
Computer-Aided Design 41 (2009) 81–94
Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Direct boolean intersection between acquired and designed geometry
Pinghai Yang, Xiaoping Qian ∗
Department of Mechanical, Materials and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL, 60616, United States

a r t i c l e i n f o

Article history:
Received 11 April 2008
Accepted 31 December 2008

Keywords:
Shape modeling
Point-sampled geometry
Surface intersection
Boolean operations

a b s t r a c t

In this paper, a new shape modeling approach that can enable direct Boolean intersection between
acquired and designed geometry without model conversion is presented. At its core is a new method
that enables direct intersection and Boolean operations between designed geometry (objects bounded by
NURBS and polygonal surfaces) and scanned geometry (objects represented by point cloud data).
We use the moving least-squares (MLS) surface as the underlying surface representation for acquired

point-sampled geometry. Based on the MLS surface definition, we derive closed formula for computing
curvature of planar curves on the MLS surface. A set of intersection algorithms including line and MLS
surface intersection, curvature-adaptive plane and MLS surface intersection, and polygonal mesh and
MLS surface intersection are successively developed. Further, an algorithm for NURBS and MLS surface
intersection is then developed. It first adaptively subdivides NURBS surfaces into polygonal mesh, and
then intersects the mesh with the MLS surface. The intersection points are mapped to the NURBS surface
through the Gauss–Newton method.
Based on the above algorithms, a prototype system has been implemented. Through various examples

from the system, we demonstrate that direct Boolean intersection between designed geometry and
acquired geometry offers a useful and effective means for the shape modeling applications where point-
cloud data is involved.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Rapid advancement of 3D sensing technologies has spurred
the growing interest in shape modeling from scanned point-cloud
data [1] as evidenced by growing need for reverse engineering
of physical artifacts in automotive, aerospace, consumer product
and entertainment industries, and increasing practice of patient-
specific biomedical implants, customer-specific product design
and manufacturing (e.g., apparel and footwear). Shape modeling
from scanned geometry is usually based on polygonal models after
a set of pre-filtering and post-processing steps that reconstruct
polygonal models from noisy point-cloud data. Shape modeling
based on non-uniform rational B-spline (NURBS) surfaces, the
standard surface representation in CAD systems, reconstructed
from scanned geometry requires a further laborious patch layout
and fitting process. These multiple steps make it hard to maintain
error bound in the complexmodeling pipeline.Many of these steps
require substantial human intervention, andmake it inefficient for
many applications.
This paper aims to develop techniques toward the goal of direct

shape modeling from acquired and design geometry. Here direct
shape modeling refers to a shape modeling approach that enables

∗ Corresponding author. Tel.: +1 312 567 5855.
E-mail address: qian@iit.edu (X. Qian).

0010-4485/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cad.2008.12.006
shape modeling with the native representations of acquired
geometry (i.e. discrete points) and designed geometry (i.e. NURBS
surfaces and triangle mesh) without representation conversion.
Such a shape modeling capability can potentially benefit a host of
product development applications such asmass customization and
product redesign where designed geometry frequently interacts
with the acquired geometry.
An example application is shown in Fig. 1 where a customer-

specific headform for chemical masks is developed in leak testing.
In this example, the base template part is created in a CAD
system. The mask surface shape comes from customer-specific
faces. Existing approach would involve a lengthy point-cloud
cleaning process prior to the polygonal model reconstruction,
and a laborious and error-prone NURBS surface reconstruction
before the reconstructed head model is imported into a geometric
modeling system for Boolean operations with the designed
template to produce the customer-specific headform. Fig. 1(c)
presents the result from our direct Boolean intersection. The direct
Boolean intersection operation between the design model and the
acquired point cloud has led to substantial time reduction in design
and prototyping (details are in Section 7.3). The final computer
model is shown in Fig. 1(c) and the resulting fabricated custom-
part is shown in Fig. 1(d).
More specifically, we use the moving least-squares (MLS)

surface as the underlying surface representation for acquired
point-sampled geometry in the shape modeling operations. The
key to our direct Boolean intersection is a new algorithm for

http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
mailto:qian@iit.edu
http://dx.doi.org/10.1016/j.cad.2008.12.006

82 P. Yang, X. Qian / Computer-Aided Design 41 (2009) 81–94
Fig. 1. Designing andmanufacturing of a customer-specific headform: (a) Physical
mask, (b) Acquired headmodel and the designedmask template. (c) Direct Boolean
intersection result. (d) Rapid prototyped part from the intersection resultingmodel.

line/MLS surface intersection, which is based on the projection
property of the MLS surfaces. The intersection between a NURBS
surface and an MLS surface is through a subdivision process,
a marching process, and a mapping process. We adaptively
subdivide a NURBS surface into a planar triangular mesh that
is denser at intersection regions and sparser at non-intersection
regions. The intersection between a triangular mesh and an
MLS surface is through a curvature-adaptive marching process
that produces a series of intersection points with the separation
distance adaptive to the local curvature. This intersection process
can handle both opening branches and closed internal loops.
The resulting intersection points are then mapped back to the
NURBS surface and hence reside on both the MLS and NURBS
surfaces. Intersection curves generated from these points are used
in Boolean operations between objects defined by NURBS andMLS
surfaces.
Since the polygonal mesh is an intermediate model used for

NURBS/MLS surface intersection, our method thus supports shape
modeling from designed geometry in either NURBS or polygonal
forms or any other surface representations that can be converted
into the polygonal form. Since an MLS surface has the intrinsic
ability to handle noisy input, ourmethod supports shapemodeling
directly from acquired geometry in its native point form without
any pre- or post-processing steps.
The contribution of our work includes the components

mentioned below.
• Mathematically, closed formula for direct curvature computing
in planar curves is derived. Through the implicit definition
of an MLS surface, we derive a formula for curvature
computing for planar curves that lie on the MLS surface. This
enables the development of subsequent efficient (i.e. curvature-
adaptive) and accurate (i.e. error-bounded) surface intersection
algorithms.
• Computationally, algorithms for intersecting an MLS surface
with lines, planes, polygonal mesh and NURBS surfaces are
given.
• Application-wise, this paper contributes a method that enables
direct Boolean intersection between designed and acquired
geometry.

The rest of this paper is structured as follows. Section 2
presents relatedwork. Section 3 reviews theMLS surface definition
and presents how it enables closed formula for direct curvature
computing in planar curves. Section 4 details the projection-
based line/MLS surface intersection and the curvature-adaptive
plane/MLS surface intersection. Section 5 introduces the triangular
mesh/MLS surface intersection. Section 6 presents the NURBS/MLS
surface intersection. Section 7 presents the experimental results.
Discussion on threshold parameters used in the intersection
process is in Section 8. This paper concludes in Section 9.

2. Related work

Shape modeling from point-sampled geometry has recently
gained popularity. A number of point-based representations, such
as surfel [1,2] and MLS [3–5], have been proposed and proven to
be successful in point-based 3D modeling and rendering. Based
on these representations, algorithms for surface intersections and
Boolean operations on point-sampled geometry are developed:
e.g. point-based shape editing in Pointshop3D [6], Adams et al.
presented an algorithm to perform interactive Boolean operations
on free-form solids bounded by surfels [7]; Pauly et al. presented
an MLS-based free-form shape modeling framework for point-
sampled geometry [1]. Yang and Qian presented a method for
computing surface curvatures in MLS surfaces [8].

Surface/surface intersection is an important problem in shape
modeling. In the area of CAD/CAM, the problem of parametric
NURBS surface intersection has been widely investigated. The
methods can be categorized in two major types: subdivision
based [9,10] and marching based [11,12]. In subdivision-based
algorithms, the surfaces are subdivided into a large number of
facets and the intersection of surfaces is approximated by the
intersection of the facet pairs. In marching algorithms, the basic
idea is to trace the points on the intersection curve from a starting
point known to be on the intersection curve.
However, to the best of our knowledge, no work on surface in-

tersection and Boolean operations between the designed geometry
(NURBS surfaces) and acquired geometry (point-sampled geome-
try) has been reported in the literature.

