
 

 1 Copyright © 2005 by ASME 

Proceedings of IDETC/CIE 2005 
ASME 2005 International Design Engineering Technical Conferences & Computers and Information in 

Engineering Conference 
September 24-28, 2005, Long Beach, California, USA 

DETC2005-84773 

COMPUTING ADMISSIBLE TRANSFORMATION VOLUME  
 
 

Xiaoping Qian, Assistant Professor Pinghai Yang, Graduate Research Assistant  
Department of Mechanical, Materials and Aerospace 

Engineering 
Illinois Institute of Technology 

Chicago, IL 60616 
qian@iit.edu 

Department of Mechanical, Materials and Aerospace 
Engineering 

Illinois Institute of Technology 
Chicago, IL 60616 
yangpin@iit.edu 

 
 
 
ABSTRACT 

The ability to quantify part dimensional quality with 
respect to design specifications is of fundamental importance in 
product design and manufacturing. Our earlier work has 
proposed the use of admissible transformation volume as a part 
dimensional quality metric. That is, part quality is quantified 
based on how much an as-manufactured part shape can move 
while still remaining within a tolerance zone. A transformation 
is admissible if upon such a transformation a manufactured part 
shape falls within the design tolerance zone. A collection of 
such transformations in the transformation space forms an 
admissible transformation volume (ATV). In this paper, we 
present two properties of ATV: transformation invariant and 
decomposability. We then describe algorithms for computing 
ATV and how ATV properties facilitate complex tolerance 
check and reveal new insight on part producibility. 

 
INTRODUCTION 
The ability to quantify part dimensional quality with respect to 
design specifications is of fundamental importance in product 
design and manufacturing. Many industries, such as aerospace, 
automobile, and die and mold industries, are striving for the 
design and manufacture of technically advanced products that 
deliver superior performance with longer life. Many of these 
products incorporate components designed with tighter 
tolerances and manufactured with improved dimensional 
control. At the same time these products often consist of 
geometrically complicated features under complex tolerance 
schemes that serve distinct functions in various engineering 
applications. The ability to design these products with tighter 
tolerances and to produce them with improved dimensional 
control in a cost effective manner is essential for these business 
to thrive in a competitive environment.  
The recent advancement of 3D optical scanning systems and 
the rapid proliferation of coordinate measuring machines 

(CMMs) have made part coordinate data ubiquitous and readily 
available. Such readily available coordinate data makes it 
possible to improve part producibility in a cost-effective 
manner by quantitatively analyzing actual part dimensional 
quality from the measured part coordinate data. The ability to 
extract dimensional quality data from part coordinate data and 
to quantify the influence of tolerance specifications and 
manufacturing error variations over the part geometric 
dimensioning and tolerancing (GD&T) conformance is 
essential for part producibility improvement. Existing 
dimensional quality analysis methods are based on either the 
deviation between as-measured part data and the nominal 
model or the minimal tolerance zone of the measured data. 
These methods are either not conformal to ANSI Y14.5M 
standard [1] or not directly applicable to complex tolerance 
such as non-uniform tolerance and composite tolerance. Some 
of these methods are dedicated to particular classes of 
tolerances and are computationally undesirable. Furthermore, 
these methods cannot effectively evaluate part dimensional 
quality when multiple tolerance requirements need to be 
simultaneously met.  
Figure 1 presents an example in which a nominal geometry of 
an airfoil cross-section is subject to uniform profile tolerance 
(Figure 1.b) and non-uniform profile tolerance (Figure 1.c). 
Conventional approaches to part dimensional quality gauging 
characterize a manufactured part based on the minimal 
tolerance zone, a theoretical (minimal maximum) measure of 
deviation from nominal geometry. However, when the section 
profile is under non-uniform tolerance, e.g. the leading edge 
needs to be under tighter dimensional control, the minimal 
tolerance for the contour becomes ambiguous or “conditional” 
[5]. Since the minimal surface profile tolerances in the looser 
tolerance zone and in the tighter tolerance zone (in the leading 
edge area) are different and in fact they are inter-dependent. 
Thus, this leads to difficulty in characterizing the profile quality 
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based on minimal tolerance zone and subsequently further 
difficulty in assigning design tolerance and in improving 
manufacturing processes.     

Figure 1： Part dimensional quality in a non-uniform 
tolerance zone 

We have proposed a new approach to part dimensional quality 
gauging, based on a novel concept admissible transformation 
volume [19]. In this approach, part quality is quantified based 
on how much an as-manufactured part shape can move while 
still remaining within a tolerance zone. A transformation is 
admissible if upon such a transformation a manufactured part 
shape falls within the design tolerance zone. A collection of 
such transformations in the transformation space forms an 
admissible transformation volume (ATV). This approach 
measures part quality through the ATV. Its advantages over 
current dimensional quality analysis methods are its 
conformance to ANSI Y14.5M standard and applicability to a 
variety of geometric dimensioning and tolerancing classes 
including non-uniform tolerance. This metric provides for the 
first time a spatial metric for part dimensional quality, enabling 
the visualization of part quality. 
In this paper, we present two properties of ATV: transformation 
invariant and decomposability. In addition, we present a set of 
algorithms for computing ATV and a set-theoretic approach for 
representing and computing ATV for complex tolerance based 
on the decomposable computing characteristics. We 
demonstrate how ATV properties facilitate complex tolerance 
check and reveal new insight on part producibility.  

