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a b s t r a c t

The use of flared tip and bi-directional servo control in some recent atomic force microscopes (AFM) has

made it possible for these advanced AFMs to image structures of general shapes with undercut surfaces.

AFM images are distorted representations of sample surfaces due to the dilation produced by the finite

size of the tip. It is necessary to obtain the tip shape in order to correct such tip distortion. This paper

presents a noise-tolerant approach that can for the first time estimate a general 3-dimensional (3D) tip

shape from its scanned image in such AFMs. It extends an existing blind tip estimation method. With

the samples, images, and tips described by dexels, a representation that can describe general 3D shapes,

the new approach can estimate general tip shapes, including reentrant features such as undercut lines.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

An atomic force microscope (AFM) images a structure by
scanning a tiny tip over the sample surface. It is capable of
measuring topographic features at the nanometer-scale or even at
atomic-scale resolution [1]. However, the topographical image in a
conventional AFM is necessarily, because of limitations of the
imaging mode, a single-valued height map (Fig. 1a). (Such an
object is referred to as an ‘‘umbra’’ in mathematical morphology
[3,4] and sometimes as a ‘‘2.5-dimensional (2.5D)’’ object because
the set of such shapes is a subset of all 3D shapes.) Recently, a new
class of SPM instruments, CD-AFMs [2,6–8], is emerging. These
new instruments are capable of imaging general 3D structures,
including those with vertical sidewalls and undercut features.
Within these 3D structures, there are x–y coordinates at which the
surface is multivalued. In this new class of instruments,
traditional unidirectional servo control and typically pyramidal
or conical tip shapes (Fig. 1b) are replaced with bi-directional
ll rights reserved.
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servo control and laterally protruded tip shapes to image general
3D structures (Fig. 1c). These instruments have found applications
as reference metrology tools at SEMATECH and in a number of
semiconductor fabrication facilities [9,10].

An AFM image is a distorted representation of the sample due
to the dilation produced by the finite size of the tip. It is necessary
to obtain tip shape information in order to remove such distortion
and restore the sample surface. Even though various techniques
are available for tip shape characterization [11], blind tip
estimation is uniquely important since it estimates the tip shape
using only its scanned images, without independent knowledge of
the sample(s) (hence its name). In contrast, direct tip imaging
methods through scanning electron microscopy or transmission
electron microscopy require a lengthy tip measurement process
with the risk of damaging or contaminating the tip. Further, these
methods produce images in the form of an intensity versus x and
y. There are only two dimensions of direct geometrical informa-
tion. An image is thus suitable for a silhouette or cross-section,
but a single image does not characterize the full 3D shape
required for distortion correction in AFM. Tip characterization
through a known characterizer, although useful, requires advance
knowledge of characterizer geometry.

A set of blind tip estimation methods has been independently
developed [12–15] for tips used in conventional AFMs. These
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Fig. 1. Conventional 2.5D AFMs cannot access reentrant surface due to their unidirectional servo control and conical tip shape. Newer CD-AFMs under bi-directional servo

control with flared tip shapes can access reentrant surfaces (figure based upon Ref. [18]). (a) Umbra on conventional AFM; (b) undercut sample on conventional AFM and (c)

undercut on newer CD_AFMs.
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methods are based on grayscale mathematical morphology [15],
which inherently assumes that samples and tips can be repre-
sented by single height functions. Their extension to estimating
general tip shapes has been impeded by the lack of a data
representation that can represent general 3D shapes.

This paper extends an existing blind tip estimation method
[15] and its noise-desensitization procedure to dexel-represented
objects in 3D. A dexel representation has recently been adapted
for AFM imaging simulation and surface reconstruction for
general 3D shapes including undercut surfaces [16,17] and it has
been adapted for tip estimation from simulated noise-free images
[18]. Upon such extension, this method can for the first time
obtain blind estimates of general tip shapes, including those with
undercuts or reentrant features, from scanned images with
ordinary amounts of noise.

In the remainder of this paper, we briefly describe some notations,
operations, and how dexels enable the representation of general
shapes (Section 2). Section 3 presents the method for blind tip
estimation from general 3D images with noise. Section 4 describes the
implementation and the results. We conclude this paper in Section 5.
2. Background

Blind tip estimation is based on set and morphology operations
[3,4], the dexel representation, and dexel-represented set and
morphology operations [16]. We briefly introduce needed nota-
tions, operations, and dexel representation in this section.

