
An optimization approach for constructing trivariate B-spline solids

Xilu Wang Xiaoping Qian
Mechanical, Materials and Aerospace Engineering Department

Illinois Institute of Technology, Chicago, IL 60616, USA

Abstract

In this paper, we present an approach that automatically constructs a trivariate tensor-product B-spline solid via a gradient-
based optimization approach. Given six boundary B-spline surfaces for a solid, this approach finds the internal control points so
that the resulting trivariate B-spline solid is valid in the sense the minimal Jacobian of the solid is positive. It further minimizes a
volumetric functional to improve resulting parametrization quality.

For a trivariate B-spline solid even with moderate shape complexity, direct optimization of the Jacobian of the B-spline solid
is computationally prohibitive since it would involve thousands of design variables and hundreds of thousands of constraints. We
developed several techniques to address this challenge. First, we develop initialization methods that can rapidly generate initial
parametrization that is valid or near-valid. We then use divide-and-conquer approach to partition the large optimization problem
into a set of separable sub-problems. For each sub-problem, we group the B-spline coefficients of Jacobian determinant into different
blocks and make one constraint for each block of coefficients. This is achieved by taking an aggregate function, Kreisselmeier
Steinhauser function value of the elements in each block. With the block aggregation, it reduces the dimension of the problem
dramatically. In order to further reduce the computing time at each iteration, a hierarchical optimization approach is used where
the input boundary surfaces are coarsened to difference levels. We optimize the distribution of internal control points for the coarse
representation first, then use the result as initial parametrization for optimization at the next level. The resulting parametrization
can then be further optimized to improve the mesh quality.

Optimized trivariate parametrization from various boundary surfaces and the corresponding parametrization metric are given
to illustrate the effectiveness of the approach.
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1. Introduction

Isogeometric analysis is a numerical analysis technique
where CAD basis functions are used to both represent ge-
ometry and approximate physical field [1]. It has emerged
as an important numerical analysis technique and offers
potential to bridge CAD and finite element analysis. A pre-
requisite in isogeometric analysis is the availability of CAD
basis based volumetric parametrization of physical domain
since geometric representation in CAD systems provides
only boundary definitions. Toward this end, this paper pro-
vides an approach that can automatically construct trivari-
ate B-spline solid from a given set of six boundary surfaces
or from a boundary triangulation. A trivariate B-spline
solid establishes a mapping that maps a cubic parametric
domain to a 3D physical domain. A mapping that is use-
ful for many practical applications such as finite element
or isogeometric analysis is one that does not involve self-
intersection or folding. One way to ensure that the mapping

is free from self-intersection is to ensure that the Jacobian
of the mapping does not change sign. In this paper, we find
the internal control points to maximize the minimal Ja-
cobian of the B-spline solid. When the minimal Jacobian
is positive, the mapping is free from self-intersection. This
approach further minimizes a volumetric functional to im-
prove resulting parametrization quality.

Fig. 1 gives an example of constructing a B-spline solid
from a boundary triangulation. Fig. 1(a) is the input trian-
gles and Fig. 1(b) shows the reconstructed 6 compatible B-
spline surfaces. Fig. 1(c), 1(d), and 1(e) are respectively the
initial constructed B-spline solids, the optimized valid B-
spline solid, and the solid with improved parametrization.
The colour represents the Jacobians. Bézier patches with
negative Bézier coefficients of det J are shown in shaded
colours and the control points that affect them are shown
in blue points. It can be seen that the Bézier patches on
the neck are intersecting with each other. In Fig. 1(d) the
mesh is valid. The Bezier patches in Fig. 1(d) now have all
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Fig. 1. (a) Boundary triangulation; (b) valid and compatible bound-
ary B-spline surfaces that are at least G1 continuous; (c) initial

B-spline solid with negative Jacobian; (d) optimized, valid B-spline

solid; (e) B-spline solid with improved mesh quality.

positive Bézier coefficients of det J except that those zero
coefficients on the boundary edges. It can be seen that the
elements on the neck are no longer intersecting with each
other (See the boxed area in Fig. 1(c) and 1(d)). After mesh
quality improvement, in Fig. 1(e) the mesh becomes much
smoother than that in Fig. 1(d) (see the circled areas in
Fig. 1(d) and 1(e)).

Our basic approach is as follows. From the boundary
triangulations we reconstruct simultaneously six valid and
compatible boundary B-spline surfaces with optional G1
smoothness across the boundary curves and corners. From
the boundary B-spline surfaces, we use deformation tech-
niques to create an initial B-spline solid that is valid or
near-valid. We then maximize the minimal B-spline coeffi-
cient of det J until a valid B-spline solid is obtained. This is
possible since the Jacobian of a B-spline solid is a high order
trivariate B-spline. The minimal Jacobian is thus bounded
by the minimal B-spline coefficient of det J .

For a trivariate B-spline solid even with moderate shape
complexity, direct optimization of the Jacobian of the B-
spline solid is computationally prohibitive since it would
involve thousands of design variables and hundreds of
thousands of constraints. We have thus developed several
techniques to address this challenge. We use a divide-
and-conquer approach to partition the large optimization
problem into a set of separable sub-problems. For each
sub-problem, we group the B-spline coefficients of det J
into different blocks and make one constraint for each
block of coefficients. This is achieved by taking an aggre-
gate function, Kreisselmeier Steinhauser function value of
the elements in each block. With the block aggregation, it
reduces the dimension of the problem dramatically. In or-
der to further reduce the computing time at each iteration,
a hierarchical optimization approach is used where the
input boundary surfaces are coarsened to difference levels.
We optimize the distribution of internal control points for

the coarse representation first, then use the result as ini-
tial parametrization for optimization at the next level. At
last, we further improve the mesh quality by minimizing a
volumetric functional and several parametrization metrics
are used to evaluate the mesh quality.

Our approach extends earlier work in 2D parameteriza-
tion where minimal Jacobians of B-spline surfaces are max-
imized [2,3]. Optimization approaches to 3D parametriza-
tion have been attempted. In [4], a variational approach
for generating NURBS parametrization of swept volumes
is presented. In [5] an optimization based approach for gen-
erating trivariate B-spline solid is also presented. However,
as shown in this paper, direct optimization is only appli-
cable to small scale problems. Other approaches to volu-
metric parametrization for isogeometric analysis have also
been developed. In [6], a tetrahedral mesh was parametrized
based on discrete volumetric harmonic functions and then
fitted to a single skeleton based trivariate B-spline solid.
Instead of having six exterior surfaces, it only has one ex-
terior surfaces with singularities on the inner skeleton axis.
In [7], a method of converting unstructured quadrilateral
and hexahedral mesh to a rational T-spline was proposed.
Based on the method in [7], in [8], solid T-splines were con-
structed from the triangular boundary representations for
genus-zero geometry. Further, in [9], a method of construct-
ing solid T-splines from boundary triangulations with ar-
bitrary genus topology is given.