In the remainder of this paper, we review prior work on 
part dimensional quality analysis in Section 2. We present 
formal definitions and properties of ATV in Section 3. 
Algorithms for computing ATV are described in Section 4 and 
the experimental implementation in Section 5. This paper is 
concluded in Section 6. 

REVIEW OF PRIOR WORK 
Part dimensional quality analysis requires the comparison of 
measured part coordinate data with respect to part GD&T 
specifications. GD&T is an important technology in product 
design and manufacturing. Through GD&T, design intent can 
be represented, part quality can be analyzed, part 
interoperability from various manufacturing processes and 
different vendors can be ensured, and manufacturing cost can 
be reduced.  

Functional and assembly requirements on the manufactured 
parts are represented as tolerance zones to which the surface of 
a part must conform. These geometric tolerances are defined in 
the ASME Y14.5M-1994 geometric dimensioning and 
tolerancing standard [1]. Based on the standard, tolerances are 
to be evaluated from envelopes of two ideal features with 
minimum separation distance within which the entire surface of 
the manufactured part must lie. 
To analyze whether a manufactured part meets design tolerance 
specifications from a set of part coordinate data, one needs a 
proper representation of tolerance and an appropriate 
methodology to compare measured coordinate data with the 
tolerance. Such comparisons are used not only to determine the 
qualification of the manufactured part, but also to extract 
quantitative part quality information that can be fed back for 
process modification as well as design change for producibility 
improvement. 
In this section, we briefly review GD&T theories as well as 
methods to construct tolerance zones. We then present past and 
current methods on part dimensional quality analysis. 

GEOMETRIC DIMENSIONING AND TOLERANCING 
THEORIES 
Manufactured parts have deviations from the nominal shape. To 
describe and preserve the functional requirements of design, 
geometric variations are specified in tolerance zones. Pasupathy 
et al gave a comprehensive review of various existing tolerance 
zone construction methods in [17]. 
Offset zone models modeled as Boolean subtraction of 
maximal and minimal object volumes have been explored by 
Requicha [20] and Roy [21]. Turner developed indirect 
parameterization methods for modeling tolerance zones [24]. A 
Technologically and Topologically Related Surfaces (TTRS) 
method was developed by Clement [6], where they used group 
theory and displacement torsors to combine the surfaces into 28 
different geometric relationships. Shah and Zhang developed a 
graph-based model for geometric tolerancing by separating 
linear variations from angular variations based on degrees of 
freedom for points, lines, and planes [23].  
Recently Davidson and Shah proposed a new mathematical 
model, Tolerance-Map, a hypothetical volume of points that 
corresponds to all possible locations and variations of a 
segment of a plane which can arise from tolerances in size, 
form, and orientation [8]. A GD&T global model for 
computerizing GD&T representation was reported in [25]. 
In this paper, we focus on developing a measure of part 
dimensional quality in its conformance to GD&T 
specifications. We assume the tolerance zone Z is represented 
as a parametric function of nominal geometry S. That is, for a 
given surface point in its parametric representation S(u,v), we 
can compute the tolerance zone Z(u,v) at that point. The 
methodology and the metric developed in this paper are 
applicable to other tolerance representations as well.  

DIMENSIONAL QUALITY ANALYSIS FROM MEASUREMENT 
DATA 
Dimensional quality analysis of measured coordinate points 
serves two important purposes: 1) to check whether a 
manufactured part meets design GD&T specifications 
(qualitative GD& T conformance check), 2) to characterize 

(a) Nominal geometry

(b) Uniform Tolerance (b) Non-Uniform Tolerance
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manufacturing process capability and examine how much space 
remains for a manufactured part shape to stay within a 
tolerance zone (quantitative characterization of part 
dimensional quality and process capability). The first question 
concerns whether a manufactured part meets design tolerance 
specification. The second question concerns whether the 
manufactured part just fits into a tolerance zone or if there is 
ample space remaining. This quantitative characterization of 
part quality is critical for improving part producibility. Part 
dimensional quality is often evaluated based on the minimum 
tolerance zone computed from the measured dimensional data. 
This evaluation is often based on numerical fitting algorithms 
that transform the measured coordinate data into the nominal 
geometry’s coordinate system to minimize the deviation 
between the nominal shape and the inspection point set. The 
fitting algorithms can be largely divided into two types: least-
squares fit and mini-max fit. Refer to Feng [10] for a detailed 
review of various fitting algorithms. 
An alternative to the numerical fitting algorithms is a 
combinatorial search for particular points that control and 
govern the minimum tolerance zone. In addition, manual fitting 
is still employed for some complex and high precision part 
inspection.  
We now review these dimensional quality analysis methods and 
explain why our proposed approach is advantageous for part 
dimensional quality analysis. 