2.1. Notation

In this paper, we will use some notations as explained below.
A lowercase symbol with an arrow above it (e.g.,~x) denotes a

vector.
An uppercase Latin or Greek letter (e.g., A, D) denotes a set. We

use sets to represent 3D objects. For example, S represents the
sample. It is understood to be the set of all points contained
within or on the surface of the sample. That is, this set is the set of
all points contained within a bounded volume of a particular
shape. As is the case in this example, the number of elements in a
set may be infinite.

2.2. Set operations

�A is the reflection of set A with respect to the origin (at 0).
That is,

�A ¼ f�~aj~a 2 Ag (1)
The translation of a set, A, by a vector, ~b, is determined by
adding ~b to every element of A

Aþ~b ¼ f~aþ~bj~a 2 Ag (2)

‘‘[‘‘is called union operation. If A and B are sets, then the union
of A and B is the set that contains all elements of A and all
elements of B, but no other elements

A [ B ¼ f~xj~x 2 A or~x 2 Bg (3)

‘‘\‘‘is called intersection operation . If A and B are sets, then the
intersection of A and B is the set that contains all elements of A

that also belong to B, but no other elements

A \ B ¼ f~xj~x 2 A and~x 2 Bg (4)

Here is a property from set operation [5].

Property 1. If ADB and CDD, then A[CDB[D and A\CDB\D.

2.3. Morphological operations

Mathematical morphology is a branch of set theory that deals
with unions and intersections of sets and their translates.
Following are some definitions and a property from mathematical
morphology [3,4]:

‘‘�’’ denotes dilation. The dilation of object A by object B is
defined by

A� B ¼
[
~b2B

Aþ~b (5)

‘‘�’’ denotes erosion. The erosion of object A by object B is
defined by

A� B ¼ f~xjBþ~x � Ag (6)

‘‘3’’denotes opening. Opening of object A by object B is defined
by

A � B ¼ ðA� BÞ � B (7)

‘‘d’’denotes closing. Closing of object A by object B is defined by

A � B ¼ ðA� BÞ � B (8)

Dilation is an increasing function of its arguments. That is [4],

Property 2. If A � B; then A� C � B� C and C � A � C � B.

2.4. Dexel representation

In order to facilitate subsequent discussion, this subsection
reviews the dexel concept and briefly outlines its use in Ref. [16]
to implement mathematical morphology for general 3D objects.



ARTICLE IN PRESS

hi

Bj

x
y

z rx
ry⊕

hi+1
hi+1

hi

=⊕ =

Fig. 3. Dilation of a dexel line segment with a horizontal rectangular element to

get a dexel block to represent 3D object.
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This more general implementation is based on a representation
in which the usual rectangular array of pixels is replaced by
an array of ‘‘dexels’’. Each dexel may have multiple heights, each
of which represents the height of a transition from inside to
outside of the object or vice versa. This naturally allows reentrant
surfaces and undercut features to be represented by dexels. The
dexel approach is a version of volumetric data representation
where 3D objects are represented as a set of 1D blocks with depth
on a grid.

We may construct a dexel object, Ad, associated with a real
object A, as follows. First, choose an origin and orientation for a
rectangular coordinate system. Define a grid in the x�y plane of
this coordinate system. The x coordinates in this grid are given by
xi ¼ x0+i	dx for i ¼ 0,1,y,mx�1 with i an integer index, mx the
number of grid elements in the x direction, x0 the position of the
first such element, and dx the grid spacing in the x direction. The y

coordinates are similarly defined. Now imagine a line, Lij, parallel
to the z axis (with z ranging from �N to N) at xi, yi for each i, j in
the grid. We can define Ad as

Ad ¼
[
i;j

Lij

\
A

� �
(9)

A 2D example of this is shown in Fig. 2. The object (shown in
gray) has undercut edges. Those intervals of the lines that are
enclosed by the object (i.e., the intersection between the object
and the vertical lines) are shown darker and thicker (e.g., bijk). The
dexel object representation includes the collection of locations of
the end-points of these intervals in an indexed grid. Each column
in the object is represented by a single dexel. The entire object is
then a 2D array of dexels.

Formal representation properties of dexel, as noted in Ref. [19],
include spatial addressability and spatial hashing, directionality,
Boolean simplification, rigid motion, discrete translations, null-set
representation, and completeness.