3. MLS surface definition and closed curvature formula for
planar curves on an MLS surface

This section first gives a brief introduction on the definition of
an MLS surface [4,13–15,3], which forms the basis of our line/MLS
surface intersection in Section 4.1. Based on our earlier work on
curvature computing in MLS surfaces [8], we then give a closed
formula for computing the curvature for planar curves on the MLS
surface, which forms the basis for curvature-adaptive plane/MLS
surface intersection algorithm in Section 4.2.

P. Yang, X. Qian / Computer-Aided Design 41 (2009) 81–94 83
Fig. 2. Illustration of the MLS projection process.

3.1. Projection-based MLS surfaces

Levin [15,3] defined an MLS surface S as the stationary set of a
projection operator ψP , i.e.,

S =
{
x ∈ R3 | ψP(x) = x

}
. (1)

Upon such a projection operation, a point on the MLS surface
is projected onto itself. Such projection-based MLS surfaces are
referred to as projection MLS surfaces. Amenta and Kil [4,13]
gave an explicit definition for projection MLS surfaces as the local
minima of an energy function e(y, a) (y is a position vector and a
is a direction vector) along the directions given by a vector field
n(x), as shown in Fig. 2. Based on this definition, they derived
a projection procedure for taking a point onto the MLS surface
S implied by n and e, which can be summarized and intuitively
illustrated in Fig. 2.
For details of this projection procedure, please refer to [4,

13]. Here we briefly present two key points in this procedure:
evaluating the normal direction through a vector field n(x) and
searching for the local minimum of an energy function e(y,n(x)).
When evaluating the normal vector, we assume that the normal

information at each input point data is available. This assumption
is naturally true, when the input data is a set of surfels. When the
normal information is not readily available as in some applications,
we can easily compute this normal information, for example
through eigen analysis. Then we can compute a normal vector for
any point with the normals of the nearby sample points, i.e., define
a normal vector field as the normalized weighted average of the
normals at the sample points. Suppose a normal vector vi is
assigned to each point qi ∈ R3 of an input point set Q, we have:

n(x) =

∑
qi∈Q

viθ(x, qi)∥∥∥∥∥∑qi∈Q viθ(x, qi)
∥∥∥∥∥

(2)

where

θ(x, qi) = e
−‖x−qi‖

2
/h2 (3)

is a Gaussian weighting function, where h is a scale factor that
determines the width of the Gaussian kernel [14].
In the jth iteration of the overall projection process, we need to

search the local minimum xj+1 of an energy function along a line
lxj,n(xj) given by xj and n(xj), as shown in Fig. 2. Such an energy
function e : R3 × R3 → R can be defined as

e(y,n(xj)) = e(y) =
∑
qi∈Q

(
(y− qi)

Tn(xj)
)2
θ(y, qi). (4)

To facilitate the search of the local minimum, we can substitute
y = xj+t ·n(xj) into Eq. (4) and restate it as a function of variable t:

e(t) =
∑
qi∈Q

(
(xj − t · n(xj)− qi)

Tn(xj)
)2
θ(xj − t · n(xj), qi).
With a vector field n(x) and an energy function e, we now
have an elegant scheme to project a point onto an MLS surface. To
improve the efficiency of this scheme, we adopt a standard data
sorting algorithm based on the k–d tree structure [16] to identify
the neighbors of a given point. This structure also benefits the
leaf patch classification in Section 5.1. Throughout the rest of this
paper, this projection-based MLS scheme will be used for locally
approximating the underlying surface from a set of sample points.

3.2. Computing curvature of planar curves in an MLS surface

We presented a set of analytical equations for direct computing
surface curvatures [8] frompoint-set surfaces based on the implicit
definition of an MLS surface. Applying the same method, we
present below the analytical curvature formula for planar curves,
which is the key in determining the error-bounded curvature-
adaptive step length in the plane/MLS surface intersection process.
In this method, the native form of MLS is first converted into

an implicit form. It has been proved in [4] that the MLS surface
is actually the implicit surface given by the zero-level set of the
implicit function

g(x) = n(x)T
(
∂e(y,n(x))

∂y

∣∣∣∣ y = x
)

(5)

where n : R3 → R3 is the vector field defined by Eq. (2) and
e : R3 × R3 → R is the energy function defined by Eq. (4). Let
x =

(
x y z

)T, then any planar curve on this MLS surface can be
defined as the intersection between the MLS surface and a plane:

{g(x) = g(x, y, z) = 0} ∩ {h(x) = Ax+ By+ Cz + D = 0} .

For a more elegant expression of this planar curve, we can
transform the plane so that the plane h(x) = 0 is transformed to
the xy-plane

_
h (x) = z = 0. Then the expression for the implicit

curve will reduce to
_g (x, y) = _n ((x y 0)T)T

×

 ∂ _e (y, _n)((x y 0)T)
∂y

∣∣∣∣(
x y 0

)T
 = 0, (6)

which is only a function of variable x and y (since z = 0 in the
xy-plane).
Applying a curvature formula given in [17], we have the

curvature of this implicit planar curve as

k = −
T (_g (x, y))T · H(_g (x, y)) · T (_g (x, y))

‖∇
_g (x, y)‖

(7)

where T is the unit tangent vector of the implicit curve _g (x, y) as

T (_g (x, y)) =

(
−
∂ _g (x, y)
∂y

∂ _g (x, y)
∂x

)T
∥∥∥∥∥
(
−
∂ _g (x, y)
∂y

∂ _g (x, y)
∂x

)T∥∥∥∥∥
and

∇
_g (x, y) =

(
∂ _g (x, y)
∂x

∂ _g (x, y)
∂y

)T
is the gradient of _g (x, y), H(_g (x, y)) = ∇(∇(_g (x, y))) is the
Hessian matrix of _g (x, y). Notice that

T (_g (x, y)) =
T · ∇ _g (x, y)
‖∇

_g (x, y)‖

84 P. Yang, X. Qian / Computer-Aided Design 41 (2009) 81–94
where T is a 2× 2 matrix defined as

T =
[
0 −1
1 0

]
.

Hence, the curvature formula of Eq. (7) can be simplified as

k = −
(T · ∇ _g (x, y))T · H(_g (x, y)) · T · ∇ _g (x, y)

‖∇
_g (x, y)‖3

. (8)

The specific expressions for ∇ (_g (x, y)) and H(_g (x, y)) are in the
Appendix.

4. Intersection of an MLS surface with a line and a plane

The intersection of anMLS surface with a line and a plane forms
the basis for our approach in direct Boolean intersection.