NUMERICAL FITTING BASED TOLERANCE EVALUATION 
The numerical fitting based methods, including least-squares 
fit, mini-max fit, and zone fit, are relatively easy to implement 
and are applicable to a variety of GD&T classes. In general, 
these methods are fast but subject to potential errors due to 
numerical approximations and the lack of true global 
optimization algorithms. 
Total least-square fitting calculates deviation for all the 
inspection points and then sums its deviations. For example, 
Menq used this method for surface profile inspection [15]. This 
method minimizes the overall root-mean-square error, but may 
lead to a larger maximum deviation. Therefore total least-
squares fitting could over-estimate the tolerance values, which 
would unnecessarily disqualify many otherwise qualified parts.  
To resolve the inconsistency between design intent of tolerance 
specifications and the least-squares fit, an alternative fitting 
method, minim-max fit, has been developed. Minimum 
tolerance is computed based on the maximum deviation 
between the nominal geometry and the measured point set. For 
example, Murthy used a Monte Carlo simulation algorithm to 
determine the minimal tolerance zone for form tolerance [16]. 
Lai modified a genetic algorithm for calculating the minimum-
zone for cylindricity [13]. Mini-max fit is useful for estimating 
tolerances such as roundness, cylindricity and flatness. It is not 
directly applicable to shapes with non-uniform tolerance bands, 
or with asymmetric tolerance bands. Mini-max fitting 
minimizes the largest deviation error but it may lead to 
alignment with larger overall root-mean-square error. It is also 
computationally undesirable since the first derivative of the 
objective function may not be continuous. 
Recognizing the deficiencies of the two types of fitting 
algorithms, Choi and Kurfess developed a zone-fitting 
algorithm [4], in which a quasi-Newton method is used to 

numerically seek a rigid body transformation placing the 
inspection points inside the tolerance zone. A minimum 
tolerance zone is an effective metric for part quality 
characterization, it becomes ineffective when multiple tolerance 
zones are involved. To address multiple tolerances, a 
conditional tolerance zone concept is proposed in [5]. The 
minimum tolerance zone for a tolerance feature is computed 
while holding a constant tolerance zone on the other tolerance 
features. This would unfortunately lead to multiple minimum 
tolerance zone values for a given tolerance feature. It would 
also involve combinatorial evaluation of minimal tolerance 
zones for multiple tolerance features. 
The admissible transformation is similar to the zone fitting 
method in that both approaches compare inspection points with 
a tolerance zone. However, we explicitly quantify the amount of 
admissible transformation (ATV) in the transformation space 
and examine quantitatively the ATV change due to design 
tolerance specifications change and manufacturing error 
variation. As such, ATV is applicable to both single and 
multiple tolerance zone specifications. 

COMBINATORIAL MINIMUM ZONE COMPUTING 
Various geometric approaches have also been explored to 
calculate the minimal tolerance zone. In these approaches, 
points that control the minimum tolerance zone are explicitly 
identified. Huang used a method called control line rotation 
scheme to identify points to calculate minimum-zone 
straightness [10]. Damodarasamy used a normal plane method 
and simplex search for calculating the minimum zone for 
flatness [7]. Roy and Zhang constructed the nearest and farthest 
Voronoi diagrams of a data set for circularity evaluation [22]. 
The minimum tolerance zone issue has also been formed as an 
annulus placement issue in computational geometry [2].  
Due to the combinatorial nature of these algorithms, they are 
computationally expensive and are dedicated to particular types 
of tolerances and not applicable for general classes of 
tolerances. 
Besides the above automatic fitting methods, another method 
that is often used in checking part dimensional quality is 
through the use of manual fit. In this method, a blueprint 
drawing with the tolerance zone is magnified and printed on a 
Mylar or plastic paper. The actual part profile is then 
superimposed against the blue print. The advantage of this 
approach is that it conforms to design intent of tolerance 
specifications. However, despite its wide usage in high 
precision and complex profile part inspection, this method also 
has many disadvantages. It is subjective, not repeatable, and 
relies on operators’ judgment. More importantly, this manual fit 
method can only determine whether a part meets tolerance 
specifications, and it does not provide any information 
regarding how well the part meets tolerance specifications.  
Similar to this manual fit, a geometric framework was 
developed to quantify the structure of positional tolerance 
evaluation [12]. A comparison between a genetic search 
method and a generalized reduced gradient method was done to 
explore methods for automatic analysis of inspection points for 
complex classes of objects [3]. 
In summary, so far there is a lack of an effective measure of 
part dimensional quality that is applicable to a variety of 
GD&T classes and conformal to ANSI Y14.5M standard. The 
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current practice using the minimum tolerance zone as a quality 
measure is computationally undesirable. Furthermore, it is not 
directly applicable to complex tolerances because the minimum 
tolerance zone characterizes part quality only through two 
surface envelops offset from one ideal geometry and complex 
tolerances often involve more than one tolerance feature. In 
this paper, part dimensional quality is quantified based on the 
amount of allowable transformation upon which a 
manufactured part shape remains within the tolerance zone. 
Such a measure is applicable to all GD&T classes where 
tolerance zones can be non-uniform, complex, or composite. 

ADMISSIBLE TRANSFORMATION VOLUME AND ITS 
PROPERTIES 
The basic premise underpinning our approach is that the issue 
of part GD&T conformance check can be transformed into an 
issue of whether there exists a transformation such that, upon 
this transformation, the inspection points can be contained in 
the tolerance zone. Geometrically speaking, this is essentially a 
containment problem. 
In this paper, we assume the inspection point set represents the 
actual manufacturing shape. So we use the term inspection 
point set and manufactured shape interchangeably in this paper. 
In addition, we do not consider measurement uncertainty. 

PARAMETRIC TOLERANCE ZONE REPRESENTATION FOR 
PART QUALIFICATION 
In order to conduct a containment check, an efficient 
representation of tolerance zone is needed. In this paper, we 
represent the tolerance zone as a distance function of nominal 
geometry. If the part surface has parametric representation 
s(u,v), we can then have tolerance zone represented as  

),( vuZZ =    

Figure 2： Parametric representation of tolerance zone 

That is, given a surface point and its parameter set (u, v), we 
can calculate the tolerance band from the parameter set. Figure 
2 illustrates a 2D example. For any given point pi, we can find 
the closest point pi(ui, vi) in the nominal surface. At this closest 
point, the tolerance can be represented as an interval 

],[ u
i

l
i dd , which could be a symmetric two-sided tolerance, or 

asymmetric tolerance, or one-sided tolerance. We note the 
distance between the point pi and the nominal geometry as a 
signed distance d 

τ⋅−= ii ppd  

τ equals 1 if ii pp has the same direction as part surface 

normal at point p. Otherwise, τ equals –1. So the point pi lies 
within tolerance zone if and only if ],[ u

i
l
i ddd ∈ . The 

manufactured part meets tolerance specification if and only if 
all inspection points fall within the tolerance zone.  

ADMISSIBLE TRANSFORMATION 
If we represent tolerance zone as a set Z in an N-dimensional 
Euclidian space En, n=2, 3. Its boundary representation is 
described as a distance function from the nominal shape. Its 
coordinate system is represented as FD, meaning a reference 
frame in design coordinate system.  
The inspection point set is represented as P in the coordinate 
system FI (a reference frame in inspection coordinate system). 
We assume if all the points in the point set P can be fit into the 
tolerance zone Z, the part is then conformal to part tolerance 
specifications. This can be formed mathematically as a 
containment problem as following: Given two sets P and Z, a 
part is conformal to tolerance specification if and only if under 
a transformation t such that P is contained within Z,  

ZtPT ⊂),(  
To better describe the process of computing such a 
transformation, we define a transformation space first. 

Figure 3： Transformation Space 

For n degrees of freedom, we define an n-dimensional 
transformation space Rn, ,n=1,2,… 6. A more general 
representation of a point in the space could be (x,y,z,θ,ϕ,γ), 
respectively representing three translation components and 
three rotation components around x, y, and z axes. Each point 
in this transformation space represents a point ti. A free rigid 
body has six degrees of freedom, three in translation and three 
in rotation. In the context of part GD&T conformance check, 
the degrees of freedom in fitting inspection data against 
nominal model/tolerance zone could be less than six [9]. For 
example, a minimum deviation zone of a straightness tolerance 
can be obtained by optimizing a one-parameter objective 
function. In the case of manual inspection of a surface profile 
through the optical comparator, there are three degrees of 
freedom for profile tolerance conformance check. They are two 
translations (x and y) and one rotation around the z-axis (θ). A 
point in such a transformation space represents a transformation 
(xi, yi, θi) applied to the measured point cloud P (Figure 3).  
A point is an admissible transformation point if and only if 
such a transformation leads to the measured point set P falling 
with tolerance zone Z. That is, t is an admissible point if and 
only if  
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ZtPT ⊂),( . 
A collection of all such admissible transformation points is 
called admissible transformation volume (ATV). That is, 

ATV={t} 

ATV PROPERTIES 
As stated in [19], ATV has the following properties: 
• A manufactured part is within tolerance specifications if 

and only if its admissible transformation volume is not 
null. 

• The larger a tolerance is, the larger a part’s admissible 
transformation volume is. 

• The nominal design shape’s admissible transformation 
volume ATVD should be no smaller than the actual 
manufactured shape’s admissible transformation volume 
ATVM. 

In this paper, we focus on two additional characteristics of 
ATV: transformation invariance and decomposability. The 
former enables robust ATV computing and the latter enables 
effective ATV computing for complex tolerance and also 
makes it possible to quantify each tolerance feature’s influence 
over part conformance. 

TRANSFORMATION INVARIANT 
The shape, size and orientation of an ATV are invariant to the 
rigid body transformation of the coordinate data with reference 
to the tolerance zone.  
This can be easily proved. If there exists an admissible 
transformation ti for the point set P. We note the point set after 
the admissible transformation ti as 

it
P  and we have ZP

it
⊂ . 

If an arbitrary rigid body transformation t∆  is imposed on the 
point set P and we note the point set after transformation as 

tP∆ , we can obtain P from tP∆ through an inverse 

transformation, i.e. PtPT t =∆−∆ ),( . We know ZtPT i ⊂),( . 
So we have ZttPTT it ⊂∆−∆ )),,(( . That is the ATV for point 

set tP∆  is t∆− away from the ATV for the original point set 
P. Therefore, in the transformation space, the two ATVs are 
only off by a translation t∆ . 

Figure 4： ATV property - transformation invariant 

Figure 4 shows 1) different relative positions and orientations 
between the tolerance zone and point cloud, and 2) the 

corresponding ATVs with reference to nominal geometry’s 
ATV. An ATV is determined by the surface points on the part 
boundary and the tolerance zone from design specifications. 
This implies that the initial position and orientation of 
coordinate data with refer to the tolerance zone will only affect 
the ATV’s relative position in the transformation space, but 
will not affect the size, position and shape of the ATV.  

DECOMPOSABILITY 
An important property of an ATV is that the ATV of a complex 
part or of a part with composite tolerance can be computed 
through the intersection of ATVs of the decomposed tolerance 
features. The ATV of each decomposed tolerance feature is an 
ATV computed based on the measured points for the 
decomposed tolerance feature and the corresponding tolerance 
zone. This decomposable computing property is based on an 
important observation that, when a set of part surface points are 
decomposed into several subsets, the overall point set’s ATV 
equals to the intersection of all the subsets’ ATVs (EQ.1). 

i
n
i ATVATV 1=∩=       EQ. 1 

The above property of ATV has two important implications: 
enabling efficient ATV computing and easy identification of 
the producibility-limiting tolerance zone. 

Figure 5： Decomposable ATV computing 

Decomposed computing reduces computational complexity and 
saves the number of time the closest distance needs to be 
calculated. For a tolerance zone in the complex shaped 
geometry or composite positional tolerance such as patterned 
holes, the distance minimization in containment fit, least-
squares fit, or minim-max fit methods can often lead to a local 
minimal solution and can be computationally inefficient. The 
distance function minimization is often done through the 
calculation of the closest distance between a coordinate point 
and the nominal geometry. For freeform curves or surfaces, the 
computing of such a shortest distance is an iterative process and 
consumes significant amount of time. Decomposable ATV 
computing can be utilized to compute ATVs for critical key 
points first and then to compute the ATV for entire geometry.  
A second benefit of decomposable ATV computing is that the 
ATV enables the identification of the producibility-limiting 
tolerance zone for composite tolerance. In Figure 5 is a 
patterned-hole. There are three tolerance requirements for this 
part to be qualified: dimensional tolerance, feature relating 
tolerance and pattern-location tolerance. Neither least-squares 
nor mini-max fit is able to determine the composite tolerance 
conformance. Minimal tolerance zone computing is not directly 
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applicable since three tolerance zones are involved. Thus far, 
the only way to determine the part conformance is through a 
containment test ----- if all points are simultaneously within all 
three zones. However, this test does not provide quantitative 
measure of the part quality on whether it just fits in a tolerance 
zone or fits in with ample space remaining. Decomposable 
ATV computing provides for the first time the ability to 
quantify, analyze and visualize the influence of each sub-
tolerance-zone in a composite tolerance or sub-geometry in 
a complex shape over overall part conformance to GD&T 
specifications. 
A decomposable ATV computing computes ATVs for each 
sub-tolerance-zone separately. The intersection of ATVs then 
determines the overall part GD&T conformance. In the 
patterned hole example, the existence of three ATVs 
corresponding to three tolerance zones makes it transparent 
which of the three tolerance zones is more conformance 
limiting. Tolerance can then be re-allocated or the 
manufacturing process can be modified accordingly to improve 
part producibility. 
One term that can be used to measure how much transformation 
allowance is actually utilized in overall GD&T conformance 
for each sub-tolerance zone is the volume ratio between the 
overall ATV and each individual ATV (EQ.2).  

iATV

ATV

V
V

=µ      EQ. 2 

The ideal ATV utilization ratio (also the maximum ratio) is 1, 
meaning all the transformation allowance for each sub-
tolerance-zone is fully utilized for the overall part GD&T 
conformance. As the ratio becomes smaller, more 
transformation allowance is not utilized due to other sub-
tolerance-zones’ restricting influence. When this happens, 
tolerance allocation and the manufacturing process need to be 
rectified to avoid such an uneconomical way of producing 
parts. 
In order to conduct decomposed ATV computing, an ATV 
intersection algorithm can be developed to intersect sub-
tolerance-features’ ATVs into one ATV.  

COMPARISON WITH MINIMAL TOLERANCE ZONE BASED 
METRIC 
Minimal tolerance gives a theoretical minimum of the tolerance 
zone from envelopes of two ideal features with minimum 
separation distance within which the entire feature surface of 
the manufactured part must lie. 
The ATV as a part dimensional quality metric relates to 
minimal tolerance zone in the following way: 

• An ATV reflects the comparison between an actual part 
shape and design tolerance specification, while a minimum 
tolerance zone is a minimal zone bounding the actual 
tolerance feature regardless of design tolerance 
specification value.  

• As minimal tolerance zone gets larger, ATV gets smaller. 
When the minimal tolerance zone of a part is smaller than 
design specified tolerance, there exists an ATV for this 
part. When the minimal tolerance zone is the same as 
design specified tolerance zone, the ATV is degenerated 
into a point. When the minimal tolerance zone is larger 
than the design tolerance specification, ATV is NULL and 

a volume enclosed by the hyper-iso-surface in the 
transformation space is used as a characterization of how 
bad the part quality is.  

• Minimal tolerance zone is ineffective in handling 
simultaneous multiple tolerance zone specifications and 
multiple tolerance zone values may exist for one tolerance 
feature depending on the tolerance zone values for other 
tolerance features. ATV, as a single metric, is applicable to 
both single and multiple tolerance zone specifications. 

• ATV enables decomposable computing to reduce 
computational complexity since it transforms the 
containment issue from the part geometry space into 
transformation space and thereby enabling set intersection 
operation for the composite ATV computing. Minimal 
tolerance zone, by its definition, needs to consider all the 
points simultaneously. 

Figure 6 gives a comparison of part dimensional quality metric 
between minimal tolerance zone and ATV.  

Figure 6： Dimensional quality metrics comparison 

COMPUTING ATV  

COMPUTE ADMISSIBLE POINT 
In order to find an admissible point in the transformation space 
and to define the boundary of the admissible transformation 
volume, we define a distance function in the 3D nominal 
model’s Euclidian Space. It is based on a containment fit 
function, the average distance between the points outside the 
tolerance zone and the tolerance zone boundary. That is, we 
only count the points outside the tolerance zone. 
Mathematically, the objective function is defined as follows 
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In the above equations, t is transformation coordinates, T(pi,t) 
represents a transformation of point pi by t. If t is a point in six-
dimensional transformation space, t=(x, y, z, θ,ϕ,γ).  N is the 
total number of points in the inspection point set. The symbol m 
represents the order of distance function g in the containment 
fit.  
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For any given set of parameters (in the transformation space), if 
the objective function is zero, this transformation point is an 
admissible point. If the minimal objective function value is not 
zero, the part is out of tolerance specification. The minimal 
value is an indication of how much the part is out of tolerance 
specification. The objective function f is a measure of the 
average distance between points outside of point boundary and 
the tolerance boundary. 

If the objective function is larger than zero, it means under this 
transformation ti, inspection points are still f distance away 
from lying within the tolerance zone. A collection of the 
transformation points that would lead to the same objective 
function value is called (hyper) iso-surface. If there are two 
degrees of freedom, such a collection would be an iso-curve. If 
there are three degrees of freedom, it would be an iso-surface. 
When there are more than three degrees of freedom, such a 
point set forms a hyper-iso-surface. 

When the objective function value is zero, the corresponding 
iso-surface and the enclosed area in the transformation space 
form the ATV. We adopt a functional representation of the 
boundary of admissible transformation volume. That is, 

0
)),(),((

  f 1 =
−

=
∑

=m

N

i

m
i

N

vustpTg
   EQ. 5 

This function describes all the admissible transformations. 

COMPUTING ATV BOUNDARY POINT 
An ATV boundary point refers to a point in the transformation 
space, upon which the coordinate data just touches the 
boundary. 
The distance function in EQ.3 is useful for computing an 
admissible point. However, the function equals to zero for any 
point within the ATV. In order to compute the ATV boundary 
points, we introduce another set of distance computing 
functions: inside distance. We refer to the distance function in 
EQ.3 as outside distance and it is the sum of point distance 
outside tolerance boundary. Inside distance is the minimum 
distance between inside points and tolerance boundary. 
Mathematically, it can be represented as: 
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We note the combined inside and outside distance between the 
point set P and tolerance zone Z as d(t). 
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Therefore, a transformation point t is an ATV boundary point if 
and only if d(t)=0.  
An example outside distance function and combined distance 
function for the part in Figure 1.c is shown in Figure 7. As 
shown in Figure 7, the gradient of outside distance function in 
the ATV interior is zero, which makes it difficult to compute 
the ATV boundary points from an admissible point. On the 

other hand, the combined distance equals zero only when it is a 
boundary point. Therefore, the intersection point between a line 
in the transformation space and the ATV boundary happens if 
and only if d(t) is zero, i.e. the inside distance is 0 and the 
outside distance is 0. The function d(t) is continuous. 

Figure 7: Distance functions for ATV boundary point 
computing 

The combined distance function is at least C0 continuous, 
which ensures ATV is differentiable for ATV sensitivity 

computing such as 
i

ATV

Z
V
∂

∂
 and 

j

ATVV
σ∂

∂
, in which V is the 

volume of the ATV, and Zi and σj represents the i-th tolerance 
zone and j-th manufactured part dimensional deviation. These 
sensitivity measures can be used to characterize part 
producibility with reference to tolerance specification (Zi) and 
manufacturing process variation (σj). 

COMPUTING ATV 
The combined outside/inside distance function is an implicit 
function defining the ATV boundary exactly. However, to 
compute its metric such as length and volume, numerical 
algorithms will need to be developed. One obvious approach 
for modeling such an implicit function is through space 
decomposition (such as voxel and octree representation) based 
approaches. A voxel representation in conjunction with 
Marching cubes was reported in [19]. An octree-based method 
is also implemented in this paper and shown in Figure 8. 

Figure 8: Octree representation of an ATV 

In addition, in this paper, in order to support set-theoretic 
operation (EQ.3), we also construct the ATV from a collection 
of ATV boundary points. We then use a skinning operation to 
fit a solid volume to these boundary points. Specifically, it 
involves the following steps: 

STEP 1: COMPUTE AN ADMISSIBLE POINT TI 

This admissible point can be computed from minimizing EQ.3 
using a simplex optimization method. If the function value of 
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EQ.3 is zero, the ti is an admissible point. If not, the ATV does 
not exist. 
We use the centroid of the simplex in the transformation space 
as the admissible point for further ATV computing. 

STEP 2: FIND THE ALLOWABLE TRANSFORMATION RANGE 
ALONG A DIRECTION  

This can be done using the ATV boundary points computing 
method listed in Section 4.2. If we note the admissible point 
from STEP 1 as t0 and the search direction of the allowable 
transformation as v, we can have a one-dimensional objective 
function: 

)()( 0 vtdh ⋅+= λλ      EQ. 8 

Minimizing EQ.8 will lead to 1λ for an ATV boundary point 

vt ⋅+ 10 λ . If we reverse the search direction in EQ.8, we will 

have another ATV boundary point as vt ⋅− 20 λ . Therefore, 
the allowable transformation range along v would be 

v⋅+ )( 21 λλ . 

STEP 3: SAMPLE THE ATV CONTOURS AT DIFFERENT SECTION 
HEIGHT  

We can choose one of the transformation axes, either a 
translation axis or a rotation axis, as a basis for sampling. For 
each sampled point, we can compute the ATV contours on a 
plane perpendicular to the transformation axis. This contour can 
be obtained using procedures described in STEP 1 and STEP2. 

STEP 4:  FORM THE SOLID THROUGH ALL THESE CONTOURS 

A solid can be fit to pass through all the ATV contours. The 
examples of ATV computing are shown in the Experiment 2 in 
Section 5. 

STEP 5: COMPUTING ATV THROUGH SET INTERSECTION 
For complex tolerance check, we can compute ATV for each 
sub-tolerance feature and use set intersection operations to 
obtain the final resulting ATV as in EQ.1. Experiment 3 in 
Section 5 will demonstrate this. 

IMPLEMENTATION 
To illustrate the basic concept and the efficacy of applying 
ATV for part dimensional quality gauging, we implemented a 
prototype system at Illinois Institute of Technology. The system 
is built on a Windows PC platform. The modeling kernel is 
ACIS® from Spatial Technology Inc. 
Three sets of experiments were conducted on the profile 
tolerance example in Figure 1: i) Computing the admissible 
transformation range along a particular direction; ii) 
Computing the ATV; and iii) Decomposed ATV computing for 
composite tolerance. The cross-sectional shape is a closed 
degree three B-spline with control points as following (-50, -
30,0), (-30,20,0), (-6,40,0), (50,30,0), (-4,20,0). The tolerances 
are 1.0 for the uniform profile tolerance and 1.0 and 0.5 for the 
non-uniform profile tolerance. Total 100 synthetic inspection 
points are created with deviation coefficient C=0 and C=0.5. 
Refer to [19] for detailed description of synthetic inspection 
point creation. 

EXPERIMENT 1: Computing the admissible transformation range 
along a particular direction 

For parts that are under single tolerance constraints, minimal 
tolerance zone can be a very effective means to characterize the 
dimensional quality. However, for parts under non-uniform 
tolerance constraints, admissible translation and rotation are 
often used as a simple and practical measure for part 
dimensional quality. For example, in the production shops, 
manual fitting of part profile against tolerance zone in a Mylar 
or plastic paper to characterize the fitting allowance is a 
common way of characterizing part quality under composite 
tolerance.  

The admissible transformation range directly corresponds to 
the manual fitting result. Figure 9 shows the maximum 
allowable rotation for the part under uniform and non-uniform 
profile tolerances. Depending on the rotation direction, the 
inspection points touch the tolerance boundary at different 
locations. Using the method in STEP 2 in Section 4.3, we 
obtained the following results on the allowable transformation 
for the nominal cross section. Along both counter-clock-wise 
and clock-wise directions, the part under uniform profile 
tolerance can rotate 1.348 degrees without exceeding the 
tolerance boundary. When the part is under non-uniform profile 
tolerance, the allowable rotation angles are 0.674 degree. 
Similar computation can be done for x-translation and y-
translation. 

Figure 9: Maximum allowable rotation 

EXPERIMENT 2: Computing the ATV 

Figure 10: ATV computing 

To fully characterize part dimensional quality, an ATV will 
need to be computed. Figure 10 showed the ATV computing 
process for nominal part geometry under uniform profile 

(a) Maximum allowable rotation under uniform profile tolerance

(b) Maximum allowable rotation under non-uniform profile 
tolerance

(b) ATV boundary points (c) ATV computed 
through skinning

(a) Part in Euclidian space
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tolerance. We chose the rotation direction as a sampling axis 
for computing ATV section contours. Ten boundary points per 
section with a total of eleven sections are used to construct the 
ATV. The volume of the ATV for the nominal geometry under 
uniform profile tolerance is 4.324. Volume for the part with 
deviation coefficient C=0.5 is 1.209 (Figure 11). The overlay of 
ATVs for nominal geometry and the actual geometry under 
uniform tolerance at different cross-sections is shown in Figure 
12. This figure reveals that the nominal ATV encloses the 
actual ATV. 
Figure 13 shows the nominal and actual part geometry and the 
overlay of the respective ATVs. The volumes of the ATV for 
nominal and actual geometry under non-uniform profile 
tolerances are 1.230 and 0.437. 

(a) Part in Euclidian space (b) ATV in transformation space
Figure 11: ATV for an actual part 

Figure 12: Overlay of an actual ATV and the nominal ATV 

 

Figure 13: ATVs for non-uniform profile tolerance 

EXPERIMENT 3: Decomposed ATV computing for composite 
tolerance 
The decomposable property of ATV enables an efficient way 
for ATV computation. Figure 14 shows an example of 
computing an ATV for the composite tolerance (non-uniform 

profile tolerance in this example) through a set intersection 
operation. The ATVs of part geometry under different 
tolerances are computed separately and they are subsequently 
intersected to produce the final resulting ATV. The volumes of 
the ATVs for the part geometry for tolerance 1 and tolerance 2 
are 2.276 and 1.384. The volume for the intersected volume is 
0.444. Therefore the ATV utilization ratios for each tolerance 
zone are 0.195 and 0.321. Therefore, we can conclude the 
tolerance2 (tight) feature is more conformance-restrictive 
according to the utilization ratios.  
Figure 15 displays an overlay of the ATV computed from the 
set intersection and the ATV computed directly through 
procedures in Experiment 2. The contours at different sections 
are very close to each other. The slight discrepancy is attributed 
to the approximation in the skinning operation in ATV 
modeling since only limited ATV boundary points are used to 
the ATV construction. 

Figure 14: ATV computing through set intersection 

Figure 15: Overlay of ATVs computed from different methods 

CONCLUSION 
This paper presents a new metric, admissible transformation 
volume, for part dimensional quality gauging. It quantifies the 
dimensional quality through the amount of admissible 
transformation. Its efficacy includes its conformance to ANSI 
Y14.5M standard, broad applicability to both single tolerance 
and composite tolerance, its robustness due to the 
transformation invariant. Its decomposable computing property 
also enables the identification of the conformance-limiting part 
tolerance features. 
Even though our mathematical formulation for ATV is directly 
applicable for tolerances in higher dimension, our algorithms 
implemented in this paper are limited to three degrees of 

(b) ATVs for tolerance1 (loose) and tolerance 2 (tight)

(c) ATV for composite tolerance through set intersection

(a) Part geometry for tolerance1 (loose) and tolerance 2 (tight)

Nominal ATV

Actual ATV

Nominal ATV

Actual ATV

(a) Nominal and actual part geometry

(b) Nominal and actual ATV
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freedom. Future work will focus on developing ATV 
computing algorithms in the higher-dimensional transformation 
space. Higher dimensional implicit function visualization 
methods such as scatter-plots, dimensional stacking, and 
parallel coordinates will be explored in the context of ATV 
visualization. Future work will also quantitatively examine the 
ATV based GD&T conformity in comparison with current 
approaches and its advantages in tolerance allocation. 
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