With this dexel representation, complex 3D set and morpho-
logical operations are simplified to arrays of 1D operations. The
details of such dexel-based set and morphological operations are
available in Ref. [16].
2.5. Volume of dexel object

Although dexels are defined as lines with no width, we can
represent the real 3D object by ‘‘dexel blocks’’. A dexel block (e.g.,
Bj in Fig. 3) is defined by dilation of the dexel line with a
horizontal rectangular element. The rectangular element has its
origin at its center and dimensions rx and ry, where rx and ry are
the grid spacing of dexels in the x–y plane. The volume of block Bj

is V(Bj) ¼ (hi+1�hi)	 rx	 ry. For an object comprised of n blocks,
B ¼

S
j ¼ 1
n Bj, the volume is simply the sum of the volumes of the

individual blocks: V(B) ¼
P

j ¼ 1
n V(Bj).
=

Fig. 2. Dexel representation of an object (figure based upon Ref. [16]).
3. Method of blind tip estimation

Among the blind tip estimation methods available in the
literature [12–15], we choose to extend Villarrubia’s method
[12,15] since it is based on set theory and can be directly
implemented with the dexel representation. Its original imple-
mentation was for grayscale (pixel-represented) images. Conse-
quently, it could only be used to estimate similarly represented
tips. However, an extension of this method for dexel-represented
images can estimate tips of general 3D shape.

The relationship between the sample S, tip T, and image I (apart
from ideally small effects due to noise, cantilever twisting, etc.)
can be written as

I ¼ S� P (10)

where P ¼ �T, is the reflection of the tip through the origin. (See,
e.g., Refs. [12,15] and references therein.) The operator in this
equation is dilation. Sample reconstruction is by erosion

Sr ¼ I� P (11)

A similar equation governs tip reconstruction if a known sample
(a tip characterizer) is used. The reconstructed sample, Sr,
represents the smallest outer bound on the sample that one is
entitled to conclude from a given tip based upon information in
the image. It is not, in general, everywhere equal to S because
there may be parts of the sample (e.g., a crevice) not entirely
accessible to the tip.

The tip and the image were shown [12,15] to satisfy the
following relation:

ðI � PÞ � P ¼ I (12)

The superficially similar statement (a�b)+b ¼ a is true for any b

because addition and subtraction are inverse operations. However,
erosion and dilation are not strict inverses, and there do exist tip
shapes for which Eq. (12) is not satisfied. This forms the basis of
the existing blind tip estimation method. If all tips that fail to
satisfy Eq. (12) are eliminated, the remaining set must include the
actual tip shape.

3.1. Existing blind tip estimation for conventional AFM images

The existing method is an iterative solution of Eq. (12) for a
value, Pr, that is an outer bound on the true tip shape, P. This
solution can be described as

Piþ1 ¼
\
~x2I

ðððI �~xÞ � P0ið~xÞÞ \ PiÞ (13)

Eq. (13) allows the calculation of the (i+1)th iteration result
from the ith result.~x is a point in the image I, P0ið~xÞ is a set of points
in Pi that can touch I at~x with the apex point contained in I, which
can be defined as

P0 ið~xÞ ¼ ð~x� IÞ \ Pi (14)



ARTICLE IN PRESS

Fig. 4. Dexel representation of a 3D threshold, D ¼ dx	 dy	 dz.
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Upon convergence, the result of estimated tip shape Pr can be
defined as

Pr ¼ lim
i!1

Pi (15)

The limit is shown for i-N, but in practice the series converges
in a finite, and generally small, number of iterations. Such an
estimated tip is an outer bound of the actual tip. That is,

P � Pr (16)

Since blind reconstruction seeks to find the largest tip
consistent with all features in an image, small amounts of noise
can lead to considerable instability in the algorithm described so
far. Features due to random noise or other measurement artifacts
need not be consistent with each other. An effort to make them so
leads to an overly sharp tip. (A tip can always be made consistent
with all features by making it artificially sharp.) This problem was
circumvented [15] by the use of a threshold that defines a size
below which inconsistencies are not considered significant
enough to warrant a change in the estimated tip. This procedure
was implemented by comparing scalar heights of objects with a
scalar threshold.
3.2. New blind tip estimation for general (dexel-represented) images

In this section, we describe our generalization of the just-
described method to the more general 3D case. The generalization
of equations that involve only set operations, like Eqs. (13)–(15), is
in principle straightforward. One simply substitutes the dexel
version of these operations. The noise threshold, previously
implemented as a scalar addition, requires more consideration.