4.1. Intersection of an MLS surface with a line

The line/MLS surface intersection has been discussed in the
context of ray tracing in [18], where the intersection point is
generated as the intersection of a local polynomial and the ray.
As such, miss-shooting of the ray with the surface may occur.
However, since in this paper we adopt a different definition of the
MLS surface [4,13], where the fitting of a local bivariate polynomial
is omitted, we must develop a new method for line/MLS surface
intersection.
Recall the definition of the MLS surface in Eq. (1) that the MLS

surface S is the stationary set of a projection operator ψP . We can
easily realize that for any point x on the MLS surface S, we have

‖ψP(x)− x‖ = 0. (9)

Then the problem of computing the intersection point p of a
line l with the MLS surface S can be transformed to finding a root
of Eq. (9) over the set x ∈ l. Suppose the line l can be defined by a
point c and a directional vector n, this root finding problem can be
further reduced to a 1D problem by substituting x = c + t · n
into Eq. (9), where t is the only variable. In this paper, Brent’s
method is implemented to solve this 1D root finding problem,
which combines root bracketing, bisection, and inverse quadratic
interpolation to converge from the neighborhood of a zero crossing
and is suitable for this kind of 1D root finding problems [19].
When multiple intersection points exist, different initial points

are needed to find all intersection points of a line l with the MLS
surface S. We use the following strategy to generate these initial
points: Find all points of the input point data inside a query range,
i.e., having a distance to the line l within a prescribed distance ε0
(e.g., blue circles shown in Fig. 3). The assumption here is that each
projected point on the MLS surface is maximally at ε0 distance
away from its closest sample in the point cloud.
Then project all these points onto the line l. These projected

points will be chosen as initial points (e.g., blue solid circles shown
in Fig. 3). Note that it is possible that the Brent’s algorithm started
at several different initial points may converge to the same point,
e.g., in Fig. 3, the left two initial points converged to the left
intersection point (represented by a red star) and the right three
initial points converged to the right intersection point. In this case,
weneed further check the resulting intersectionpoints and remove
the redundant points.

4.2. Intersection of an MLS surface with a plane

In this paper, we adopt a marching approach to computing
the plane/MLS surface intersection. In this marching approach, the
intersection curve(s) is defined in the following way: first find a
starting point on the intersection curve and then adaptively march
Fig. 3. Strategy for generating different initial points for locatingmultiple line/MLS
surface intersection points: points that are ε0 distance away from the line are
projected onto the line and the projected points are then used as the starting
points to find the intersection points between the line and the MLS surface. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 4. Strategy for locating the starting points for the marching process in
plane/MLS surface intersection: points that are ε0 distance away from the plane
are projected onto the plane and the projected points are then used as the initial
points to find the intersection points between the line and the MLS surface. These
intersection points become the candidate starting points for the marching process.

along this curve to get successive intersection points. The line/MLS
surface intersection approach described in the previous section
is used to determine both the starting points for marching and
the intersection points between successive marching lines and the
MLS surface. The separation distances between successive lines are
adaptive to the curvature in the planar curve on theMLS surface so
that the process produces the intersection contour with bounded
error.

4.2.1. Finding starting points for the marching process
Here is the strategy we used to find starting points. First, find

all points of the input point data inside a query range, i.e., having a
distance to the input planewithin a prescribed distance ε0. Second,
project these points onto the plane and use the projected points
as initial points. Third, for each of these initial points ci, apply
the MLS projection algorithm introduced in Section 3 and get the
corresponding point c′ i on the MLS surface. Then use the following
formula to calculate the direction vector for the intersection line li:

ni = (n′ i × nH)× nH
where n′ i is the normal of the MLS surface at c′i and nH is the
normal of the plane H . This direction vector ni corresponds to the
MLS surface point c′i ’s normal projected onto the plane H . Hence,
intersection line li can be defined by the initial point ci and the
direction vector ni. Finally, apply the line/MLS surface intersection
algorithm to get the intersection point of the line li and the MLS
surface S as a candidate starting point. If this candidate point has
a distance to all previous intersection curves larger than a given
threshold, it will be accepted as a new starting point. With this
strategy, multiple starting points can be identified when multiple
intersection loops exist as shown in Fig. 4.

4.2.2. Curvature-adaptive marching for the plane/MLS surface
intersection
In this section, we propose a new methodology to march

along each intersection curve to get the successive intersection

P. Yang, X. Qian / Computer-Aided Design 41 (2009) 81–94 85
Fig. 5. Illustration of adaptive marching in plane/MLS surface intersection. (a) Iso-
view of a point data with resulting 2D contour on a slicing plane. (b) Top-view of
the slice at z = 0.1. (c) Zoom-in.

points with adaptive step length calculated based on the analytical
curvature formula for planar curves derived in Section 3.2.
Such curvature-adaptive step length in the marching process
circumvents the tradeoff between the intersection accuracy which
requires smaller step length and the algorithm efficiency which
requires larger step length. This marching algorithm can be
summarized as the following steps:
STEP 1: Given an input point set Q, an input plane H , and an initial
line l0 defined by a starting point p0 and a direction vector n0
obtained as in Section 4.2.1. Let i = 0;
STEP 2: Determine a new line li+1 on the plane H , based on a
computed step length adaptive to the local curvature on the planar
curve on the MLS surface;
STEP 3: Calculate the intersection point pi+1 of the MLS surface S
and the line li+1;
STEP 4: Check the stop condition. If true, stop this process and
output P = {p0, p1, . . . , pi+1} as the resulting 2D contour. Else let
i = i+ 1 and go back to STEP 2.
In STEP 1, the point p0 is the starting point computed in the

previous section and the initial line l0 is the line used to compute
p0.
In STEP 2, to determine a new line li+1, we first set up a Frenet

frame at point pi as shown in Fig. 5, where ni denotes the direction
vector of li. Then we can get a point ci+1 by translating pi along the
direction perpendicular to ni:

ci+1 = pi +1p · ti
where ti is the unit vector perpendicular ni, 1p is the step length.
To compute the step length 1p, we first approximate the planar
section of the MLS surface S at point pi as an osculating circle,
as shown in Fig. 6. Then, from Fig. 6, we can derive the following
formula to calculate the step length1p:

1p = 2 ·
√
r2 − (r − δs)2 = 2 ·

√
2 · r · δs − δ2s (10)

where δs is a prescribed approximation error bound for the
intersection curve, r = 1/ |k| is the radius of the osculating circle
at pi and k is the curvature computed by Eq. (8) at pi of the
planar curve that lies on both the plane H , and the MLS surface
S. Additionally, a minimum radius rmin and a maximum radius
Fig. 6. Computing error-bounded step length1p based on an osculating circle.

rmax can be given to limit the permissible radius r to ensure the
robustness of the formula in some special cases. For example,
setting rmin = δs would avoid the potential negative value inside
the square root in Eq. (10); setting a value for rmax could prevent
an over-sized step length since overly un-even distribution of
intersection points may cripple many curve interpolation and
approximation algorithms when a smooth intersection curve is
desired. Finally, by estimating the normal ni+1 at ci+1, we can
determine the line li+1 with ci+1 and ni+1, i.e., li+1 = lci+1,ni+1 .
In STEP 3, the intersection point pi is generated by applying the

line/MLS surface intersection algorithm.

Remark. The above line/MLS and plane/MLS surface intersection
algorithms are resolution complete. That is, our algorithm is
guaranteed to find all intersection points/curves if the resolution
(point spacing) of the input point data is fine enough.

5. Adaptive intersection of an MLS surface with a triangular
mesh

With the above plane/MLS surface intersection algorithm, we
can extend it to the intersection between a triangular mesh and an
MLS surface with some minor changes. It has two main steps:
(a) Intersect each individual triangle with theMLS surface defined
by the input point cloud to get all the intersection curve
segments in a discrete form (polyline);

(b) Sort and link the discrete curve segments to construct polylines
defining the intersection curve.
In the following sections, we will focus on the first step, where

a triangle can be treated as a bounded plane. Due to the existence
of the three boundary edges, the intersection curves of a triangle
and an MLS surface can be categorized into two main types: (1)
internal loops and (2) open branches, as shown in Fig. 7. However,
there is only one type of intersection curves for a plane and anMLS
surface, which is corresponding to the internal loops for triangle-
MLS surface intersection.

5.1. Finding starting points for open branches

For an open branch, a starting point is an intersection point
between the triangle edges with the MLS surface, which can be
obtained by the line/MLS surface intersection algorithm. Notice
any starting points outside the range of the edges are omitted.

