
Efficient filtering in topology optimization via B-splines∗

Mingming Wang
Mechanical, Materials and Aerospace

Engineering Department
Illinois Institute of Technology, Chicago, IL 60616

Email: mwang11@hawk.iit.edu

Xiaoping Qian†

Department of Mechanical Engineering
University of Wisconsin, Madison WI 53706

Email: qian@engr.wisc.edu

Abstract

This paper presents a B-spline based approach for topology optimization of three-dimensional
(3D) problems where the density representation is based on B-splines. Compared with the usual
density filter in topology optimization, the new B-spline based density representation approach
is advantageous in both memory usage and CPU time. This is achieved through the use of
tensor-product form of B-splines. As such, the storage of the filtered density variables is linear
with respect to the effective filter size instead of the cubic order as in the usual density filter.
Numerical examples of 3D topology optimization of minimal compliance and heat conduction
problems are demonstrated. We further reveal that our B-spline based density representation
resolves the bottleneck challenge in multiple density per element optimization scheme where the
storage of filtering weights had been prohibitively expensive.

Introduction

Topology optimization is a computational technique for optimally determining the shape and con-
nectivity of material distribution under physical constraints [1]. Recently a B-spline based topology
optimization approach has been proposed in [2] where the density representation is based on B-
splines and is independent from the finite element elements. The design variables are B-spline
coefficients. The feature size in the optimized structures can be controlled via B-spline degrees and
the number of knot intervals. The goal of this paper is to elucidate the computational advantages
of such B-spline based density representation in topology optimization of three-dimensional (3D)
problems.

A widely used method for topology optimization is based on a solid isotropic material with
penalization (SIMP) scheme that converts the 0-1 discrete design problem into a continuous opti-
mization problem [3, 4]. To avoid numerical artifacts such as checkerboard and mesh-dependency
[5], various regularization techniques have been introduced. The most common ones are based on

∗An earlier version of this paper appeared in 2014 ASME International Design Engineering Technical Conferences.
†Corresponding author for this paper.

1

the sensitivity filter and density filter [6, 7], with alternatives including adding restrictions such as
perimeter constraint [8], gradient constraint and slope constraint [9]. In a typical finite element
based topology optimization, the density variables are represented based on elements. Both the
density filter and the sensitivity filter involve the weight factor Hei that depends on the center-
to-center distance D(e, i) between the element e and element i. For example, the density filter is
defined [10] as follows

ρ̃e =
1∑

i∈Ne

Hei

∑
i∈Ne

Heiρi (1)

where the weight factor Hei = max(0, R− D(e, i)) and ρi is referred to as design variables and the
filtered density ρ̃e as physical density in element e. Ne is the set of elements i for which the center-
to-center distance D(e, i) to element e is smaller than the filter radius R. The weight factor Hei

only depends on the geometry of the elements, not the densities. In order to avoid computing it in
each optimization iteration, such weight factors for each element e, Hei and i ∈ Ne, are usually pre-
generated and stored before each optimization iteration. The number of entries in Ne is quadratic
with respect to R/h where h is the element size. It is cubic with respect to R/h for 3D problems.
To solve the storage problem in filters, a Helmholtz partial differential equation based filter in [11]
has been proposed. It is estimated in [11] that for 100, 000 elements, a very moderate size for
3D problems, when the filter size R ranges from 2 to 10 times the element size h, the memory
required to store the weight factor is 12M, 102M, 818MB, and 1.6GB. The problem is even more
exacerbated in alternative topology optimization schemes where more density variables are used in
computing each element’s physical density. For example, in multi-density topology optimization
(MTOP) scheme proposed in [12], each element involves md number of density variables where
d = 2, 3 for 2D and 3D problems. Solving 3D problems with MTOP at m = 5 and the filter
size R is 10 times element size h, the memory requirement would be 200GB. Such large memory
requirements are prohibitively expensive for most desktop computers and would require external
storage and extraordinary communication bandwidth between CPU and storage devices.

In this paper, we extend our B-spline based topology optimization approach [2] 1 to 3D prob-
lems. Figure 1a shows that checkerboard appears in the three-dimensional optimized design with
quadratic (p = 2) B-spline of 28 × 56 × 112 knot intervals. The checkerboard can be suppressed
either with fewer knot intervals (7 × 14 × 28 knot intervals in Fig. 1b) or higher B-spline degrees
(p = 8 in Fig. 1c). More specifically, in this paper we attempt to elucidate the computational
advantages of B-spline based density representation, in terms of memory usage and CPU time
in B-spline filtering in topology optimization, due to the use of tensor-product form of B-splines.
B-splines have been used in topology optimization in the past. For example, B-spline based finite
element has also been used in topology optimization [13]. However, in our approach, the B-spline
based density representation is independent from analysis techniques and can be used with various
FE techniques for topology optimization [2]. Material representation in B-splines and geometry
representation in implicit form has also been explored in [14]. The use of B-splines as an implicit
representation for shape optimization with topological control has been explored in [15]. However,
in our approach, we explicitly discuss the role of B-splines as a filter for obtaining optimized de-
signs that are free from checkerboard patterns and with minimal feature size controlled by B-spline
degrees and knot intervals and we discuss the comparison with the usual density filter in the SIMP
approach [2].

1Matlab implementation of the 2D version is available at http://cdm.me.wisc.edu/code/btop85.htm.

2

http://cdm.me.wisc.edu/code/btop85.htm

(a) p=2,D28 × 56 × 112 (b) p=2, D7 × 14 × 28 (c) p=8, D28 × 56 × 112

(d) Cross section of fig (a) (e) Cross section of fig (b) (f) Cross section of fig (c)

Figure 1: Checkerboard appear in Fig (a) can be suppressed either with fewer knot intervals (Fig.
b) or high B-spline degrees (Fig (c)). The cross sections of three respective designs are shown in
the second row.

In this paper, we show that with density distribution represented with B-splines, the B-spline
functions effective serve as a filter and the cost for storing filtering weight factors is linear with
respect to the filter size when B-spline degrees are used to control the minimum feature size.
Further, when the number of knot intervals are used to control the feature size, the cost of storing
the B-spline weight factors is independent from the effective filter size. The CPU time can be
reduced to obtain larger size features in optimized design by using coarser knot vectors. We further
reveals that this B-spline filtering can be easily extended to resolve the storage challenge in multiple
density per element approach [12].

B-splines

In this section, we first briefly review the definition and properties of B-splines and show these
properties can be advantageously used in topology optimization. B-splines are commonly used in
data approximation and in computer-aided geometric design. For details on B-splines, refer to
[16, 17]. For the use of B-splines in density representation in topology optimization, see [2].

A univariate B-spline function of degree p is defined as follows:

f(x) =
n∑
i=0

Bi,p(x)bi, (2)

where bi(x) is the (i + 1)-th B-spline coefficient and Bi,p is the corresponding basis function of
degree p defined on a non-decreasing sequence of m = n+ p+ 1 real numbers Ξ = {x̄0, x̄1, · · · , x̄m}

3

B(x) B(y)

(a) Univariate basis functions B(x) and B(y)

B(x) B(y)

(b) Bivariate basis functions N(x, y)

Figure 2: Obtaining bivariate basis function N(x, y) through tensor product Bp(x)Bq(y).

which is called a knot vector. A knot vector is said to be uniform if its knots are uniformly spaced
and otherwise non-uniform. The separation between each pair of adjacent knots is referred to as
knot interval or knot span δ. In this paper, uniform B-splines are used. Basis functions can be
calculated recursively starting with piecewise constants:

Bi,0(x) =

{
1 if x̄i ≤ x̄ < x̄i+1

0 otherwise
(3)

and

Bi,p(ξ) =
x̄− x̄i

x̄i+p − x̄i
Bi,p−1(x̄) +

x̄i+p+1 − x̄
x̄i+p+1 − x̄i+1

Bi+1,p−1(x̄). (4)

One very important property of B-splines is local support, i.e. a p-th degree B-spline function is
non-zero in at most (p+ 1) knot intervals. The local support of B-splines has the effect of filtering
in topology optimization as shown in [2]. This makes it possible to obtain optimized topological
structures that are free from checkerboards, without extraneous filtering or penalty.

By means of tensor product, a bivariate B-spline f(x, y) of degree p in Ξ direction and q in H
direction can be constructed from a bidirectional net of (n1 + 1)× (n2 + 1) B-spline coefficients bi,j
as:

f(x, y) =

n1∑
i=0

n2∑
j=0

Bi,p(x)Bj,q(y)bi,j . (5)

Corresponding to each coefficient bi,j , there is a B-spline basis function Bi,p in direction Ξ and basis
functionBj,q in directionH. They are respectively the pth-degree, qth-degree basis functions defined
on non-decreasing knot vectors Ξ = {x̄0, x̄1, · · · , x̄n1+p+1}, and H = {ȳ0, ȳ1, · · · , ȳn2+q+1}. Fig. 2
shows the tensor-product nature of the bivariate B-spline functions: where one B-spline coefficient
and the corresponding basis functions are highlighted. Such tensor-product form of B-splines
suggests that the evaluation of a bivariate tensor product B-spline function does not necessarily
require the storage of the bivariate basis functions. Instead, one can store two sets of univariate
basis functions and dynamically compose the bivariate basis function N(x, y) = B(x)B(y) during
the function evaluation. This is the basis for our proposed approach to resolve the storage challenges
in topology optimization.

Similarly, a tri-variate B-spline function f(x, y, z) of degree p in x direction, degree q in H
direction and degree r in Z direction with (n1 + 1)× (n2 + 1)× (n3 + 1) B-spline coefficients bi,j,k
can be defined as:

f(x, y, z) =

n1∑
i=0

n2∑
j=0

n3∑
k=0

Bi,p(x)Bj,q(y)Bk,r(z)bi,j,k. (6)

4

Topology optimization in B-spline space

In this section, we show how B-splines can be used to represent density distribution and can be
used in topology optimization.

B-spline representation of material density

We use uniform B-splines to represent the material density distribution inside the design domain,
as shown in Fig. 3 for a cubic computational domain in 3D where the dots are B-spline coefficients.
The grid lines show knot intervals. We can obtain the material density distribution throughout the
computational domain through the definition of B-splines. If we denote the B-spline coefficients as
ρ, and 0 ≤ ρi ≤ 1, due to the strong convex hull property of B-splines [16], the physical density ρ̃
inside the cube is strictly between 0 and 1, i.e. 0 ≤ ρ̃ ≤ 1. By Eq. 6, we can obtain the distribution
of physical density ρ̃ as

ρ̃(x, y, z) =

n1∑
î=0

n2∑
ĵ=0

n3∑
k̂=0

Bî,p(x)Bĵ,q(y)Bk̂,r(z)ρî,ĵ,k̂. (7)

Figure 3: Representing density distribution in 3D by B-splines. The color in B-spline coefficients
corresponds to material density values.

Figure 4 gives a 2D illustration of the distribution of B-spline coefficients and finite elements
where the optimized distribution of density in a minimal compliance problem. In finite element
analysis, the physical density ρ̃e in element e can be obtained by sampling the physical density field
ρ̃(x) at the element e’s center xe = (xe, ye, ze) as

ρ̃e = ρ̃(xe) =

n1∑
î=0

n2∑
ĵ=0

n3∑
k̂=0

Bî,p(xe)Bĵ,q(ye)Bk̂,r(ze)ρî,ĵ,k̂, (8)

where xe = (xe, ye, ze) representing the center position of element e. For the physical density ρ̃e at
element e, there are at most (p+1) non-zero entries in Bî,p(xe), (q+1) non-zero entries in Bĵ,q(ye),

5

B−spline density

(a) Distribution of B-spline coefficients and finite ele-
ment.

B−spline density

(b) 3D view of B-spline representation of the density
distribution ρ̃(x, y) and B-spline coefficients ρi.

Figure 4: Optimized density representation from degree p = 3, q = 2 B-splines of 30 × 10 knot
intervals with analysis done by 30× 10 quadrilateral linear elements [2]. (a) Distribution of 33× 12
B-spline coefficients ρi (red circle), ((b) 3D view of density distribution ρ̃(x) and the B-spline
coefficients ρi.

and (r + 1) non-zero entries in Bk̂,r(ze), and corresponding (p + 1)(q + 1)(r + 1) entries in design

variables ρ. Therefore, (8) can be noted as

ρ̃e =
∑
i∈Ne

Ni(xe)ρi, (9)

where the index set Ne contains (p + 1)(q + 1)(r + 1) entries and the triplet (̂i, ĵ, k̂) is mapped to
the global index i. The weight factor Ni(xe) can be evaluated as

Ni(xe) = Bî,p(xe)Bĵ,q(ye)Bk̂,r(ze). (10)

The B-spline based density equation (9) has the same form as the density filter (1). This can
be seen by viewing Ni(xe) as B-spline weight functions, i.e.

Hei = Ni(xe). (11)

Due to the partition of unity property of B-splines, i.e.
∑
i∈Ne

Hei =
∑
i∈Ne

Ni(xe) = 1. Therefore, (1)

essentially becomes

ρ̃e =
∑
i∈Ne

Heiρi,

which has the same form as (9). Thus, we also refer to (9) as a B-spline filter that computes physical
density ρ̃e by weighting design variables (i.e. B-spline coefficients) ρi, i ∈ Ne, with B-spline function
Ni(xe).

Topology optimization in B-spline space

With the above B-spline representation of density distribution as shown in Fig. 4, an arbitrarily
shaped design domain Ω is embeded into a B-spline domain Ω̄. This B-spline function ρ̃(x), x ∈

6

Ω̄, represents the density distribution that are parameterized by a finite number nc of B-spline
coefficients ρi, where i = 1, 2, · · · , nc. As shown in [2], this B-spline representation is independent
from how the physical domain is discretized into analysis elements. In this paper, element center
based approximation and evenly distributed multiple density points in each finite element are used.
For how this approach can be applied to curved design domain and alternative analysis methods
such as isogeometric analysis, see [2].

Two different kinds of problems are solved in this paper: a cantilever beam problem to minimize
the mean compliance, and a heat conduction problem to minimize the mean temperature. Their
nested formulations can be written as:

min
ρ

: c(ρ) = LTU (12a)

s.t. :

ne∑
e=1

ρ̃eve ≤ V ∗ (12b)

: 0 ≤ ρ ≤ 1 (12c)

where ρ is the set of design variable(i.e. B-spline coefficients), and c is the compliance. Equation
(12b) is a volume constraint where ve is the volume of element e and V ∗ is the allowed material
volume. Equation (12c) is the box constraint for design variables, ensuring the resulting physical
density ρ̃ is within [0, 1].

In the nested formulation, at each iteration, the state variables U are solved from the equilibrium
equation

KU = F, (13)

where K is the global stiffness or conductance matrix, F is the force vector, and U is the vector of
state variables, i.e. displacement for elasticity and temperature for heat conduction problem. The
global stiffness or conductance matrix K is obtained by assembling all the ne number of element
stiffness or conductivity matrix Ke noted as follows:

K =

ne∑
e=1

Ke(Ee). (14)

where Ke = EeK
0
e. K0

e is the element stiffness matrix for element with solid phases. Ee is the
material stiffness or heat conductance obtained by using the solid isotropic material interpolation
with penalization (SIMP) given as

Ee = Emin + ρ̃se(E0 − Emin) (15)

where E0 is the stiffness or conductivity for solid material, s is the penalization power and ρ̃e is
the physical density in element e.

The sensitivity of the objective function with respect to physical density ρ̃e can be calculated
from adjoint analysis:

∂c

∂ρ̃e
= λT

∂K

∂ρ̃e
u (16)

where λ is the adjoint variable determined from Kλ = L where L is the adjoint load. By applying
the chain rule, the sensitivity of the objective function with respect to design variable ρi can be
computed as

∂c

∂ρi
=
∑
e∈Ni

∂c

∂ρ̃e

∂ρ̃e
∂ρi

(17)

7

where Ni is the set of finite elements {e}, of which the physical density ρ̃e is affected by the design
variable ρi through a non-zero weight. By substituting equation (16) into equation (17), we can
obtain the sensitivity of the objective function with respect to design variables that are required
for gradient based optimization. Both sensitivities of the volume constraint and the cost function
involves the computing the term ∂ρ̃e

∂ρi
. Based on (9), we have

∂ρ̃e
∂ρi

= Ni(xe). (18)

The update of physical density ρ̃e in each iteration in (15) also involves the above weight factor
Ni(xe).

It should be pointed out that the equations shown in this section have the same form as the
usual density filter based topology optimization. The difference lies in the meanings of the design
variables and the weighting factors that relate the design variables ρi to the physical density ρ̃e.
In the usual density filter, the design variable ρi represents the density in each element and the
weight factor is based on the center-to-center distance D(e, i) as shown in (1). In B-spline filter,
the design variable ρi represents the B-spline coefficient. The weight factor is B-spline functions.

Once we know how to compute and evaluate the B-spline function Ni(xe), the remainder of the
numerical procedures for optimization is then identical to the usual density filter based topology
optimization. Therefore, in the next section, we focus on evaluating and storing the B-spline
function Ni(xe).

Computing and storing B-spline weights

The weight function Ni(xe) in the B-spline filter and Hei in the density filter are respectively used
in both density evaluation and in computing the sensitivity of the cost function in each optimization
iteration. The sensitivity of volume constraint is usually computed once and pre-stored. Here we
focus on cost of computing the sensitivity (17) and the cost of storing the filtering weights. The
cost of computing the sensitivity (17) can be decomposed into two parts. The first part consists
of computing the sensitivity of cost function with respect to physical density a shown in (16) and
this part is noted as sensitivity analysis (SA) in time and storage comparison, e.g. in Fig. 5. The
second part consists of computing the sensitivity of the physical density with respect to design
variables, i.e. ∂ρ̃e

∂ρi
. This term is noted as filter (FIL) in density filter and B-spline evaluation (BE)

in B-spline filter.

Computing B-spline weights

We first show algorithmically how to compute the B-spline weights. Algorithm 1 gives the procedure
for computing B-spline weight factors Ni(xe). The first step is to identify the knot intervals for
which the element center xe is located based on the following relationships,

xe ∈ [x̄lxe , x̄lxe+1], ye ∈ [ȳlye , ȳlye+1], ze ∈ [z̄lze , z̄lze+1]. (19)

The remaining steps include computing univariate B-spline basis functions Bî(xe), Bĵ(ye), and
Bk̂(ze), and then invoking the tensor product form (10) to obtain the B-spline weight factors.

Although the above procedure for computing the B-spline weight factors is relatively simple,
it is still expensive to compute them in each optimization iteration. Since these weights do not

8

Algorithm 1 Computing weight factors N(xe) for physical density ρ̃e
Input: Element e’s center coordinate xe
Output: Weight factors Ni(xe) of physical density ρ̃e

1: From xe, find the knot interval index lxe , l
y
e , l

z
e based on (19).

2: Compute p+ 1 basis functions Bî(xe) in [x̄lxe , x̄lxe+1]based on (4)
3: Compute q + 1basis functions Bĵ(ye) in[ȳlye , ȳlye+1] based on (4)
4: Compute r + 1 basis functions Bk̂(ze) in [z̄lze , z̄lze+1] based on (4)
5: ∀i ∈ Ne, compute Ni(xe) via tensor product (10)

depend on optimization variables ρi and they only depend on the location of the element center
xe with respect to the knot vectors, these weights are thus invariant in each iteration. They can
then be pre-computed and stored before optimization. The challenge is that the memory usage for
storing weight factors can be prohibitively expensive for three-dimensional problems. We analyze
below the cost for storing B-spline weights and compare it with the density filter.

Comparing the cost of storing filtering weights

In the introduction section, we have shown that, with the density filter, the weight factors Hei is
cubic with respect to the filter size. In MTOP, the storage cost is also cubic with respect to the
number of elements m per direction. In this section, we show the storage cost of the B-spline weight
factors Ni(xe) can be made linear with respect to the filter size when B-spline degrees are used to
control the filter size and the cost can be made even more compact when the number of B-spline
knot intervals is used to control the filter size.

Here, an analysis of memory required for storing weights in the density filter and in the B-spline
filter is given below. We assume x86-64bits system is used and the size of integer is 4 bytes, and
size of double is 8 bytes.

Cost for storing weight factors in the density filter

For density filter, the storage of each weight factor Hei includes a tuple {e, i,Hei}, where e and i
are the indicies and Hei is the weight. They can be stored in the format of COOrdinate list(COO)
of (row, column, value) tuples. The weight factor Hei is symmetric with respect to indicies e and i,
thus only half needs to be stored. For each physical density ρ̃e, the number of neighboring elements
nNe that fall in the filtering region can be estimated from the volume of the sphere of filter radius
R as nNe = 4/3πdRe3, where R is the filter radius. If there are a total number of ne elements, then
the total memory usage of the weight factors is:

Sd = (4 + 4 + 8)nenNe/2 = 8nenNe

= 32neπdRe3/3bytes. (20)

We can see that the storage complexity of the density filter is O(R3).
In Fig. 5, the memory usage and computation time required for density filter based topology

optimization with 100,000 linear hexahedra elements for minimum compliance problem is plotted.
The tasks compared include finite element analysis (FEA), sensitivity analysis (16), filtering (17)
and optimization. The CPU time on a 2.3 GHz computer is also plotted on the left. We can see
that finite element analysis takes 90% of the time in each iteration in the optimization. In contrast,

9

FEA SA FIL OPT0

10

20

30

40

50

C
PU

 ti
m

e(
s)

R=4
R=8
R=12

(a) CPU time

FEA SA FIL OPT0

1000

2000

3000

4000

5000

6000

M
em

or
y(

M
B)

R=4
R=8
R=12

(b) Memory usage

Figure 5: The CPU and memory usage of density filter with different filter radius R for four tasks
in each optimization iteration.

the density filter takes most of the memory especially at large filter radius. The memory usage for
storing density weighting factors exceeds that of the stiffness matrix and the finite element analysis.

Cost for storing evaluated B-spline weight factors

For B-splines, the storage of each evaluated B-spline weight factor Ni(xe) includes the tuple
{e, i,Ni(xe)}, where e and i are the indicies and Ni(xe) is the B-spline weight. However, the
B-spline weight Ni(xe) is not symmetric with respect to the indicies e and i. Thus the storage cost
for all B-spline weights is

Sbe = (4 + 4 + 8)ne(p+ 1)(q + 1)(r + 1)

= 16ne(p+ 1)(q + 1)(r + 1)bytes, (21)

where we have used the fact that the number of entries in Ne is (p+ 1)(q + 1)(r + 1). We can see
that with the evaluated B-spline weight factor Ni(xe), the storage complexity of the B-spline filter
is O(p3) assuming equal filter size in all axes, i.e. p = q = r.

Cost for storing tensor form of the B-spline weight factors

In storing the evaluated B-splines, for each physical density ρ̃e, one needs to store nNe = (p +
1)(q+ 1)(r+ 1) entries of tuples {e, i,Ni(xe)}. In contrast, when storing each pre-evaluated, tensor
form of the weight factor, one needs to only store p+ 1 entries of univariate B-spline basis function
Bî(xe) along x direction, q + 1 entries of B-spline function Bĵ(ye) along y direction, and r + 1
entries of B-spline function Bk̂(ze) along z direction. The evaluated B-spline weight factors Ni(xe),
i ∈ Ne, can be obtained from these univariate B-spline functions via (10). Thus, the cost for storing
univariate B-spline basis functions in all direction for each ρ̃e is 8(p+ q + r + 3)bytes.

The nNe = (p+1)(q+1)(r+1) entires of indicies î, ĵ, k̂ used in evaluating (10) can be recovered
dynamically in each optimization iteration from the indices of the knot intervals, i.e. lxe , l

y
e , l

z
e, based

on (19). Therefore, the cost for storing the indicies for each ρ̃e is 3× 4 bytes.
Therefore, the total cost of storing the tensor form of B-spline weights is the sum of the cost

for storing univariate B-spline basis functions in all directions and the the storage for the indicies,

10

as

Sbt = ne (8(p+ q + r + 3) + 12)

= 8ne(p+ q + r + 4.5)bytes. (22)

Thus, the total cost for storing the B-spline weights is linear with respect to B-spline degrees p, q
and r.

It is important to note that the storage cost for both evaluated form (21) and tensor form (22)
of B-spline weights only depends on the number of finite elements ne and B-spline degrees p, q, r,
but not on the number of knots. We can use this property to make B-spline filtering even more
efficient when large filter size is desired in topology optimization. That is, we can simply use fewer
knots so each knot interval δ becomes larger since the total length of knot intervals must equal the
domain size. The domain size of the optimization problem does not change and fewer knots lead
to fewer but larger knot intervals δ. Thus, with fewer knots, the effective filter size ∆ = (p + 1)δ
in each axial direction becomes larger. We will show such compact storage requirement of B-spline
filters in the following examples.

3D numerical examples

We use two 3D optimization problems to illustrate the computational advantages of B-spline based
topology optimization. The specifications of the two problems are shown in Fig. 6. In (a), a
cantilever beam with evenly distributed loads exerted on the lower edge of the other side. The
volume constraint of the solid phase is 15% of the whole domain volume. The Young’s modulus of
solid and void phases are Esolid = 1 and Evoid = 1e−9. The Poisson’s ratio is ν = 0.3. The problem
is analyzed with 28×36×112 eight-node linear hexagonal elements with element size h = 1. In Fig.
6(b), a cubic domain is considered. There is uniform heat generation within the design domain. On
the center of the lower surface, there is a heat sink with constant temperature. All other boundary
surfaces are adiabatic. The volume constraint of the solid phase is 30% of the whole domain volume.
The goal is to maximize the heat transfer over the domain. The conductivity of the solid and void
phase are EHsolid = 1 and EHvoid = 1e− 3. The problem is analyzed with 100× 100× 100 hexagonal
eight-node linear elements.

(a) Minimum compliance

T = 0

(b) Minimum mean tem-
perature

Figure 6: Problem specification of (a) cantilever beam; (b) heat conduction.

The implementation is based on a combination of C and Python. To solve the finite element
equations, Symmetric Successive Over-Relaxation(SSOR) preconditioned conjugate gradient with

11

error tolerance 1e−6 is used. Sparse matrix solver [18] is used. MMA [19] is used as the optimizer.
The optimized results are rendered by Paraview with density threshold 0.5 unless otherwise noted.
The optimization convergence criteria is that either the maximum change of design variables less
than 0.01 or the maximum iteration number is 800. A 2.3 GHz Intel CPU laptop is used. Depending
on the number of elements, it may take several hours to a day to complete the optimization. The
density filter results are based on the implementation in [20].

Minimum compliance: cantilever beam

With density represented with B-splines, both degrees p, q, r, and knot intervals δx, δy, δz can be
used to control the filter size, which is characterized by ∆x = (p+ 1)δx in x direction with similar
expressions for other direction[2]. We demonstrate the storage cost of using both degrees and knot
intervals to control the feature size.

Controlling filter size via B-spline degrees

(a) p2, I326, c6470 (b) p6, I583, c5884 (c) p10, I942, c6325

Figure 7: Topology optimization results using different degrees of B-splines at 14 × 18 × 56 knot
intervals.

In Fig. 7, the optimized results using different B-spline degrees 2, 6, 10 are shown. The density
field is represented by B-splines of 14 × 18 × 56 uniform knot intervals. The number of linear
elements used in FE analysis are 28× 36× 112. We see that by increasing B-spline degrees, while
fixing B-spline knot interval numbers, the minimum feature size becomes larger. Both the tensor-
product form and evaluated form of B-spline weights are tested and compared. Both forms of
B-spline weights lead to identical optimization results. But the storage efficiency of tensor-product
form is much more different, with minor increased cost in computing the B-spline weights from the
univariate entires (10). In Table 1, the memory for storing the B-spline weights and CPU time for
for computing (17) from physical density’s senstivity ∂c

∂ρ̃e
are shown for both forms of storing B-

spline weights, with degrees ranging from p = 2 to p = 10. As can be seen from the table, with the
increase of B-spline degrees, the cost for storing tensor-product form of B-spline weights increases
linearly as predicted in (22) and the cost for storing evaluated B-spline weights increases cubicly
as predicted in (21). The time cost of evaluating tensor-product form of B-spline weights increases
faster than that of evaluated B-spline weights, although they are of the same complexity, i.e. cubic
with respect to B-spline degrees. Thus, B-splines of tensor-product form provides overall efficient
filtering. We therefore use tensor-product form of B-spline weights in all subsequent examples.

12

Table 1: CPU Time and memory usage comparison for using different forms of storing B-spline
weights for cantilever beam problem.

Tensor-product form Evaluated form

p Sbt (Es/Re) time(s) Sbe(Es/Re) time(s)

2 9.0/9.0MB 0.014 48.8/48.8MB 0.008
6 19.4/19.4MB 0.016 619.6/619.6MB 0.01
10 31.2/31.2MB 0.05 2404/2404MB 0.02
p 8ne(3p+ 4.5) O(p3) 16ne(p+ 1)3 O(p3)

(a) ∆3, I460, c5230 (b) ∆6, I326, c6470 (c) ∆12, I378, c7238

Figure 8: 3D results optimized with degree 2 B-splines of different B-spline knot intervals.

(a) R1.5, I452, c5324 (b) R3.5, I367, c6389 (c) R5.0, I675, c7357

Figure 9: 3D results optimized with the density filter with analysis mesh 28× 36× 112.

13

Controlling filter size via the number of knot intervals

Figure 8 shows the B-spline based optimized results using the degree p = q = r = 2 B-splines
of different number of knot intervals. The number of analysis elements is still 28 × 36 × 112 in
x × y × z directions. In the paper, we use a prefix ’D’ before a triple of numbers to represent the
number of B-spline knot intervals and the prefix ∆ before a number to indicate the effective filter
size (p + 1)δ. The cost function values and optimization iteration number are shown in the figure
with prefix ’c’ and ’I’. The B-spline degree is shown with prefix ’p’. From the obtained topology
results, we can see that the number of knot intervals controls the feature size in the optimized
designs. With fewer but larger intervals δx = δy = δz from Fig. 8(a) to (c), the knot intervals
change from D28× 36× 112 to D14× 18× 56 and to D7× 9× 28 and the corresponding effective
filter sizes changes from ∆3 to ∆6 to ∆12. The minimum feature size becomes larger and larger.
The objective function increases as the number of knot intervals decreases.

For comparison purpose, we also show the topology optimization results with the density filters
from the same number of analysis elements, but of different filter radius R. The results are shown
in Fig. 9. As we can see, with the increase of the density filter radius R from 1.5 element size to 5
element size, the compliance becomes larger and the minimal feature becomes larger.

Table 2: Memory usage and time comparison between different filter radius with the density filter
and different knot intervals with the B-spline filter (p = 2) for cantilever beam.

density filter B-spline filter

R/h Sd(Es/Re) time(s) ∆/h Sbt (Es/Re) time(s)

1.5 29.3/29MB 0.006 3 9.0/9.0MB 0.014
2 29.3/29MB 0.006 4 9.0/9.0MB 0.014

3.5 231/233MB 0.011 6 9.0/9.0MB 0.014
5 450/452MB 0.018 12 9.0/9.0MB 0.014

R/h 32neπdRe3/3 O(R3) ∆/h 8ne(3p+ 4.5) O(p3)

In Table 2, the time for computing the sensitivity (17) and estimated and real storage cost for
density filter and for storing tensor-product form of B-spline weights are given. We record the time
and storage cost for each optimization iteration and list the average value in the table. It can be
seen that the estimated storage cost for the density filter is close to actual storage cost since we
approximate the filtering region as a sphere. On the other hand, the estimated storage cost and
actual cost for B-spline filters are identical since we know precisely the number of B-splines entries
to store. For the density filter, with the increase of radius R, the resulting features become larger
and the storage cost has increased from 29MB to 450MB. With B-spline filtering, with the decrease
of the number of knot intervals from 28×36×112 to 7×9×28 with the corresponding effective filter
size ∆/h changing from 3 to 12, the features become larger and the storage cost remain constant
9MB.

The CPU time and memory usage for B-spline based topology optimization are also plotted
in Fig. 10 in terms of four tasks in topology optimization: finite element analysis, optimization,
sensitivity analysis (16), and B-spline evaluation(BE) (17) by dynamically evaluating Ni(xe) with
different knot interval numbers are given in Fig. 10 and Table 2. For B-spline based topology

14

FEA SA BE OPT0

10

20

30

40

50

C
PU

 ti
m

e(
s)

28x36x112
21x27x84
14x18x56
7x9x28

(a) CPU time

FEA SA BE OPT0

50

100

150

200

M
em

or
y(

M
B)

28x36x112
21x27x84
14x18x56
7x9x28

(b) Memory usage

Figure 10: The plot of CPU time and memory usage of B-spline representation for cantilever beam
problem with different number of knot intervals.

optimization, the degrees are fixed at 2× 2× 2, only the number of B-spline knot intervals change.
From Fig. 10, we can see that with the decrease of knot intervals from D28×36×112 to D7×9×28,
the feature size in optimized structures become larger. However, the cost for storing B-spline weights
remain the same as shown in Fig. 10 and in Table 2. This is evident based on (22). We see that
since the B-spline degrees are the same, changing the number of B-spline knot intervals does not
affect the memory usage or CPU time.

In comparison, with the density filter, the memory and CPU time for storing and computing
filtering weights is shown on the left column of Table 2. We can see that the memory usage is
proportional to R3 and CPU time is proportional to R3.

Heat conduction problem

Figure 11 shows optimized distribution of heat conduction materials with quadratic (p = q = r = 2)
B-splines of different number knot intervals. One million linear 8-node hexagonal elements are used
for FE analysis. The obtained topologies are very complex. To see it more clearly, surface smoothing
is used to render the designs more clearly. As we can see, with the reduction of the number knot
intervals, i.e. the increase of effective filter size ∆x = (p+1)δx, the feature size becomes larger. Also
listed is the memory required for storing tensor product form of B-spline weights. They are the
same, 84MB, regardless the number of intervals, as predicted in (22) by substituting the analysis
element number 1 million and degree 2.

The CPU time and memory usage for B-spline evaluation is shown in Fig. 12. As in minimum
compliance problem, the changing of the number of knot intervals does not affect the memory usage
and CPU time. The CPU time and memory usage of each components of topology optimization
is well balanced to achieve different feature size. Optimization based on density filter on 1 million
analysis elements is not completed since there is not sufficient memory to store the weights.

Multiple density per element scheme

Due to its efficiency in filtering, our B-spline based design representation shows significant efficacy
for topology optimization schemes where significant filtering is involved. One such scheme is multi-
density topology optimization[12] where it was shown that using multiple densities at each finite

15

(a) p2, D100 × 100 × 100,
memory:84MB

(b) p2, D80 × 80 × 80,
memory:84MB

(c) p2, D60 × 60 × 60,
memory:84MB

(d) p2, D40 × 40 × 40,
memory:84MB

Figure 11: Topology optimization results of heat conduction problem with degree 2 B-splines of
different knot interval numbers. The analysis mesh is 100× 100× 100.

FEA SA BE OPT0

10

20

30

40

50

C
PU

 ti
m

e(
s)

100x100x100
80x80x80
60x60x60
40x40x40

(a) CPU time

FEA SA BE OPT0

20

40

60

80

100

120

140

m
em

or
y(

M
B)

100x100x100
80x80x80
60x60x60
40x40x40

(b) Memory usage

Figure 12: The plot of CPU time and memory usage of B-spline representation with different
number of knot intervals for heat conduction problems.

16

element leads to much smoother boundary in the optimized designs. In Fig 13, a quadrilateral
4 nodes finite element with 5 × 5 multiple density point on each element(Q4/M25) is shown [12].
However, by packing a large number of density points, the memory cost for filter is proportional to
the quardartic order of the number of density m in each direction. Table 3 compares the estimated
storage of the cost of using density filter and B-spline filter. With the density filter, the MTOP
scheme requires storage that is quadratic with respect to the number of density variables M per
element where M = m3 assuming same number of density variables m in each axial direction. This
is because there is M times increase in the number of density variables and M times increase in each
density variable’s neighboring variables. On the other hand, with B-spline filter, the storage cost is
independent from the number of neighboring variables and the storage cost is linear with respect
to M . For 1 million finite elements, using cubic eight-node finite elements with 4× 4× 4(M = 64),
the memory usage comparison between density filter and tensor-product form of B-splines by using
the same degree p = q = r = 2 and different knot intervals is shown. We assume that for B-spline
filter, the effective interval sizes ∆ = (p+ 1)δ is adjusted so they have the same effective filter size
(2R) in density filter. As shown in Table 3, when the filter radius R increase from 3 to 10, the
memory usage increase so fast(proportional to the cubic of filter radius R) and a common desktop
computer cannot meet this kind of memory requirement. Using B-spline representation, however,
the storage only scales linearly with respect to M .

Displacement Density variables

(a) MTOP scheme

Figure 13: Illustration of multiple density Q4/M25 [12].

Table 3: For 1 million finite elements, using cubic eight-node finite elements with 4×4×4(M = 64),
the memory usage comparison between density filter and tensor-product form of B-splines (p = q =
r = 2) by using the same degree and different knot intervals that achieve the similar feature size.

density filter B-spline

R/h Sd ∆/h Sbt

3 3.7TB 6 5.3GB
5 17TB 10 5.3GB
10 137TB 20 5.3GB
R/h 32neπR

3M2/3 (p+ 1)δ/h 8(p+ q + r + 4.5)neM

The optimization results using density filter are shown in Fig. 14 with display threshold 0.1.
Analysis mesh 14×18×36 is used. This is the finest analysis mesh we can use before out of memory
issue happens. We can see that with more density variables per element, the boundary becomes

17

(a) M = 1, c=5656 (b) M = 23, c=5777 (c) M = 33, c=6479 (d) M = 43, c=7543

Figure 14: Density filter with analysis mesh: 14× 18× 36. R/h = 2.

(a) M=1,c=3697 (b) M=23,c=3637 (c) M=33,c=3884 (d) M=43,c=4126

Figure 15: Using quadratic B-splines with analysis mesh 42× 54× 108.

smoother. In Fig. 15, optimization results using B-spline representation are shown. Much finer
analysis mesh 42× 54× 108 can be used. By using finer mesh, more detailed structures with lower
compliance are obtained. This example demonstrates B-spline filtering can demonstrate the full
advantages of MTOP without encountering filter storage challenge that are otherwise prohibitively
expensive with the usual density filter.

Conclusions and extensions

In this paper, we have extended the use of B-spline based density representation to three-dimensional
topology optimization problems, including both minimal compliance and heat conduction. Our
study shows that there is no checkerboard in optimized structures with proper choice of B-spline
knots and degrees. The feature size can be controlled via B-spline degrees and knot interval
numbers. Further, topology optimization with B-spline based density representation can be both
memory and CPU efficient due to the tensor product nature of density distribution. Via dynamic
reconstruction of the density through the tensor product, the usual cubic order of storage cost with
respect to the filter size is reduced to linear order. It thus avoids the usual challenge of storing the
large neighborhood distance matrix for filtering the density variables. This B-spline based repre-
sentation is thus particularly useful for topology optimization methods such as multi-density per
element scheme where the storage of the large number of neighboring distance between the large
number of density variables have been a challenge.

The proposed B-spline based filtering of density variables can be readily extended to third-part
topology optimization software. As illustrated in Algorithm 1, the required input is the center
positions of elements, which can be easily obtained from most FEA and topology optimization

18

software. The output are (p+1), (q+1) and (r+1) univarite B-splines weights, respectively in u, v
and w directions for each element. The procedure for computing such univariate B-splines weights
is relatively straightforward, with Matlab source code available online [21]. Tensor product of such
univariate weights leads to the B-spline weights in 3D domain.

Acknowledgment

This work is supported in part by the NSF grant #1200800 and grant #1435072. The authors are
also thankful for helpful comments from anonymous reviewers. The authors also acknowledge the
help from graduate student Jing Li for producing Figure 1.

References

[1] M.P. Bendsøe and N. Kikuchi. Generating optimal topologies in structural design using a
homogenization method. Computer Methods in Applied Mechanics and Engineering, 71(2):197–
224, 1988.

[2] X. Qian. Topology optimization in B-spline space. Computer Methods in Applied Mechanics
and Engineering, 265(0):15 – 35, 2013.

[3] M.P. Bendsøe. Optimal shape design as a material distribution problem. Structural and
Multidisciplinary Optimization, 1(4):193–202, 1989.

[4] M. Zhou and G. Rozvany. The coc algorithm, part ii: topological, geometrical and generalized
shape optimization. Computer Methods in Applied Mechanics and Engineering, 89(1):309–336,
1991.

[5] M.P. Bendsøe and O. Sigmund. Topology optimization: theory, methods, and applications.
Springer Verlag, 2003.

[6] B. Bourdin. Filters in topology optimization. International Journal for Numerical Methods in
Engineering, 50(9):2143–2158, 2001.

[7] O. Sigmund. Design of material structures using topology optimization. Report S69, Danish
Center for Applied Mathematics and Mechanics, Technical University of Denmark, Lyngby,
Denmark, 1994.

[8] R.B. Haber, C.S. Jog, and M.P. Bendsøe. A new approach to variable-topology shape design
using a constraint on perimeter. Structural and Multidisciplinary Optimization, 11(1):1–12,
1996.

[9] T. Borrvall. Topology optimization of elastic continua using restriction. Archives of Compu-
tational Methods in Engineering, 8(4):351–385, 2001.

[10] E. Andreassen, A. Clausen, M. Schevenels, B.S. Lazarov, and O. Sigmund. Efficient topology
optimization in matlab using 88 lines of code. Structural and Multidisciplinary Optimization,
43(1):1–16, 2011.

19

[11] B.S. Lazarov and O. Sigmund. Filters in topology optimization based on helmholtz-type
differential equations. International Journal for Numerical Methods in Engineering, 86(6):765–
781, 2011.

[12] T.H. Nguyen, G.H. Paulino, J. Song, and C.H. Le. A computational paradigm for multiresolu-
tion topology optimization (mtop). Structural and Multidisciplinary Optimization, 41(4):525–
539, 2010.

[13] A.V. Kumar and A. Parthasarathy. Topology optimization using B-spline finite elements.
Structural and Multidisciplinary Optimization, 44:1–11, 2011.

[14] Jiaqin Chen and Vadim Shapiro. Optimization of continuous heterogeneous models. In Alexan-
der Pasko, Valery Adzhiev, and Peter Comninos, editors, Heterogeneous objects modelling and
applications, volume 4889 of Lecture Notes in Computer Science, pages 193–213. Springer
Berlin Heidelberg, 2008.

[15] Jiaqin Chen, Vadim Shapiro, Krishnan Suresh, and Igor Tsukanov. Shape optimization with
topological changes and parametric control. International journal for numerical methods in
engineering, 71(3):313–346, 2007.

[16] L.A. Piegl and W. Tiller. The NURBS Book. Springer Verlag, 1997.

[17] G. Farin. Curves and surfaces for CAGD: a practical guide. Morgan Kaufmann, 2001.

[18] Pysparse. http://pysparse.sourceforge.net. Accessed: 09-24-2014.

[19] K. Svanberg. The method of moving asymptotes–a new method for structural optimization.
International Journal for Numerical Methods in Engineering, 24(2):359–373, 1987.

[20] W. Hunter. Predominantly solid-void three-dimensional topology optimisation using open
source software. PhD thesis, Stellenbosch: University of Stellenbosch, 2009.

[21] Matlab source code for topology optimization in B-spline space. http://cdm.me.wisc.edu/

code/btop85.htm. Accessed: 10-10-2014.

20

http://pysparse.sourceforge.net
http://cdm.me.wisc.edu/code/btop85.htm
http://cdm.me.wisc.edu/code/btop85.htm