We begin by observing that the threshold procedure described
in the last section as a scalar operation can be alternately
described as the substitution of I�D for I in Eq. (13), where D is
a line segment from 0 to t (t is the ‘‘threshold’’) along the z

direction. Having thus recast the threshold algorithm as a set
operation, we further generalize by recognizing that D is a
tolerance to noise, so in 3D it should be a volume within which the
noise will fall. That is, in the general case we must allow D to be a
set with extent in 3D. For example, D could be a small cuboid, and
the size along the x, y, and z directions is

D ¼ Dðdx; dy; dzÞ (17)

The threshold D shown in Fig. 4 is represented by a set of dexel
blocks from �dx to +dx in the x direction, from �dy to +dy in the y

direction, and with the height of each dexel block from �dz to +dz

in the z direction, where d’s are related to the noise levels along
the corresponding directions. To make it simple, we denote the
above threshold as

D ¼ dx 	 dy 	 dz (18)

Although in general D is 3D as described here, it may not always
be necessary to use the full available generality. We have observed
instances in simulations (as in examples to be shown later) where
a 2D or 1D approximation has been sufficient.

In simulations we have observed that substitution of I�D for I

is best done in Eq. (14) as well as in Eq. (13). (The equivalent scalar
version of this could presumably also have been done for the
existing method. However, we have observed sensitivity to
omission of this only in the case of images with vertical or
undercut sidewalls, a situation important to our present purpose
but which cannot arise in conventional images.) Motivated as
described, we extend blind tip estimation to general 3D dexel-
represented objects with a threshold added to noisy images via
the following equations:

Piþ1ðDÞ ¼
\
x
*
2I

ðððI� DÞ �~xÞ � P0ið~x;DÞÞ \ PiðDÞ (19)

P0 ið~x;DÞ ¼ ð~x� ðI �DÞÞ \ PiðDÞ (20)

PrðDÞ ¼ lim
i!1

PiðDÞ (21)

All sets, including the threshold structuring element D, are now
understood to be full 3D dexel objects.

We illustrate the importance of the finite threshold in a
simulation in Figs. 5–7. For simplicity, the illustration is confined
to the contribution to the reconstructed tip from a single point on
the image, and the threshold is chosen only along the z direction.
Fig. 5 shows in the ideal noise-free case as to what tip
reconstruction we ought to obtain. After addition of Gaussian
noise with standard deviation, sz ¼ 1 nm, along the z direction to
the noise-free image, Fig. 6 shows that the method fails if we do
not use a threshold. Finally, Fig. 7 illustrates how proper use of a
threshold restores the reconstructed shape to close to the ideal
result.

We can see that the tip (Pi+1, the green mesh area in Fig. 6)
estimated from the noisy image without threshold differs from the
tip (Pi+1, the green area in Fig. 5) estimated from noise-free image
by an amount much larger than the 1 nm noise. The resulting tip is
overly sharp (much smaller than the tip estimated from noise-free
image). In Fig. 7, the corresponding result using a threshold
D ¼ 3 nm along the z direction is much closer to the estimated tip
(Pi+1, the green area in Fig. 5) from the noise-free image.

3.3. Discussion of threshold D

To find the proper threshold, first we need to understand the
relation between the noise, threshold, and estimated tip. Here are
some properties of threshold D

Property 3. If D1DD2, then Pr(D1)DPr(D2).

To see this, observe that P0 (Eq. (20)) and ðI � DÞ �~x in Eq. (19)
increase in size as D increases, owing to the increasing property of
dilation (Property 2). Since both are increasing with D, so is their
dilation, ðI �D�~xÞ � P0ð~x;DÞ. Thus, every term in Eq. (19)’s
intersection is larger, and so therefore is Pi+1. Pr is the limit of a
series, each term of which is larger than before, so it too will
increase with increasing D.

Property 4. In the limit of very large D, Pr(D) approaches P0

To see this, consider Eq. (19). If we choose D to be a sphere of
radius r or a cube of side r, then as r-N, ððI � DÞ �~xÞ fills all
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Fig. 5. Blind tip estimation from a noise-free image. (a) P0 ið~xÞ ¼ ð~x� IÞ \ Pi , where~x� I, Pi, P0 ið~xÞ are shown in colored background, P0 ið~xÞ is also shown in zoom in area and

(b) Piþ1 ¼ ððI �~xÞ � P0 ið~xÞÞ \ Pi , where ðI �~xÞ � P0 ið~xÞ, Pi are shown in colored background, Pi+1 is shown in green mesh.
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Fig. 6. Blind tip estimation from a noisy image without threshold. (a) P0 ið~xÞ ¼ ð~x� IÞ \ Pi , where~x� I, Pi,P
0
ið~xÞ are shown in colored background, P0 ið~xÞ is also shown in zoom

in area,P0 ið~xÞ is smaller than P0 ið~xÞ in Fig. 5a because of noise and (b) Piþ1 ¼ ððI �~xÞ � P0 ið~xÞÞ \ Pi, where ðI �~xÞ � P0 ið~xÞ, Pi are shown in colored background, Pi+1 (green mesh)

is much smaller (differences large compared to noise) than Pi+1 (green mesh) in Fig. 5b.
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Fig. 7. Blind tip estimation from a noisy image with threshold (a) P0 ið~x;DÞ ¼ ð~x� ðI �DÞÞ \ Pi , where~x� ðI� DÞ, Pi, P0 ið~x;DÞare shown in colored background, P0 ið~x;DÞ is also

shown in zoom in area, P0 ið~x;DÞand ðI �~xÞ � D are outer bounds of their counterparts in Fig. 5a and (b) Piþ1 ¼ ðððI � DÞ �~xÞ � P0 ið~x;DÞÞ \ Pi, where ððI �DÞ �~xÞ � P0 ið~x;DÞ, Pi

are shown in colored background, Pi+1 (green mesh) is close (differences comparable to the chosen noise level) to Pi+1 (green mesh) in Fig. 5.
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space, as then does ðI �D�~xÞ � P0ð~x;DÞ. The intersection of ‘‘all of
space’’ with P0 is just P0.

The importance of these two properties is: on the one hand, we
observed in the example that when D ¼ {0} noise tends to make
the reconstructed tip overly sharp; on the other hand, Property 3
says our result will increase monotonically with increasing D.
Property 4 says this increase can be continued up to a point where
the reconstructed tip contains the true tip shape (since P0 is
chosen to be an extreme outer bound). Thus there are values of D
that produce results at both extremes, too narrow and too blunt.
Between these extremes there is an optimal size for D.
For blind reconstruction from conventional images, it was
found [15] that with increasing threshold at first the volume of the
estimated tip increases slowly. Then over a short threshold
interval, the volume increases much faster. Afterwards, the tip
volume resumes its slow increase. The location of this rapid
volume change was taken to indicate the appropriate threshold
value to use. Our experience with the generalized algorithm is
similar, as shown in Fig. 8, where there is a fast increase of volume
between D ¼ 0	 0	2 and 0	 0	2.1. (Note that according to our
notation introduced in the previous section, the leading zeros here
mean our threshold element has only a single dexel, at the 0,0 grid
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Fig. 8. Example of volume vs. threshold parameter in z axis.
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position. The image has Gaussian noise with standard deviation
along the x and y directions sx ¼ sz ¼ 1 nm; details will be shown
in Section 4.1.) After the ‘‘jump of volume’’, the increase becomes
slower and smooth again. With the jump of volume, the estimated
tip changes from an overly sharp estimated tip to an estimated tip,
which is an outer bound on the actual tip.

Hypothesis. Therefore, we hypothesize that the selection of 2D/
3D threshold D can be made by the jump of estimated tip’s
volume with the increasing of dx,dy, and dz.

This hypothesis will be tested in simulation examples in Section 4.
, EndrP P=

Fig. 9. Flowchart of blind tip estimation with dexel implementation.

3.4. Algorithm of new blind tip estimation using dexel representation

The procedure of our new blind tip estimation is shown in
Fig. 9, in which we define an initial tip, P0, typically as a dexel
object with its top at

Top ðP0Þ ¼
0

�1

�
for 0oxosx and 0oyosy

otherwise
(22)

P0 is a rectangular tip with size sx	 sy and should be an outer
boundary of the real tip. Typically, we set the apex of P0 at (sx/2,sy/
2,0). At the outset, uncertainty about the tip shape is large, so a
considerable margin of safety can be built in to insure that sx	 sy

is large enough to contain the tip.
Then the procedure in Fig. 9 describes the determination of Pr,

the final estimated tip using a particular value of threshold D.
3.5. Algorithm of finding proper threshold D

As discussed above, we have observed a jump of volume from
underestimated tip to proper-estimated tip as D is increased. We
need to find the D of this change. The proper D can be found with
the following process. For simplicity, we assume here a 1D
D ¼ 0	 0	 dk as we have found to work in the examples we tried.
The generalization of this procedure to other forms, e.g.,
D ¼ dk	 dk	 dk, D ¼ (a	 b	 c)dk with a, b, and c fixed constants,
or even D ¼ dx	dy	 dz, is straightforward should it prove
necessary.

Step 1. Calculate the estimated tips with different thresholds
D ¼ 0	 0	 dk using Eqs. (19)–(21), where, dk ¼ dd	 k

(k ¼ 0,1,2,y) with dd the amount of increase between thresholds.
Step 2. