigate the sequence of split axis involving 
both position and surface normal. Currently, a fixed sequence is 
used and this may not be the best split sequence. We will 
investigate the optimal size of the points in the leaf node of the 
k-d tree. We will investigate the use of different boundary box 
representation, such as discrete orientation polytope, instead of 
axial-parallel boundary box. 
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