Thus far few of the above approaches have addressed the
quality of the parametrization. Even though isogeometric
analysis is shown to be robust even under severe mesh dis-
tortion [10], the statistics in [11] suggests that the mesh
quality have influences on the accuracy and convergence of
the analysis solutions. In this paper, besides the Jacobian,
we evaluate the resulting mesh metrics such as orthogonal-
ity, Oddy metric and condition number.

2. Jacobians of Bézier and B-spline solids

2.1. B-spline solid and Jacobian

A trivariate B-spline solid can be defined as

T (u, v, w) =

m∑
i=0

n∑
j=0

l∑
k=0

Ni,p(u)Nj,q(v)Nk,r(w)Pi,j,k,

where Pi,j,k, i = 0, 1, · · · ,m, j = 0, 1, · · · , n, k = 0, 1, · · · , l
are control points in u, v and w directions and Ni,p(u),
Nj,q(v), Nk,r(w) are B-splines of degree p in u, degree q
in v and degree r in w directions. A B-spline solid can be
decomposed to Bézier volumes. A trivariate Bézier volume
can be defined as

TB(u, v, w) =

p∑
i=0

q∑
j=0

r∑
k=0

Bi,p(u)Bj,q(v)Bk,r(w)Pi,j,k,

where Pi,j,k are control points andBi,p(u),Bi,q(v),Bi,r(w)
are respectively degree p, q, r Bernstein basis polynomials.
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Definition 1: A point (x1, x2, · · · , xn)T is singular if
rank(J(x1, x2, · · · , xn)) < n.

At a singular point, finite length, area and volume is
mapped to zero length, area and volume.

Let us focus on R3 → R3 mapping, u = (u, v, w)T →
T = (x, y, z)T .

Lemma 1: Assume point u0 = (u0, v0, w0)T is singular,
which means rank(J) < 3 and det J = 0. If detJ has the
same sign in the neighbourhood of (u0, v0, w0)T , then it is
singular but no self-intersection; If det J changes its sign
across point (u0, v0, w0)T , the neighbourhood around this
point has self-intersection [12,13].

In this paper, for brevity, we abbreviate the determinant
of the Jacobian matrix as Jacobian. According to Lemma 1,
a solid mesh has singular points if it has zero Jacobian and
has self-intersection area if it has both positive and nega-
tive Jacobian. By properly determining u, v, w directions,
we could have that, for a valid solid, we have all positive
Jacobian and for self-intersecting solid, we have both pos-
itive and negative Jacobian. All positive Jacobian means
min(det J) > 0. One method to achieve all positive Ja-
cobian is to maximize the minimum Jacobian until it be-
comes positive. However, in general it is difficult to obtain
min(det J). In this paper, we focus on the B-spline solid
and we express det J of a B-spline solid in the form of a
higher order trivariate B-spline. We thus can obtain the
bound of min(det J) from the B-spline coefficients of det J .
Via maximizing the minimum B-spline coefficient of det J ,
we can obtain a B-spline solid with all positive Jacobian.

The partial derivatives of a B-spline solid T (u, v, w) are:

∂T

∂u
=

m−1∑
i=0

n∑
j=0

l∑
k=0

Ni,p−1(u)Nj,q(v)Nk,r(w)αi∆Pijk,u

∂T

∂v
=

m∑
i=0

n−1∑
j=0

l∑
k=0

Ni,p(u)Nj,q−1(v)Nk,r(w)βj∆Pijk,v

∂T

∂w
=

m∑
i=0

n∑
j=0

l−1∑
k=0

Ni,p(u)Nj,q(v)Nk,r−1(w)γk∆Pijk,w

where ∆Pijk,u = Pi+1,j,k − Pi,j,k, ∆Pijk,v = Pi,j+1,k −
Pi,j,k, ∆Pijk,w = Pi,j,k+1 − Pi,j,k; αi =

p

ui+p+1 − ui+1
,

βj =
q

vj+q+1 − vj+1
, γk =

r

wk+r+1 − wk+1
; ui+1, vj+1, wk+1

are the values of the knot in the knot vectors. The deter-
minant of the Jacobian matrix is

det J(u, v, w)

= det[Tu,Tv,Tw]

=

m−1∑
i1=0

n∑
j1=0

l∑
k1=0

m∑
i2=0

n−1∑
j2=0

l∑
k2=0

m∑
i3=0

n∑
j3=0

l−1∑
k3=0

Ni1,p−1(u)

Ni2,p(u)Ni3,p(u)Nj1,q(v)Nj2,q−1(v)Nj3,q(v)Nk1,r(w)

Nk2,r(w)Nk3,r−1(w)pqrαi1βj2γk3

det[∆Pi1j1k1,u ∆Pi2j2k2,v ∆Pi3j3k3,w] (1)

The product of B-splines is a higher order B-spline [14].
Therefore (1) becomes

det J(u, v, w) =

mJ∑
s1=0

nJ∑
s2=0

lJ∑
s3=0

Ns1,3p−1(u)Ns2,3q−1(v)

Ns3,3r−1(w)Js1,s2,s3 (2)

where Js1,s2,s3 is the coefficient of the higher order Jacobian
trivariate B-spline. The degrees correspond to the u, v, w
parameters are 3p−1, 3q−1, 3r−1 and mJ = (m−p)(2p+
1)+3p−1, nJ = (n−q)(2q+1)+3q−1, lJ = (l−r)(2r+1)+
3r − 1 are the number of coefficients in u, v, w directions.

Lemma 2: The Jacobian of a B-spline solid is itself a
higher order trivariate B-spline.

Lemma 3: The coefficients Js1,s2,s3 bound the higher or-
der Jacobian trivariate B-spline det J(u, v, w), thus a suffi-
cient condition for the B-spline solid T to be valid is that:
the minimal B-spline coefficient of det J(u, v, w) is positive.

(a) (b)

Fig. 2. (a) Invalid B-spline solid; (b) Valid B-spline solid.

Fig. 2 compares an invalid B-spline solid and valid B-
spline solid with the same set of boundary surfaces. In Fig.
2(a), min det J(u, v, w) = −2.0344, and the minimum B-
spline coefficient of det J is minJs1,s2,s3 = −4.7286, which
bounds the det J(u, v, w). It has mesh folding around the
boundaries. By adjusting positions of the internal control
points, it becomes an valid B-spline solid, as shown in
Fig. 2(b) where the minimal B-spline coefficient of det J is
min Js1,s2,s3 = 1.4.

2.2. Tighter Jacobian bound via the Bézier solids

To ensure a valid B-spline solid, we need that the minimal
of Js1,s2,s3 , s1 = 0, · · · ,mJ ; s2 = 0, · · · , nJ ; s3 = 0, · · · , lJ
is positive. Since this is a sufficient but not necessary con-
dition, it is thus desirable to reduce the Jacobian bound
[2]. Since Bézier patches have a tighter convex hull than
that of the B-spline solid, we can conduct knot insertions
in the internal knots of the U, V,W knot vectors for p −
1, q − 1, and r − 1 times respectively to extract the Bézier
patches from the B-spline solid. Then, we calculate the
Bézier coefficients of det J for each Bézier patch. If they
are all larger than zero, then the solid is valid. Otherwise,
we maximize the minimal Bézier coefficient of det J to ob-
tain a valid solid. By taking advantage of the properties of
Bernstein Bézier polynomials, we have the Jacobian of the
Bézier solid as
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detJ(u, v, w) =

3p−1∑
s1=0

3q−1∑
s2=0

3r−1∑
s3=0

Bs1,3p−1(u)Bs2,3q−1(v)

Bs3,3r−1(w)Js1,s2,s3 ,

Js1,s2,s3 =
∑

i1+i2+i3=s1
i1∈[0,p−1]
i2∈[0,p]
i3∈[0,p]

∑
j1+j2+j3=s2

j1∈[0,q]
j2∈[0,q−1]

j3∈[0,q]

∑
k1+k2+k3=s3

k1∈[0,r]
k2∈[0,r]

k3∈[0,r−1](
p−1
i1

)(
p
i2

)(
p
i3

)(
q
j1

)(
q−1
j2

)(
q
j3

)(
r
k1

)(
r
k2

)(
r−1
k3

)
(

3p−1
i1+i2+i3

)(
3q−1

j1+j2+j3

)(
3r−1

k1+k2+k3

)
pqr det[∆Pi1j1k1,u∆Pi2j2k2,v∆Pi3j3k3,w] (3)

After each Bézier patch’s Jacobians are computed into a
Bézier form (3), they will then be recomposed into a C0
smooth B-spline form to avoid redundant constraints in
optimization. Assume that there are neu Bézier segment in
u direction and nev in v direction and new in w direction
for the original B-spline solid of degree p, q, r. After the
recomposing, we would have the Jacobian of a B-spline solid
of degree 3p − 1, 3q − 1, 3r − 1 in each direction and with
total (neu(3p−1)+1)×(nev(3q−1)+1)×(new(3r−1)+1)
number of coefficients.

3. Optimization

3.1. Optimization formulation

The inputs for the optimization are six boundary B-
spline surfaces, based on which we first create an initial B-
spline solid and then maximize the minimal B-spline coef-
ficient of detJ to obtain a valid B-spline solid. Mathemat-
ically this can be noted as

max
Xj ,Yj ,Zj

min
i

Ji, i = 1, · · · ,M (4)

where Ji, i = 1, · · · ,M are the B-spline coefficients of det J
and Xj , Yj , Zj , j = 1, · · · , N are the coordinates of the in-
ternal control points. N is the number of the internal con-
trol points of the B-spline solid. Equation (4) itself is not
differentiable. We thus introduce an auxiliary design vari-
able β to transform the formulation of the unconstrained
problem into a constrained optimization (5) as follows.

min
β,Xj ,Yj ,Zj

− β (5)

s.t. β − Ji ≤ 0, i = 1, · · · ,M
Xj ∈ [Xmin, Xmax],

Yj ∈ [Ymin, Ymax],

Zj ∈ [Zmin, Zmax], j = 1, · · · , N.

For simplicity,Xmin, Xmax, Ymin, Ymax, Zmin, Zmax are set
as bounding box of the control net of the boundary B-
spline surfaces. In this formulation, we use all the internal
control points of the B-spline solid as the design variables

and all the B-spline coefficients of det J as constrains. Since
the internal control points have no influence over the B-
spline coefficients at the edges and corners which are only
affected by the input boundary B-spline surfaces. So in our
implementation, we exclude all the coefficients at the edges
and corners from the constraint list.

Direct maximization of the minimal Jacobian as shown
in (5) is both time consuming and memory inefficient. For a
degree p×q×r B-spline solid with (m+1)×(n+1)×(l+1)
control points, the number of design variables isN = 3(m−
1)(n− 1)(l− 1) + 1. The number of Jacobian constraints is
M = (neu(3p−1)+1)×(nev(3q−1)+1)×(new(3r−1)+1),
where neu = (m−p+1), nev = (n−q+1), new = (l−r+1).
We could see that both N and M increase linearly with
the number of control points. So the size of the sensitivity
matrix (measuring the sensitivity of Jacobian constraints
with respect to control point change) increases quadrati-
cally with the model size. If the number of control points
are 20× 20× 20 = 8000 and the degrees are p = q = r = 3,
the sensitivity matrix will be N ×M = 17497 × 2571353,
about 45G entries. This analysis suggests that, although
the formulation shown in (5) has been successfully used in
bivariate B-spline parametrization [2,3], its direct applica-
tion in trivariate B-spline parametrization is computation-
ally untractable. That is, direct optimization with all the
internal control points as design variables and B-spline co-
efficients of det J as constraints can only be used for small
size models, for example, with less than 1000 control points.
Next, we present four computational techniques to make
the formulation applicable to practical 3D problems.

3.2. Optimization techniques

Four techniques have been developed to tackle the chal-
lenge. Firstly, several initialization methods for rapidly gen-
erating near-valid initial B-spline solids are proposed. After
some comparisons, the method of deformation governed by
elastic equilibrium equation gives better initial solids. With
good initialization, we thus have a B-spline solid with very
fewer number of invalid Bézier patches that are scattered
in the solid instead of having a larger number of invalid
patches throughout the whole solid. Thus, a divide-and-
conquer method is then applied to optimize the isolated
groups of invalid Bézier patches separately, which signif-
icantly reduces the problem size. Constraint aggregation
can further reduce the size of the optimization problem by
reducing the total number of constraints. Hierarchical op-
timization uses a good coarse solid as the initial model for
the fine solid optimization. Thus, the computing time at
the fine level is reduced at the cost of solving an additional
coarse and small optimization problem.

Fig. 3 overviews our optimization approach. The inputs
are six B-spline boundary surfaces S1

i , i = 1, 2, · · · , 6, the
superscript means the B-spline refinement level and the
subscript means the surface number. Firstly, we build the
multilevel models by coarsening the fine boundary surfaces
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Inputs: B-spline 
boundary surfaces S1 

Refining Tα 

Tα-1 = Tα(interior) + Sα-1 

Yes end 
No 

α=α-1 

α=1? 

Build multilevel models: 
Sα, α=1,…,H 

Initialization: 
Solid TH(SH) 

Divide and conquer 

Constraint aggregation 

Optimization : 
min -β, s.t. Gk≥ β 

α=H 

Fig. 3. Overview of the optimization approach.

S1 to coarse boundary sets Sα, α = 1, · · · , H, which are the
inputs for hierarchical optimization. Secondly, an initial B-
spline solid TH is created from the coarsest B-spline bound-
ary SH . Thirdly, optimize T α to make it valid. Fourthly,
judge if α = 1, if not, refine T α and use its internal control
points as the initial parametrization for T α−1, let α = α−1
and go to step 2; if yes, end these process. When hierarchi-
cal optimization is desired, H is usually 2 or 3. Otherwise,
H = 1 corresponding to single level optimization.

We maximize the minimal B-spline coefficient of det J
until it is positive. For brevity, when a Bézier patch has neg-
ative Bézier coefficient of det J in (3), we refer to the patch
as an invalid Bézier patch. Our optimization approach ob-
tains a valid B-spline solid by changing all the invalid Bézier
patches into valid ones.

3.2.1. Initialization
A good initialization method is critical for reducing the

number of iterations in gradient-based optimization. A
good initialization method also creates a B-spline solid
with fewer isolated invalid Bézier patches that can be sub-
sequently handled in a divide-and-conquer manner. The
inputs for initialization are six valid and compatible B-
spline boundary surfaces, SH1 (u, v), SH2 (u, v), SH3 (u,w),
SH4 (u,w), SH5 (v, w), SH6 (v, w). We have the superscript
H because initialization is only needed at the coarsest
level in the hierarchical optimization. In the later sections
we omit H for brevity. The output is the initial B-spline
solid with the internal control points created from the
boundary surfaces. In this paper, we study and compare
two sets of initialization methods: Coons patch based and
deformation based methods.
Coons patch interpolation: The first method for B-
spline solid initialization is through Coons patch interpola-
tion. A Coons patch [15,16] interpolates six boundary sur-
faces, twelve boundary edges and eight corners. Let ψu0 =
1 − u, ψv0 = 1 − v, ψw0 = 1 − w,ψu1 = u, ψv1 = v, ψw1 = w.
Then the Coons volume is defined as follows

Tc(u, v, w) = ψw0 S1(u, v) + ψw1 S2(u, v) + ψv0S3(u,w)

+ψv1S4(u,w) + ψu0S5(v, w) + ψu1S6(v, w)

−[ψv0ψ
w
0 S1(u, 0) + ψv1ψ

w
0 S1(u, 1) + ψv0ψ

w
1 S2(u, 0)

+ψv1ψ
w
1 S2(u, 1) + ψu0ψ

w
0 S1(0, v) + ψu1ψ

w
0 S1(1, v)

+ψu0ψ
w
1 S2(0, v) + ψu1ψ

w
1 S2(1, v) + ψu0ψ

v
0S3(0, w)

+ψu1ψ
v
0S3(1, w) + ψu0ψ

v
1S4(0, w) + ψu1ψ

v
1S4(1, w)]

+[ψu1ψ
v
0ψ

w
0 S1(1, 0) + ψu0ψ

v
0ψ

w
0 S1(0, 0)

+ψu0ψ
v
1ψ

w
0 S1(0, 1) + ψu1ψ

v
1ψ

w
0 S1(1, 1)

+ψu1ψ
v
1ψ

w
1 S2(1, 1) + ψu0ψ

v
0ψ

w
1 S2(0, 0)

+ψu1ψ
v
0ψ

w
1 S2(1, 0) + ψu0ψ

v
1ψ

w
1 S2(0, 1)] (6)

The Coons volume interpolating 6 surfaces is then used to
generate the initial internal control points of the B-spline
solid. In this case, we uniformly distribute the parameters
u, v, w and evaluate (6) to obtain a set of inner points of
the Coon’s volume Tc(

i
m ,

j
n ,

k
l ), i = 1, 2, · · · ,m − 1, j =

1, 2, · · · , n− 1, k = 1, 2, · · · , l− 1, then we use these points
as the internal control points of the B-spline solid.
Deformation method: The second type of initialization
method is through deformation. We deform a cuboid dis-
cretized with hexahedral grids to the given shape with the
boundary nodes of the cuboid in six sides deformed to the
corresponding control points of the six surfaces. The result-
ing internal grid points of the cuboid thus become the ini-
tial internal control points of the B-spline solid. We solve
this deformation through finite element or finite difference
method.

S1(u,v) 

S2(u,v) 

S3(u,w) S5(v,w) 

S6(v,w) 

Fig. 4. Deforming a cuboid to a given boundary shape to initialize
a B-spline solid.

In Figure 4, a cuboid is deformed to the duck shape. The
initial size of the cuboid in u direction is the average dis-
tance between the control net of the two opposite B-spline
surfaces in u direction. The same holds for the initial size
of the cuboid in v and w directions. The node indexed by
(0, 0, 0) of the cuboid is set as the same position as the con-
trol point indexed by (0, 0, 0) of the B-spline solid. The grid
points for the cuboid are noted as u1

i,j,k, i = 0, · · · ,m, j =
0, · · · , n, k = 0, · · · , l, which is a hexahedral grid with uni-
formly sized elements. u1

i,j,k are the coordinates of node
(i, j, k). After being deformed to the duck shape, the grid
coordinates are u2

i,j,k. Superscript 1 means un-deformed
and 2 means deformed grid points. The coordinates of the
boundary nodes of the deformed cuboid are set as control
points of the 6 boundary surfaces.
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In the deformation, we only apply loads on the boundary
nodes (nodes on six exterior faces). There are no loads on
the internal nodes. The loads f on the boundary is unknown
and the displacements on the boundary is given as

uδi,j,k = u2
i,j,k − u1

i,j,k, i = 0,m, j = 0, n, k = 0, l, (7)

whereuδi,j,k is the nodal displacement on node (i, j, k). Thus
we can easily solve the displacement field of the cuboid by
FEM or finite difference method.

The deformed grids of the cuboid are then used as the
control net of the B-spline solid. The exterior nodes corre-
spond to the exterior control points and the internal nodes
correspond to the internal control points. After the defor-
mation, we can obtain the internal control points of the
B-spline solid from the displacements of the internal grids
nodes of the cuboid, namely u2

i,j,k = u1
i,j,k + uδi,j,k, i =

1, · · · ,m− 1, j = 1, · · · , n− 1, k = 1, · · · , l − 1.
The deformation can be computed as follows.
(i) Equilibrium equations of linear elasticity

(λ+ µ)∇∇·uδ + µ∆uδ + f = 0, (8)

where uδ is the displacement field, λ and µ are lame
and shear modulus, determined by Poisson ratio,
which is usually set as 0.3. If the model has large
concave areas, one can try larger Poisson ratios like
0.4, but it should be smaller than 0.5. f is unknown
in the boundary, and 0 in the interior. (8) is solved
by FEM.

(ii) Poisson equations

∆uδ + f = 0 (9)

f is unknown in the boundary, and 0 in the interior.
(9) is solved by FEM.

(iii) Discrete form of Laplace equations

uδi,j,k =
1

6
(uδi−1,j,k + uδi+1,j,k + uδi,j−1,k + uδi,j+1,k

+uδi,j,k−1 + uδi,j,k+1) (10)

i = 1, · · · ,m− 1; j = 1, · · · , n− 1; k = 1, · · · , l − 1

uδi,j,k is the displacement of node (i, j, k), (10) is de-
rived by finite difference and can be solved directly
since it is just a linear system.

These governing equations are subjected to (7), the Dirich-
let boundary conditions, which represents the differences
of the exterior nodes of the cuboid and the input B-spline
surfaces’ control points. In Section 6.1, we present com-
parisons of these initialization methods and show that the
method of deformation governed by equilibrium equations
of linear elasticity gives the best initialization in terms of
the fewest number of invalid Bézier patches.

3.2.2. Divide and conquer
One main benefit of having a good initialization method

is that the resulting B-spline solid is near valid, i.e. most

of the Bézier patches are valid and and the invalid Bézier
patches are scattered and may be separable. The divide-
and-conquer approach exploits the separability of invalid
Bézier patches to reduce the original large optimization
problem into a set of separable small sub problems. That
is, instead of optimizing the whole B-spline solid, isolated
groups of invalid Bézier patches are optimized separately.

Fig. 5. The B-spline solid from initialization for the duck model
has three groups of invalid Bézier patches that are separable for

optimization. Deep shaded colour represents invalid Bézier patches.

The red points in each bounding box are the internal control points
that affect the invalid Bézier patches.

In Fig. 5, there are three isolated groups of invalid Bézier
patches, noted as Ωs, s = 1, 2, 3. Since they are isolated
from each other we can optimize them separately. In the
optimization of Ωs, the optimization variables are the in-
ternal control points that affect Ωs, the constraints are the
B-spline coefficients of det J that affected by those inter-
nal control points. Next, we define what are the separable
Bézier groups.

Definition 3: Let two groups of Bézier patches be Ωs1
and Ωs2 . The B-spline control point sets that affect Ωs1 and
Ωs2 are noted as Θs1 and Θs2 . Iff Θs1 ∩ Θs2 = ∅, Ωs1 and
Ωs2 are separable from each other.

Separable groups can be optimized independently while
non-separable groups must be optimized simultaneously
since moving any control point of one group will have in-
fluence over the other. The criterion for two groups to be
separable is given in Lemma 4.

Lemma 4: A B-spline solid T is decomposed into Bézier
patches TBi,j,k

, i = 0, · · · ,m − p, j = 0, · · · , n − q, k =
0, · · · , l − r. (i, j, k) are the indexes of the Bézier patch
in u, v, w directions. For two Bézier patches TBi1,j1,k1

and
TBi2,j2,k2

, if

|i1 − i2| ≤ p, |j1 − j2| ≤ q, and |k1 − k2| ≤ r (11)

then there exist such control points that affect both
TBi1,j1,k1

and TBi2,j2,k2
, thus TBi1,j1,k1

and TBi2,j2,k2
are

not separable from each other. Otherwise if

|i1 − i2| > p or |j1 − j2| > q or |k1 − k2| > r (12)

TBi1,j1,k1
and TBi2,j2,k2

are separable from each other. For
two groups Ωs1 and Ωs2 to be separable, all the Bézier
patches in Ωs1 must be separable from the ones in Ωs2 .

6



Based on Lemma 4, we group those invalid Bézier
patches into different separable groups. Then we can op-
timize these groups one by one as in (5), yet the problem
dimension for each group is now substantially smaller than
the entire B-spline solid due to far fewer B-spline control
points are involved in each sub problem.

3.2.3. Constraint aggregation
As shown in Section 3.1, direct optimization faces chal-

lenges of handling a large number of constraints. Even
with divide-and-conquer strategy, sometimes we still have
a considerable number of constraints. We thus propose to
use constraint aggregation [17,18] to effectively reduce the
number of constraints. A single Bézier solid hasM = 27pqr
Bézier coefficients of det J . If the degrees p, q, r = 2, then
we have M = 216, if the degrees p, q, r = 3, M = 729. So
even with relatively good initial B-spline solid and a small
number of invalid Bézier patches, we still have thousands
of Jacobian constraints. Using the constraint aggregation
strategy, we can reduce the number of constrains to tens or
hundreds which would help reduce the running time in opti-
mization. A simple constraint aggregation can be achieved
through a Kreisselmeier Steinhauser (KS) function

G = − 1

P
ln

[∑
i

exp(−PJi)

]
. (13)

As the penalty parameter P → ∞, G → min(Ji), i =
1, · · · ,M . Ji are the B-spline coefficients of det J .

However, grouping too many constraints into one KS
function can lead to large discrepancy between G and
min(Ji) which leads to poor convergence in optimization.
Thus, we replace this simple aggregation with block aggre-
gation. That is,

Gk = − 1

P
ln

[∑
i∈Ik

exp(−PJi)

]
, k = 1, 2, · · · , L (14)

Ik is the kth block of the B-spline coefficients of detJ ,Gk is
the value of the KS function of block Ik, L is the number of
blocks. ML is the block size, namely the number of elements
in one block. We divide the B-spline coefficients of det J
into multiple blocks and calculate the KS function value
Gk for each block k, which corresponds to one constraint.
In the optimization, we use Gk, k = 1, · · · , L to substitute
Ji, i = 1, · · · ,M to reduce the number of constraints. The
new optimization formulation is as below

min
Xj ,Yj ,Zj ,β

− β

s.t. β −Gk ≤ 0, k = 1, · · · , L.

Based on our numerical experiments, we have chosen the
following block aggregation strategy: as shown in Fig. 6, the
B-spline coefficients of det J are first ordered according to
their numerical values, from small to large. They are then
aggregated into blocks so that there is separation among B-
spline coefficients in each block. Such separation in numer-

J1 

J2 

JL 

…
 

JL+1 

JL+2 

J2L 

…
 

J2L+1 

J2L+2 …
 

JM 

J1, JL+1, 
J2L+1, … 

J2, JL+2, 
J2L+2, … 

Jk, JL+k, 
J2L+k, … 

JL, J2L, 
J3L, … 

J3L …
 

…
 

…
 

G1 

G2 

Gk 

GL 

Fig. 6. Block aggregation. The B-spline coefficients Ji of det J are
ordered according to their numerical values, from small to large, and

are then grouped into blocks.

ical values of B-spline coefficients, especially the minimal
coefficient is separated from the other coefficients, is nu-
merically shown to be effective for maximizing the minimal
coefficient. Such separation in numerical values of B-spline
coefficients makes the K-S function an effective substitute
for the minimal Jacobian since the difference between Gk
and min

i∈Ik
Ji is small and the resulting sensitivity matrix is

well-conditioned, good convergence in the optimization can
be achieved. The specific parameters include 1) adaptively
setting the parameter P ∈ [5, 25]. and 2) choosing the num-
ber of entries in each block to be M

L ∈ [300, 1000].

3.2.4. Hierarchical optimization
A further technique developed for efficient optimization

in this paper is through hierarchical optimization. The hi-
erarchical optimization is useful when initialization fails to
produce a near-valid B-spline solid. We optimize the coarse
mesh first, then refine the coarse mesh and use the inter-
nal control points of the coarse mesh as the initial model
for fine model optimization. Using this strategy, we can ob-
tain good initial control points in the fine level optimiza-
tion and can reduce the optimization time at the fine scale.
Reducing the problem scale in the fine optimization level
at the cost of an additional coarse optimization can be very
profitable since the coarse optimization usually involves a
much smaller problem.

As the inputs of the hierarchical optimization, multi-
level models are obtained by coarsening the fine boundary
surfaces S1 to coarse boundary sets Sα, α = 1, · · · , H as
shown in Fig. 3. Assume S1

i = N1
i Pi, i = 1, · · · , 6, the fine

B-spline boundary surfaces, Sαi = Nα
i Qi, i = 1, · · · , 6, the

coarse B-spline boundary surfaces in αth level, then the
deviation from coarse boundary to fine boundary is

∆α =

6∑
i=1

∫ ∫
‖Nα

i Qi −Nα
i Pi‖2dudv (15)

We can obtain the coarse boundary by minimizing (15), in
this case just a set of linear equations need to be solved.
At each level of B-spline solid Tα in the hierarchical opti-
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mization as shown in Fig. 3, both divide-and-conquer and
constraint aggregation strategies are used.

4. Mesh quality

By applying the above optimization approach, we can ef-
ficiently obtain a valid B-spline solid. In this paper, we also
demonstrate how the overall mesh quality can be further
improved via minimizing a volumetric functional.

4.1. Quality metrics

We evaluate the mesh quality with the following metrics.
(i) Jacobian metric det(J), indicate that if the mesh is

valid. det(J) ≥ 0 is always required.
(ii) Condition number metric fcond = ‖J‖F · ‖J−1‖F =

‖J‖2F
| det(J)| , indicate if the Jacobian matrix at a given

point is ill-conditioned. The subscript F means the
Frobenius norm. For an equilateral and orthogonal
element, fcond = 3. In other cases fcond ≥ 3. The
smaller fcond is, the more equilateral and orthogonal
the element would be.

(iii) Oddy metric [19] fOddy = det(J)−
3
4 {‖JTJ‖2F −

1
3‖J‖

4
F }, it is based on an analogy between mesh

distortions and mechanical strains. For an equilat-
eral and orthogonal element, fOddy = 0, in other
cases fOddy > 0. The larger fOddy is , the bigger the
distortion would be.

(iv) Orthogonal metric f⊥ =
(

1− | Tu

‖Tu‖2 ·
Tv

‖Tv‖2 |
)
×(

1− | Tu

‖Tu‖2 ·
Tw

‖Tw‖2

)
×
(

1− | Tv

‖Tv‖2 ·
Tw

‖Tw‖2

)
, f⊥ ∈

[0, 1]. For the orthogonal elements, f⊥ = 1. For the
elements with 0o or 180o angle, f⊥ = 0. The larger
f⊥ is, the more orthogonal the mesh would be.

The Jacobian is affected by the element size. Element with
larger volume would have larger Jacobian metric. Condi-
tion number metric, Oddy metric and Orthogonal metric
are independent of the element size. The Condition number
metric and the Oddy metric are found to be positively cor-
related, and the correlation with the other two metrics is
not obvious. In our study, we calculate these mesh quality
metrics at the quadrature points in each knot span.

4.2. Mesh quality further improvement

Given a valid B-spline solid, we minimize the following
functional to improve mesh quality

min
Xj ,Yj ,Zj

λ1E
stretching + λ2E

bending (16)

s.t. −Ji ≤ 0, i = 1, · · · ,M

where optimization variables Xj , Yj , Zj are internal con-
trol points of the B-spline solid. Minimizing Estretching =∫∫∫

(T 2
u + T 2

v + T 2
w)dudvdw tends to make the iso-curves

short and generate orthogonal elements [20], and minimiz-
ing Ebending =

∫∫∫
(T 2
uu + T 2

vv + T 2
ww + 2T 2

uv + 2T 2
vw +

2T 2
wu)dudvdw tends to make the iso-curves parallel to each

other and generate uniformly sized elements [21,5]. Some-
times the orthogonality and uniformity are contradictory. If
we want orthogonal mesh and short iso-curves, then choose
larger λ1; If we want uniformly sized elements, then choose
larger λ2. Usually, larger λ2 will give very good statistics in
condition number metric and Oddy metric. Since (16) is a
global volumetric functional, the solution thus would lead
to improved mesh quality in an average sense.

5. B-spline boundary surfaces

The inputs for the optimization is six compatible B-spline
boundary surfaces, based on which the B-spline solid ini-
tialization, mesh rectification and quality improvement are
conducted. We can obtain B-spline boundary surfaces di-
rectly from CAD systems, or from free-form sweeping [22],
or from boundary triangulations. We briefly describe below
how we fit B-spline boundary surfaces from the boundary
triangulations.

Fig. 7. (a) Closed boundary triangulations; (b) boundary partition;
(c) and (d) parametric mapping; (e) boundary fitting.

As shown in Figure 7, the input is closed boundary tri-
angulations. We partition the boundary triangulations into
six areas, each area correspond to one face of the hexahedral
solid. Then, by applying the harmonic parameterization
method [8], the boundary triangulations are parametrized
in the sense that each vertex has unique parameters u, v, w.
Based on the parametrization, six compatible and valid B-
spline boundary surfaces with optional G1 smoothness con-
straint (18) are reconstructed by (17) as follows.

min
X,Y,Z

6∑
i=1

[
λi1E

s error
i + λi2E

stretching
i + λi3E

bending
i

]
(17)

s.t. C1X = 0, C2Y = 0, C3Z = 0 (18)

X,Y, Z are the vectors of the coordinates of the surface
control points. Es errori is the deviation from the fitted B-
spline surface to the boundary triangulations, calculated

by the method in [23]. Estretchingi =
1∫
0

1∫
0

(S2
i,u + S2

i,v)dudv,

Ebendingi =
1∫
0

1∫
0

(S2
i,uu + 2S2

i,uv + S2
i,vv)dudv. Larger λi1 will

reduce the fitting error and larger λi2 and λi3 will make
the surface smoother and suppress the mesh folding. (18)
represents simplified G1 linear constraints [24] that ensures
G1 continuity across both the shared edges and corners.
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6. Numerical examples

We demonstrate below the effect of our optimization ap-
proach on four sets of data as shown in Figure 8. The in-
puts are boundary triangles. We reconstruct six boundary
B-spline surfaces for each of the models, where G1 con-
straints are imposed for the first three models (where G1
edges are shown in red). We then obtain the B-spline solid
models from the initialization methods. Table 1 compares
the statistics of the resulting B-spline solids. Through op-
timization, we obtain valid B-spline solids with relatively
good mesh quality. In this paper, all optimization is done
by Matlab’s fmincon with the active-set option. Before op-
timization, the Jacobians are scaled to make the absolute
value of the minimal Jacobian to be within [1, 10]. We first
multiple each Jacobian by α = γ

−min(Ji)
with γ ∈ [1, 10].If

the magnitude of the minimal Jacobian is scaled to be too
small, there would not be enough separation from the other
Jacobians and there would be large errors between Gk and
min
i∈Ik

Ji. If the magnitude of the minimal Jacobian is scaled

to be too big, the sensitivity matrix involving the KS func-
tion would be ill-conditioned. In all examples, we chose γ =
6. All reported Jacobians are scaled back to true values.

(a) (b) (c) (d)

Fig. 8. Input boundary triangulations: (a) duck; (b) femur bone; (c)

human head; (d) tooth.

Table 1

Statistics of the B-spline solids

Model Degrees Control net sizes # of Bézier patches

Duck p, q, r = 2 18 × 8 × 12 = 1728 960

Femur p, q, r = 2 30 × 14 × 10 = 4200 2688

Head p = 3, q, r = 2 27 × 16 × 16 = 6912 4704

Tooth p, q, r = 3 21 × 21 × 21 = 9261 5832

6.1. Comparison of different initialization methods

In Figure 9 we compare the resulting B-spline solids from
the four initialization methods on the duck model. The deep
coloured shaded patches in this figure are the invalid Bézier
patches. It can be seen that deformation through elasticity
leads to fewest number of invalid Bézier patches. It also in-
volves the least optimization time for obtaining a valid duck

solid with positive minimal B-spline coefficient of det J . In
Table 2 we compare the number of invalid Bézier patches
for the four models (duck, femur bone, human head and
tooth) from four initialization methods. It is clear from Ta-
ble 2 that deformation through elasticity leads to fewest
invalid Bézier patches for all four models. Since the number
of optimization variables and the number of Jacobian con-
straints both increase linearly with the number of invalid
Bézier patches, the optimization time increases quadrati-
cally with the number of invalid Bézier patches. Thus in the
remainder of this paper, we use the deformation through
elasticity to generate the initial B-spline solid.

(a) (b) (c) (d)

Fig. 9. B-spline solids from different initialization methods: (a) Coons

interpolation, optimization time is 33.4s; (b) deformation through

elasticity, optimization time is 4.49s; (c) deformation through Pois-
son equation, optimization time is 35.2s; (d) deformation through

discrete Laplace equation, optimization time is 21.7s.

Table 2
Number of invalid Bézier patches from different initializations

Model Coon’s Elasticity Poisson Laplace

Duck 128 30 129 106

Femur bone 606 48 105 176

Human head 126 30 72 85

Tooth 61 55 442 863

6.2. Maximizing the minimal Jacobian

Figures 1, 10, 11 and 12 show the process of obtaining a
valid solid with its minimal Jacobian maximized until it is
positive. They start with respectively 6 input B-spline sur-
faces, then through elasticity based deformation, initial B-
spline solids are obtained where invalid Bézier patches are
shown in deep shaded colour. Upon optimization, all Bézier
patches become valid, i.e. with positive minimal Bézier co-
efficients of det J . Figure 11 and 12 show the hierarchical
optimization process where the optimization at a coarse
model can be used to reduce significantly the number of in-
valid Bézier patches in the fine model. Table 4 further com-
pares the effects of various techniques on optimization time
where technique O stands for direct optimization without
any technique, technique D stands for Divide-and-conquer
technique, technique C stands for Constraint aggregation
technique, and technique H stands for Hierarchical opti-
mization. The symbol ‘/’ means that the process is too long
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(a) (b) (c)

Fig. 10. (a) Inputs: 6 B-spline surfaces; (b) solid from initialization;

(c) optimized B-spline solid.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 11. (a) Inputs: 6 B-spline surfaces; (b) coarse solid from ini-

tialization; (c) optimized coarse solid; (d) refining the coarse solid;
(e) coarse boundary replaced by fine boundary; (f) fine solid from

initialization; (g) optimized fine solid.

for counting the time. As the table shows, with the elas-
ticity based deformation as the initialization method, the
divide-and-conquer approach is most effective. Combining
the divide-and-conquer technique with the constraint ag-
gregation technique can lead to even faster convergence. In
all these cases, it usually only takes 1 or 2 iterations to find
a valid model, i.e. the minimal Jacobian becoming positive.
Hierarchical optimization becomes helpful when the model
from the initialization does not lead to many separable in-
valid Béizer groups, and the coarse model and fine model
are similar as in the head and tooth examples. It should be
pointed out, in all examples, without using the above de-
veloped optimization technique, the process would either
fail to find a valid B-spline solid or the process would be

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Fig. 12. (a) Tooth with narrow passage; (b) inputs: six valid B-spline

surfaces; (c) initial coarse solid; (d) optimized coarse solid; (e) refined
solid; (f) coarse boundary replaced by fine boundary; (g) fine mesh

already valid; (h) further refinement; (i) boundary replaced by the

finest boundary; (j) finest mesh already valid; (k) valid fine solid.

too long for it to be practically useful. Table 3 gives an ex-
ample in the reduction of problem size for the duck model.
As show in Fig. 1(c) and Fig. 5, with the initialization, the
duck model is divided into three separable invalid Bézier
patch groups. Table 3 compares the number of optimiza-
tion variables (number of internal control points), number
of Jacobian constraints, and the number of constraints with
constraint aggregation before and after the application of
our optimization techniques. For the invalid Bézier patch
group on the duck neck, before constraint aggregation we
need 4.0s for one iteration in the optimization, after con-
straint aggregation we need 1.7s for one iteration.

Table 3
Comparison of problem size for the duck model

Model Internal CP Jacobians Constraint blocks

Duck 960 127425 425

Group 1 92 24398 81

Group 2 28 8668 28

Group 3 18 8404 28

6.3. Improving mesh quality

With the above valid B-spline solids, we further mini-
mize the functional (16) on the four models with the goal of
improving mesh quality. Due to the space limitation, only
two of the four models, the duck model and the head mod-
els, are shown here. Figures 13 and 14 show the distribu-
tion of quality metrics det(J), fcond, fOddy and f⊥. From
the figures, we can observe that the mesh becomes much
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Table 4

Optimization time with different techniques

Tooth Duck Femur Head Teeth

O Memory insufficient

C 243.926s / / /

D 5.018s 27.331s 170.264s 25min

D and C 4.487s 24.667s 145.601s 17min

D, C and H 5.071s 91.732s 29.555s 109.152s

smoother after the mesh quality improvement. The condi-
tion number metric and Oddy metric both become smaller
and also smoother as there are larger warm colour areas.
The orthogonal metric becomes larger as there are larger
blue colour areas. Table 5 compares the mesh quality met-
rics of the four models before and minimizing (16), where µ
means the average measure and σ the standard deviation,
and model 1 represents the obtained valid B-spline solid
and model 2 represents the solid after minimizing (16). We
can observe from the table that, with the minimization of
(16), the average condition number fcond and average Oddy
measure fOddy become smaller and better. The average or-
thogonality becomes larger and better.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 
detJ

0

200

400

600

800

1000

1200

1400

1600

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 
detJ

0

500

1000

1500

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 
condJ

4

5

6

7

8

9

10

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 
condJ

4

5

6

7

8

9

10

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 
oddy

5

10

15

20

25

30

35

40

45

50

55

60

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 
oddy

5

10

15

20

25

30

35

40

45

50

55

60

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 
ortho

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 
ortho

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 13. Left: valid B-spline solid; Right: quality further improved.
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Fig. 14. Left: valid B-spline solid; Right: quality further improved.

7. Conclusion

In this paper, we have presented an optimization ap-
proach with a set of techniques that can efficiently create
valid trivariate tensor-product B-spline solid from different
boundary inputs. Our study finds that deforming a cuboid
to a given boundary shape through elasticity leads to good
initialization in the sense that it generates a near-valid B-
spline solid. Such a near-valid solid leads to fewer invalid
Bézier patches (with negative minimal Bézier coefficient of
det J) scattered throughout the solid. This makes it pos-
sible to separate the invalid Bézier patches into groups
where each group can be optimized independently. Such
divide-and-conquer has proven to be very effective and re-
duces the original large-scale optimization problem into a
set of smaller sub problems. The combination of divide-
and-conquer, constraint aggregation and the hierarchical
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Table 5

Mesh quality further improved

det J fcond fOddy f⊥

min max µ σ µ σ µ σ

Duck 1 22.92 1695.6 5.29 1.60 11.02 16.71 0.479 0.237

Duck 2 6.401 1511.9 4.95 1.53 8.31 15.20 0.491 0.234

Femur 1 98.65 6738.8 25.09 8.48 1394.75 941.084 0.416 0.179

Femur 2 47.91 5722.9 24.70 8.44 1327.44 942.62 0.412 0.173

Head 1 1.096 153.38 4.78 1.97 12.53 38.72 0.607 0.190

Head 2 0.793 176.14 4.61 1.50 9.28 17.88 0.621 0.186

Tooth 1 26.32 691.76 6.58 2.63 7.33 10.81 0.469 0.180

Tooth 2 12.23 609.99 6.47 3.32 6.05 9.83 0.487 0.190

optimization have proven to be effective in obtaining valid
trivariate B-spline solids from a set of boundary triangula-
tions or given set of six boundary B-spline surfaces.

Minimizing the volumetric stretching and bending en-
ergy functional has led to improvement of the overall mesh
quality in terms of Oddy measure, condition number and
the orthogonality of B-spline elements. Future work shall
consider the mesh improvement for the worst-quality ele-
ments, rather than all elements. Since our approach only
deals with genus zero objects, future work would integrate
our optimization approach to domain decomposition ap-
proaches so complex topologies can be parametrized.
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