5.2. Finding starting points for internal loops

For an internal loop, we can inherit the strategy of finding
starting points in plane/MLS surface intersection algorithm.
However, notice, (1) instead of finding all points of the input point
data that have a distance to the input plane within a prescribed
distance ε, we find all points that have a distance to the input
triangle within ε; (2) candidate starting points outside the triangle
are omitted.

86 P. Yang, X. Qian / Computer-Aided Design 41 (2009) 81–94
Fig. 7. Types of intersection curves.

Fig. 8. Curvature-adaptivemarching for triangle/MLS surface intersection. (a)Open
branches. (b) One internal loop.

Fig. 9. Intersection between a triangle and an MLS surface resulting in multiple
open branches and internal loops.

5.3. Curvature-adaptive intersection

The curvature-adaptive marching algorithm for plane/MLS
surface intersection can be directly applied to the triangle/MLS
surface intersection once the starting points are identified.
Fig. 8 shows examples of curvature-adaptive triangle/MLS surface
intersection, where the triangle is drawn in green, the point cloud
in yellow, and the red points represent the output contours of the
adaptive marching algorithm. We can see that the distribution of
the points is curvature-adaptive.
Fig. 9 shows a more complicated example of the intersection

between a triangle and anMLS surface, which results in three open
branches and three internal loops.
Repeated use of the triangle/MLS surface intersection would

then result in the intersection contours between a triangular mesh
and an MLS surface. Examples are shown in Section 7. Note, the
connectivity of triangle edges in the mesh is recorded to avoid the
duplicate intersection between edges from adjacent triangles and
the MLS surface.
6. Intersection and Boolean operations between NURBS and
MLS surface models

The intersection and Boolean operations between design
geometry (NURBS surfaces) and acquired geometry (an MLS
surface) is achieved by first adaptively subdividing the designed
geometry (e.g., NURBS surfaces) into a set of planar triangles and
then applying the above triangular mesh/MLS surface intersection
algorithm, which ensures the generality of our intersection
algorithm for shape modeling from the combined design and
acquired geometry.
These are the steps of our algorithm.

1. Adaptive subdivision of NURBS surfaces:
(a) Generate an adaptive quad-tree structure for the input
NURBS surfaces;

(b) Create a triangular mesh for the potentially intersecting
region based on this tree structure.

2. Adaptive intersection of a triangular mesh and an MLS surface.
3. Mapping the intersection points to the NURBS surfaces and
represent each intersection curve in either the polyline form or
the NURBS curve form.

4. Set membership classification for Boolean operations.

6.1. Adaptive subdivision of NURBS surfaces for accurate and efficient
intersection

Since ourNURBS/MLS surface intersection is basedonplane/MLS
surface intersection, we subdivide the NURBS surfaces into a set of
patches and then divide those patches that can potentially inter-
sect with the MLS surface into planar triangles.
Two governing factors that affect the subdivision process are

accuracy and efficiency. In order to assure the accuracy of the
intersection, the patch subdivision continues until the subdivided
triangle mesh represents the underlying NURBS accurately within
a bounded error. In order to improve the efficiency of NURBS/MLS
surface intersection, we adaptively subdivide the NURBS. That is,
the NURBS patches are only subdivided when they can potentially
intersect with the MLS surface and triangles are only generated
from those patches that can potentially intersect with the MLS
surface.
Fig. 10 shows a triangle mesh (blue) generated from a

NURBS surface (green) by the adaptive subdivision algorithm. The
resulting mesh encompasses the intersection contour between
the NURBS surface and a point-set surface (yellow). Gray curves
represent the boundary curves of all leaf surface patches of the
quad-tree constructed on the input NURBS surface. It can be seen
that patches closer to the intersection contour are smaller and have
gone though more times of subdivision. Planar triangles are only
generated from the leaf patches that can potentially intersect with
the MLS surface.
We now detail the adaptive subdivision process. We first

construct a quad-tree based on the adaptive NURBS surface
subdivision algorithm. We start with one NURBS surface patch as
the root node of the quad-tree. This node is recursively split into
four children in the parametrical domain until at least one of the
following two conditions is satisfied:
• it deviates from a ‘‘best fit’’ plane within a given tolerance;
• it has no intersection with the input point-set surface.

Meanwhile, all the leaf nodes of the quad-tree are classified into
two types, i.e., non-intersection patches and intersection candidate
patches according to the testing result of the second criterion,
where non-intersection denotes a patch has no intersection with
the input point-set surface and intersection candidate denotes a
patch may intersect with the input point-set surface. Through
this classification, the amount of actual intersection operation is
reduced and it makes our algorithmmore efficient in terms of both
time and memory space.

P. Yang, X. Qian / Computer-Aided Design 41 (2009) 81–94 87
Fig. 10. Adaptive subdivision of a NURBS surface ensuring accurate and efficient
NURBS/MLS surface intersection: Patches closer to the intersection curves undergo
more times of subdivision. Planar triangles are only generated from the leaf parches
that can potentially intersect with the MLS surface. (a) Top-view. (b) Iso-view. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 11. Two criteria for leaf node identification in quad-tree construction.
(a) The patch needs to be further subdivided due to the larger planar distance of
the bounding volume according to the 1st condition. (b) The patch is identified as a
leaf patch due to the smaller planar distance of the bounding volume according to
the 1st condition. (c) The patch needs to be further subdivided according to the 2nd
condition. (d) A patch is identified as a leaf patch according to the 2nd condition.

After the construction of the quad-tree structure, the final
triangle mesh can be easily generated by dividing each of the
intersection candidate patches into two triangles, where the two
triangles share two diagonal points of the patch.
Now we will explain the two criteria of quad-tree construction

in detail. For clarity ideas presented here are illustrated in 2D, but
they are easily extendable to 3D.
Both conditions need to utilize a bounding volume of the input

NURBS surface. In this paper, instead of an axis aligned bounding
box for the input NURBS surface, we use a tight parallelepiped
(parallelogram for 2D cases) as the bounding volume (as shown
in Fig. 11), because the axis aligned bounding box generally
overestimate the enclosed patches, thus leading to unnecessary
subdivisions and intersection tests. Such a parallelepiped is
constructedwith the help of intervals of the partial derivatives and
the mean value theorem of differential calculus [20].
The first condition is used to control the maximum deviation

between the final trianglemesh and the underlyingNURBS surface.
To simplify the computing of such deviation, we turn to control the
smallest distance ds between all pairs of parallel planar faces of the
Fig. 12. Procedure for refining an intersection point between a NURBS surface
and an MLS surface. Let point p (blue circle) be an intersection point between the
MLS surface and the triangular mesh generated from the NUBS surface. Based on
its barycentric coordinates, the point is mapped onto the NURBS surface as the
point p̄ (red solid circle), then it is refined into point pt (red pentacle) with the
Gauss–Newtonmethod. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

bounding parallelepiped of the testing patch (parallel edges of the
boundingparallelogram for 2D cases as shown in Fig. 11(a) and (b)).
If ds is larger than a specified error bound δ0, the testing patch will
be divided into four subpatches; otherwise, this testing patch will
be kept as a leaf node of the quad-tree.
The second condition is used to classify the leaf patches of

the quad-tree structure. Here is an easy way for leaf patch
classification: first set-up a bounding parallelepiped for the testing
patch, then check if there is at least one point of the point-set
surface inside an enlarged bounding parallelepiped. If yes, this
patch is classified as an intersection candidate patch; otherwise it
is classified as a non-intersection patch. Note, the bounding volume
is enlarged by a threshold value ε0 on each side to improve the
robustness of the algorithm. A 2D example of such classification
is shown in Fig. 11(c) and (d). Fig. 11(c) also illustrates potential
false classification without the threshold ε0 due to a relatively low
sampling density of the input point data.

6.2. Adaptive intersection between the triangular mesh and the MLS
surface

With the above obtained triangular mesh, the algorithm for
mesh and MLS surface intersection described in Section 5 is then
applied.

6.3. Intersection point mapping and intersection curve generation

The accuracy of intersection points from the above algorithm
is bounded by the user-specified triangulation error δ0. However,
the intersection points between the triangular mesh and the MLS
surface may not lie exactly on the corresponding NURBS surface,
due to the approximation error between the triangular mesh and
the NURBS surface, as shown in Fig. 12. We introduce below a set
of steps to obtain accurate intersection points that lie on both MLS
and NURBS surfaces. Due to the accurate mapping to the NURBS
surface, this makes the overall intersection process robust, i.e. the
accuracy does not depend on the user-specified triangulation error
δ0.
STEP 1: Directly mapping the intersection points onto the input
NURBS surface. To do this, we adopt the following method based
on barycentric coordinates: For each intersection point p, we can
find the triangle that contains p. We know the (u, v) parameter
values for each vertex in the NURBS surface subdivision process.
Let barycentric coordinates ofpwith respect to a particular triangle
T are α1, α2 and α3, the projected parameter of p can be obtained
as,

(ū, v̄) =
3∑
i=1

αi(ui, vi)

88 P. Yang, X. Qian / Computer-Aided Design 41 (2009) 81–94
where T ’s vertices have parameter values (ui, vi). Then the point p
can be mapped onto the underlying NURBS surfaces by computing
the surface point for the parameter value (ū, v̄).
STEP 2: Adjusting the projected points. Having finished the
projection procedure, the projected points are located on the input
NURBS surfaces but, in general, not on the MLS surface. Denote a
mapped point by p̄ = f(ū, v̄), where

f(u, v) = (x(u, v), y(u, v), z(u, v))

presents the corresponding NURBS surface. We evaluate the
deviation between p̄ = f(ū, v̄) and the MLS surface by
‖ψP(x)− x‖. If this deviation exceeds the given tolerance δs, a
refinement must be performed by solving the non-linear system{
g(x) = 0
x = f(u, v) (11)

where g(x) is the implicit function of the MLS surface, which is
given in Eq. (5). Note, the initial parameter values (ū, v̄) is already
a good approximation of the parameter values (ut , vt) of the true
intersection point pt and the Jacobian matrix of g over (u, v) can
be analytically obtained by

J (g(f(u, v))) = ∇Tg(f(u, v)) · ∇f(u, v),

where ∇g is available in [8] and ∇f is the standard NURBS surface
derivative given in [21]. This non-linear system can be efficiently
solved using the Gauss–Newton optimization method [22], where
the refined parameter values (ut , vt) can be iteratively calculated
by(
u(k+1)t , v

(k+1)
t

)T
=
(
J(k)T · J(k)

)−1
· J(k)T ·

(
J(k) ·

(
u(k)t , v

(k)
t

)T
− g

)
,

where k is the iteration number.
STEP 3: Refining the intersection points and approximating
intersection curves. After adjusting, the resulting points will serve
as the point array for constructing intersection curves by fitting
(interpolation or approximation) technique.
Obviously, the deviations between the approximated curves

and the theoretical curves at those projected points are within
a given tolerance. However, the deviation in the corresponding
intervals still needs further examination by an intersection point
refinement process.
For convenience, we consider that the maximum deviation in

every interval is located at the middle point. For example, in in-
terval between points (u0, v0) and (u1, v1) on the parametrical
domain, the point with the maximum deviation is (ū1/2, v̄1/2) =
((u0 + u1) /2, (v0 + v1) /2). Similarly, we can evaluate the devia-
tion between p̄1/2 = f(ū1/2, v̄1/2) and the MLS surface by Eq. (9).
If this deviation exceeds the given tolerance, a new intersection
point should be added, which is generated by solving Eq. (11) with
an initial point of p̄1/2 = f(ū1/2, v̄1/2).
The final intersection points are obtained by repeating this

process for all the intervals, which will then be used to fit the
satisfied intersection curves.
Discussion: In the above three steps, the first step is necessary to
provide a good initial guess to obtain the intersection points on the
NURBS surface.
The second step overcomes the triangular approximation of

the NURBS surface by finding accurate intersection points through
directly solving the non-linear equation. Therefore, when the
triangular mesh is not fine enough, e.g. due to the selection of a
large triangulation error bound δ0, the intersection inaccuracy due
to the triangular approximation is eliminated in STEP 2.
The third step ensures accurate distribution of intersection

points even when the marching step length is too large due to the
selection of a large marching error bound δs or the discrepancy
between planar curves on the triangular plane and the NURBS
surface. That is, the deviation in every interval can be reduced in
STEP 3.
Therefore, through the above three steps, the overall algorithm

forNURBS/MLS surface intersection is less sensitive to the selection
of the two error bounds, δ0 and δs than otherwise.

6.4. Boolean operations between the NURBS and MLS surface models

With the above method for intersecting NURBS surfaces with
an MLS surface via a triangular mesh, we can easily extend it to
Boolean operations between design geometry bounded by NURBS
and polygonal surfaces and acquired geometry bounded by anMLS
surface.
The results of Boolean operations are defined by the original

surfaces and the resulting boundaries. For example, a trimmed
MLS surface is composed of the original MLS surface and a set
of boundary points, which are analogous to the boundary ‘‘p-
curves’’ in NURBS surface trimming. Note, the linear interpolation
of intersection points approximates the true intersection curve
with bounded error since the distribution of intersection points
are adaptive to local curvature. The original MLS surface is now
described only by points bounded by the boundary curve and
the points outside the boundary curve but within the Gaussian
compact support region of the boundary points.
During the rendering process, the surface points outside the

trimming boundary is removed, which is achieved by set mem-
bership classification. The classification method for classifying a
subset of a point set against NURBS and polygonal surfaces is com-
monly available, for example, in [23]. The classification of subsets
of NURBS and polygonal models against an MLS surface is done by
sampling points in the NURBS patches or polygons and classifying
them against the MLS surface. The method for the point/MLS sur-
face classification is available in [1].

7. Implementation and examples

We have implemented the algorithms presented in this paper
with Visual C++ 6.0. We used ACIS as the solid modeling kernel to
model designed geometry and used both synthetic point cloud and
acquired real point-cloud data as acquired geometry. We present
below a few examples highlighting the direct Boolean intersection
results based on our implementation.

7.1. Mesh/MLS surface intersection (Example 1)

Fig. 13 presents an example of intersection between a polygonal
mesh and a point-set surface. This example demonstrates the
ability of our algorithms in directly handling the intersection
between polygonal andMLS surfaces. The time efficiency is shown
in Table 2.

7.2. NURBS/MLS surface intersection (Examples 2 and 3)

The second example is on NURBS/MLS surface intersection
and is depicted in Fig. 14. Fig. 14(a) shows the original NURBS
model of a human head, composed of 54 NURBS patches in blue;
Fig. 14(c) and (d) show the result of a cut-and-paste operation:
the ear has been extracted from the Max Planck model and pasted
onto the NURBSmodel. This example demonstrates that our direct
Boolean intersection can handle intersection between multiple
NURBS surfaces and an MLS surface.
Fig. 15 shows the third example on Boolean operations between

a NURBS model (the airfoil) and a point-cloud data (the turbine
blade). In this example, a new turbine blade is designed based on
a point cloud scanned from an old turbine blade (Fig. 15(a)) and
a newly designed airfoil (Fig. 15(b)), which illustrates how a new
design problem is efficiently and effectively addressed by reusing

P. Yang, X. Qian / Computer-Aided Design 41 (2009) 81–94 89
Fig. 13. Example 1: Intersection between polygonal and point-set surfaces.
(a) Triangular mesh of a reducer. (b) Point-set surface of a dragon. (c) Left-front-
view of the intersection result. (d) Zoom-in of the result in (c).

Fig. 14. Example 2: Intersection of a NURBS ‘‘head’’ and the point-set ‘‘Max Planck
bust’s ear’’. (a) Original NURBS surfaces of a head. (b) Original point-set surface of
Max Planck bust. (c) Intersection result. (c) Zoom-in to the intersection region.

the previous design knowledge (the platform of the old turbine
blade) and bypassing the tedious model reconstruction process
(with our hybrid Boolean operation algorithm).

7.3. Custom headmask development (Example 4)

Let us recall the modeling and manufacturing of a customer-
specific headform (shown in Fig. 1), which involves the proposed
Fig. 15. Example 3: Boolean operation of a NURBS ‘‘airfoil’’ and a point-set
‘‘platform’’. (a) Iso-view of a whole scanned turbine blade. (b) Iso-view of the
platform of the scanned turbine blade and a newly designed airfoil. (c) Iso-view
of the Boolean result.

direct modeling approach. Row 1 of Table 1 represents two ac-
quired geometry and their Boolean operation with the designed
model. The designed model has undergone parametric modifica-
tion from Model A (same as in Fig. 1) to Model B in a CAD system.
In current NURBS-based modeling approach, it takes weeks

of engineering times and due to practical logistical constraints
about one month for a senior engineer to create a NURBS surface
model from the acquired points. By applying the proposed direct
modeling approach based on point cloud, the above tedious model
conversion processes are avoided and the overall modeling time is
dramatically reduced to less than 20 s.
In the 4th example in this paper, the resulting hybrid model

(shown in row 2 of Table 1) is directly converted into a sliced
model for the layer-wise rapid prototyping in a Fused Deposition
Modeling machine, as shown in row 3 of Table 1. The final custom-
built parts from our direct shape modeling are shown in row 4 of
Table 1.
Table 2 summarizes the performance of our algorithms

on various examples where the last three columns give the
computational times for NURBS surface subdivision Tsub, triangular
mesh/MLS surface intersection Tint and intersection pointmapping
Tmap correspondingly, which is based on a computer with dual
Pentium IV2.8GHzprocessors and1GBRAM. FromTable 2, there is
a significant increase of the intersection time Tint and the mapping
time Tmap for the last two examples, which is due to a significant
larger number of input points (see Table 2) and intersection points
(around 1000 points, which are twice as many as that of other
examples).
The above examples demonstrate that direct Boolean intersec-

tion can be a potent tool for bypassing manual surface recon-
struction and improving the efficiency for the shape modeling
applications where point-cloud data is involved. Even though the
current implementation bypasses the significant human interac-
tion time required in CAD surface reconstruction, direct Boolean
intersection still cannot take place in real-time yet. Further work
will improve its time efficiency by developing, e.g. multi-core
processor-based algorithms.

8. Discussion

In this section, we discuss the effect of various parameters
involved in the modeling process and recommend a set of
procedure for selecting these parameters. We illustrate the
sensitivity of these parameters with an example.

8.1. Gaussian factor h

The Gaussian parameter is the most important parameter in
defining an MLS surface. Like parameters in other surface fitting
methods (e.g., the number of control points in NURBS surface
approximation), the Gaussian parameter affects smoothness and

90 P. Yang, X. Qian / Computer-Aided Design 41 (2009) 81–94
Table 1
Custom headform development.

Headform A Headform B

1. Original designed and acquired geometries

2. Boolean operation result

3. Sliced rapid prototyping model

4. Rapid prototyped part
Table 2
Algorithm performances on various examples.

Surface A Point-set surface B Times (s)
Name Type Name Number of points NURBS subdivision Intersection/Boolean Mapping

Ex 1 Triangular mesh Dragon 39,829 N/A 6.302 N/A
Ex 2 NURBS Ear 2,935 0.469 2.734 2.123
Ex 3 NURBS Platform 16,152 0.376 4.913 0.598
Ex 4A NURBS Head A 79,284 3.586 15.293 11.541
Ex 4B NURBS Head B 157,444 3.612 16.415 12.957
accuracy of theMLS surface. In the above experiments, for the sake
of simplicity,we have chosen a constant h = ηave for each example,
where ηave denotes average local sample spacing, i.e. average
distance between sample points and their nearest neighbors.
However such a constant h may not be optimal for non-

uniformly sampled surfaces. One scheme to solve this problem
is setting the Gaussian factor h such that it is adapted to the
local sampling density and the local curvature. The method of
computing local sampling density can be found in [1]; while the
analytical curvature formulas for MLS surfaces are provided by [8].

8.2. Bounding parallelepiped offset ε0

Bounding offset ε0 is another important parameter, which
is used in line/MLS surface intersection, plane/MLS surface
intersection and adaptive subdivision of NURBS surfaces.
When applying a too large ε0, the algorithm efficiency will

be sacrificed; when applying a too small ε0, an incomplete
intersection may occur and hence may lead to false intersection
operation. If the input point set is a uniform ε-sampling point set,
which means that the distance from any point on the MLS surface
to its closest sample point is less than a given value ε, we can set
ε0 = ε. If not, we can set ε0 equal to the average point distance.

8.3. Parameter for adaptive triangulation: δ0

Triangulation error bound δ0 defines an upper error bound of ds,
which represents the smallest distance between all pairs of parallel
planar faces of the bounding parallelepiped of a leaf B-spline patch.
Since this bounding parallelepiped contains both the leaf B-spline
patch Sb and the resulting triangle pair Ŝb, we have

d
(
Sb − Ŝb

)
≤ ds ≤ δ0

where d
(
Sb − Ŝb

)
denotes the Hausdorff distance between the

sets of Sb and Ŝb.
Since this relationship holds for any leaf B-spline patch and

corresponding triangle pair, we claim that themaximumdeviation
between the final trianglemesh and the underlying NURBS surface
is bounded by δ0. One way to specify δ0 is to set it as a percentage
of the average point distance of the input point cloud.

P. Yang, X. Qian / Computer-Aided Design 41 (2009) 81–94 91
Fig. 16. Intersection of NURBS surface A and Point-set surface C. (a) NURBS surface
A. (b) Nominal NURBS surface B. (c) Point-set surface C generated from surface B by
sampling 100×100 points and by adding random noise with a standard deviation
of 0.1. (d) Intersection result.

8.4. Parameters for curvature-adaptive marching algorithm: δs, rmin
and rmax

In our curvature-adaptive marching algorithm for plane/MLS
surface intersection, the result is a set of piecewise linear curves,
which are linear approximations of the true intersection curves.
To control the maximum approximation error, we adopt an error
bound δs, which in conjunction with an osculating radius r is used
to calculate an error-bounded step length1p by Eq. (10). From Eq.
(10), we find that the maximum approximation error is limited by
δs under the assumption that the intersection curve can be locally
represented by the osculating circle. One way to specify δs is to set
it as a percentage of the average point distance of the input point
cloud.
From Eq. (10), we also see that an extremely large or small

osculating radius r may result in an extremely large or small step
length. If a step length is too big the intersection approximations
may be wrong due to overly un-even distribution of intersection
points; if it is too small, the efficiency of the algorithm decreases.
Hence, we adopt a minimum osculating radius rmin and a

maximum osculating radius rmax to limit the osculating radius r
and avoid creating overly small or too large step lengths. In this
paper, we choose:{
rmin = δs
rmax = c2 · δs

where c2 is a constant value and equals 10.

8.5. An example for parameter selection

In the previous subsections, we have discussed the selection of
several parameters for our direct surface intersection algorithm.
Now, we will illustrate how these parameters will influence the
intersection result of NURBS surface A (18.8 in.×18.8 in.×10.0 in.)
and point-set surface C (18.8 in. × 18.8 in. × 10.4 in.), as shown
in Fig. 16. Note, the point-set surface C is generated from nominal
NURBS surface B (Fig. 16(b)) by sampling 100× 100 points and by
adding random noise with a standard deviation of 0.1, as shown in
Fig. 16(c).
Based on the above recommended procedure for setting the

parameters, we set δs = 0.003 and h, δ0 and ε0 equal to the
Fig. 17. Error distributions between nominal NURBS surface B and MLS surfaces
with different Gaussian factor h. (a) h = 0.03. (b) h = 0.3. (c) h = 3.0.

average local sample spacing ηave = 0.3. Fig. 16(d) illustrates the
intersection result which correctly includes 16 intersection curves
(red): eight open branches and eight inner loops.
By adopting different values of h, we obtain a set of different

MLS surfaces defined from the same point cloud. The deviations
between the sampled points and theseMLS surfaces are illustrated
in Fig. 17. Fig. 17(a) shows that when h is too small (=0.03), the
resulting MLS surface tends to interpolate the input noise data and
yields to unpleasantly rough features. Fig. 17(c) shows that a large
h (=3.0) may cause excessive smoothing in regions with small
features and there is bias in the resulting MLS surface.
Keeping h and δs unchanged and adopting different values of

ε0 and δ0, we get a set of different intersection results, as shown
in Fig. 18. Fig. 18(a) shows that a mis-classification of the leaf
NURBS patches and an incomplete intersection may occur, due to
an extremely small ε0 (=0.0).
Fig. 18(b), (c) and (d) illustrate three different cases of

intersection results by choosing different δ0’s, which are further
compared in Table 3: (1) large δ0 (=1.2) results in a large difference
between the original NURBS surface and the generated triangular
mesh, which leads tomissing intersection curves (such as the open
branches shown in Fig. 18(c)), as shown in Fig. 18(b); (2) a smaller
δ0 (=0.6) guarantees the correctness of the intersection topology,
however, the accuracy of the intersection curves is poor. However,
it is improved by the intersection point mapping process, also
shown in Fig. 20; (3) an even smaller δ0 (=0.03) guarantees both
the correctness and accuracy of the intersection curves.
Then keeping h, δ0 and ε0 unchanged and adopting different

values of δs, we obtain a set of different intersection results, as
shown in Fig. 19. Fig. 19(a) shows thatwhen δs is too large (= 0.03),
the output points of the marching algorithm may be too sparse
(Fig. 19(a) and (c)), which means a low accuracy of the resulting
intersection contours.
We finish this section with an example of mapping a set

of intersection points generated with the parameters given in
Fig. 19(b). In Fig. 20(a), the blue curves represent the initial
u–v pairs, which are generated by STEP 1 (direct mapping the
intersection points onto the NURBS surface A) in NURBS/MLS

92 P. Yang, X. Qian / Computer-Aided Design 41 (2009) 81–94
Table 3
The effect of δ0 on intersection results.

Parameter δ0 1.2 0.6 0.03

Topology Number of intersection curves 8 16 16
Correctness ×

√ √

Geometry Averagea deviation to MLS surface 0.1637 0.0746/1.0752e−5b 2.3924e−4
Accuracy × ×/

√b √

Times (s) 3.685 12.912 23.565
a Evaluated after direct mapping the intersection points onto the NURBS surface A.
b Results before/after refinement respective.
Fig. 18. Intersection results with different δ0 and ε0 . (a) δ0 = 0.3, ε0 = 0.0
(broken inner intersection curves). (b) δ0 = 1.2, ε0 = 0.3 (missing boundary
intersection curves). (c) δ0 = 0.6, ε0 = 0.3 (correct topology and poor accuracy).
(d) δ0 = 0.03, ε0 = 0.3 (correct topology and good accuracy).

surface intersection; the red curves represent the refined u–v pairs
based on STEP 2; the background colormap represent the values of
Eq. (11) in the parametrical domain (the white area indicate that
the absolute function value is larger than 6.0).
Before the mapping, the average absolute value of Eq. (11)

is 0.1315 and the average distance to the MLS surface is 0.0746
(evaluated at the initial u–v pairs); after the refinement, the
average absolute value of Eq. (11) is 6.4536e−8 and the average
distance to the MLS surface is 1.0752e−5 (evaluated at the refined
u–v pairs). From these results we find that: (1) the mapping
process significantly reduces the intersection error; (2) the initial
intersection error (0.0746) is much smaller than the triangulation
error bound δ0 (0.6).
In this example, it takes 6.829 s to refine a total number of 629

intersection points with a termination tolerance of 1e−7.

9. Conclusions

In this paper, a direct Boolean intersection approach based on
designed geometry and acquired geometry has been presented.
It combines the convenience and flexibility of existing CAD
systems with the representation flexibility and fine shape details
of acquired point-sampled geometry. At its core is a new approach
that enables direct intersection and Boolean operations between
Fig. 19. Intersection results with different δs (δ0 = 0.6, ε0 = 0.3). (a) δs = 0.03.
(b) δs = 0.003. (c) Zoom-in of (a). (d) Zoom-in of (b).

objects bounded by NURBS and polygonal surfaces and objects
bounded by point-cloud data without model conversion.
Due to the use of the moving least-squares (MLS) surface

as the underlying surface representation for acquired point-
sampled geometry, it affords us many desirable properties,
including projection-based line/MLS surface intersection, closed
formula for computing curvature for planar curves, which enables
curvature-adaptive plane/MLS surface intersection. The adaptive
subdivision of NURBS surfaces into a triangular mesh simplifies
the NURBS/MLS surface intersection problem to a set of plane
(triangle)/MLS surface intersection problem, which leads to an
efficient and accurate solution of this problem. The resulting
intersection points are further refined by aGauss–Newtonmethod,
which makes the selection of triangulation error bound δ0 and the
marching error bound δs less critical.
Based on the above algorithms, a prototype system has been

implemented. Through various examples from the system, we
demonstrate that designed geometry and acquired geometry can
be directly integrated for shape modeling without pre-filtering or
post-processing on the point-cloud data. In these examples, direct
Boolean intersection between designed geometry and acquired
geometry proves to be a useful and effective means for point-
cloud-data-based shape modeling applications.
In the future, we plan to improve the time efficiency of the

proposed modeling approach so that direct Boolean intersection
can take place in real-time.

P. Yang, X. Qian / Computer-Aided Design 41 (2009) 81–94 93
Fig. 20. An example for intersection point mapping with the NURBS surface A
and the Point-set surface C shown in Fig. 16. (a) Initial u–v pairs (blue curves) and
refined u–v pairs (red curves) with a background color map representing the values
of Eq. (11) in parametrical domain. (b) Zoom-in of (a). (c) 3Dpoints corresponding to
u–v pairs in (b) and the input 3D intersection points between the triangular mesh
and the MLS surface. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Acknowledgements

Thisworkwas supported by theUSNational Science Foundation
Award #0529165 and Award #0800912, and Air Force Office of
Scientific Research Award #FA9550-07-1-0241.

Appendix. Curvature form expansion

To further expand the gradient and Hessian in the curvature
formula in Eq. (8),we first apply a newnotation of x =

(
x y 0

)T.
Then, taking the derivative of Eq. (4) with respect to y and setting
y equal to x, gives

∂ _e (y, _n ((x y 0)T))
∂y

∣∣∣(x y 0)T =
∂ _e (y, _n (x))

∂y
∣∣y=x

=

∑
qi∈Q
2e−‖x−qi‖

2
/h2
((
(x− qi)

T _n (x)
)
·
_n (x)

−
1
h2
(
(x− qi)

T _n (x)
)2
· (x− qi)

)
.

Substituting into the transformed implicit function of Eq. (6), and
notice that (_n (x))T · _n (x) = 1, we have

_g (x, y) = _n (x)T
(
∂ _e (y, _n (x))

∂y

∣∣∣∣ y = x
)
=

∑
qi∈Q
2e−‖x−qi‖

2
/h2

×

(
1−

1
h2
(
(x− qi)

T _n (x)
)2)
· (x− qi)

T _n (x). (12)

From Eq. (12), we can derive the formulas for ∇ (_g (x, y)) and
H(_g (x, y)). The gradient of _g (x, y) can be expressed as

∇ (_g (x, y)) =
∑
qi∈Q
2e−‖x−qi‖

2
/h2
(
2
h2
(
(x− qi)

T _n (x)
)

×

(
1
h2
(
(x− qi)

T _n (x)
)2
− 1

)
· (x− qi)

+

(
1−

3
h2
(
(x− qi)

T _n (x)
)2)

×
(
_n (x)+∇T(_n (x)) · (x− qi)

))
.

The Hessian of _g (x, y) can be expressed as

H(_g (x, y)) = ∇ (∇ (_g (x, y))) =
∑
qi∈Q
−
4
h2
e−‖x−qi‖

2
/h2

×

(
2
h2
(
(x− qi)

T _n (x)
)
·

(
1
h2
(
(x− qi)

T _n (x)
)2
− 1

)
· (x− qi)

+

(
1−

3
h2
(
(x− qi)

T _n (x)
)2)
·
(
_n (x)+∇T(_n (x))

× (x− qi))
)
· (x− qi)

T
+ 2e−‖x−qi‖

2
/h2

×

(
6
h4
(
(x− qi)

T _n (x)
)2
−
2
h2

)
× (x− qi) ·

(
_n T(x)+ (x− qi)

T
· ∇(_n (x))

)
+
4
h2
e−‖x−qi‖

2
/h2 ((x− qi)

T _n (x)
)

×

(
1
h2
(
(x− qi)

T _n (x)
)2
− 1

)
× I−

12
h2
e−‖x−qi‖

2
/h2 ((x− qi)

T _n (x)
)

×
(
_n (x)+∇T(_n (x)) · (x− qi)

)
×
(
_n T(x)+ (x− qi)

T
· ∇(_n (x))

)
+ 2e−‖x−qi‖

2
/h2
(
1−

3
h2
(
(x− qi)

T _n (x)
)2)

×
(
∇(_n (x))+∇T(_n (x))+∇T (∇(_n (x))) · (x− qi)

)
where I is the identity matrix.

References

[1] Pauly M, Keriser R, Kobbelt L, Gross M. Shape modeling with point-sampled
geometry. ACM Transactions on Graphics 2003;22(3):641–50.

[2] Kobbelt L, BotschM. A survey of point-based techniques in computer graphics.
Computers & Graphics 2004;28(6):801–14.

[3] Levin D. The approximation power of moving least-squares. Mathematics of
Computation 1998;67:1517–31.

[4] Amenta N, Kil YJ. Defining point-set surfaces. ACM Transactions on Graphics
2004;23(3):264–70.

[5] Alexa M, Behr J, Cohen-Or D, Fleishman S, Levin D, Silva CT. Computing and
rendering point set surfaces. IEEE TVCG 2003;9(1):3–15.

[6] Zwicker M, Pauly M, Knoll M, Gross M. Pointshop3d: An interactive system for
point-based surface editing. ACMTransactions onGraphics 2002;21(3):322–9.

94 P. Yang, X. Qian / Computer-Aided Design 41 (2009) 81–94
[7] Adams B, Dutre P. Interactive Boolean operations on surfel-bounded solids.
ACM Transactions on Graphics 2003;22(3):651–6.

[8] Yang P, Qian X. Direct computing of surface curvatures for point-set
surfaces. In: Proceedings of the IEEE/eurographics symposium on point-based
graphics(PBG). 2007.

[9] Houghton EG, Emnett RF, Factor JD, Sabharwal CL. Implementation of a divide-
and-conquer method for intersection of parametric surfaces. CAGD 1985;2:
173–83.

[10] Jean BA, Hamann B. An efficient surface–surface intersection algorithm using
adaptive surface triangulations and space partitioning trees. Mathematical
Engineering in Industry 1998;7(1):25–40.

[11] Abdel-Malek K, Yeh HJ. Determining intersection curves between surfaces of
two solids. Computer-Aided Design 1996;28(6–7):539–49.

[12] Barnhill RE, Kersey SN. A marching method for parametric surface/surface
intersection. CAGD 1990;7:257–80.

[13] Amenta N, Kil YJ. The domain of a point set surface. In: Eurographics workshop
on point-based graphics. 2004. p. 139–47.

[14] Dey TK, Sun J. Adaptive MLS surfaces for reconstruction with guarantees. In:
Proceedings of eurographics symposium on geometry processing. 2005. p.
43–52.
[15] Levin D. Mesh-independent surface interpolation. In: Brunnett G, Hamann B,
Muller H, Linsen L, editors. Geometric modelling for scientific visualization.
Springer-Verlag; 2003. p. 37–49.

[16] de Berg M, van Kreveld M, Overmars M, Schwarzkopf O. Computational
geometry: Algorithms and applications. Berlin: Springer-Verlag; 1997.

[17] Goldman R. Curvature formulas for implicit curves and surfaces. Computer
Aided Geometric Design 2005;22((7):632–58.

[18] Adamson A, Alexa M. Ray tracing point set surface. In: Shape modeling
international, vol. 299. 2003. p. 272–82.

[19] PressW, Flannery B, Teukolsky S, VetterlingW. Numerical recipes in C. 2nd ed.
Cambridge University Press; 1992.

[20] Huber E, Barth W. Surface-to-surface intersection with complete and
guaranteed results. In: Csendes T, editor. Developments in reliable computing.
Kluwer; 1999. p. 185–98.

[21] Piegl L, Tiller W. The NURBS Book. 2nd ed. Springer-Verlag; 1997.
[22] Coleman TF, Li Y. An interior trust region approach for nonlinearminimization

subject to bounds. Technical report. Ithaca (NY,USA) 1993.
[23] Tilove RB. Set membership classification: A unified approach to geometric

intersection problems. IEEE Transactions on Computers 1980;C-29(10):
874–83.

	Direct boolean intersection between acquired and designed geometry
	Introduction
	Related work
	MLS surface definition and closed curvature formula for planar curves on an MLS surface
	Projection-based MLS surfaces
	Computing curvature of planar curves in an MLS surface

	Intersection of an MLS surface with a line and a plane
	Intersection of an MLS surface with a line
	Intersection of an MLS surface with a plane
	Finding starting points for the marching process
	Curvature-adaptive marching for the plane/MLS surface intersection

	Adaptive intersection of an MLS surface with a triangular mesh
	Finding starting points for open branches
	Finding starting points for internal loops
	Curvature-adaptive intersection

	Intersection and Boolean operations between NURBS and MLS surface models
	Adaptive subdivision of NURBS surfaces for accurate and efficient intersection
	Adaptive intersection between the triangular mesh and the MLS surface
	Intersection point mapping and intersection curve generation
	Boolean operations between the NURBS and MLS surface models

	Implementation and examples
	Mesh/MLS surface intersection (Example 1)
	NURBS/MLS surface intersection (Examples 2 and 3)
	Custom headmask development (Example 4)

	Discussion
	Gaussian factor h
	Bounding parallelepiped offset Ε0
	Parameter for adaptive triangulation: δ0
	Parameters for curvature-adaptive marching algorithm: δs , rmin and rmax
	An example for parameter selection

	Conclusions
	Acknowledgements
	Curvature form expansion
	References

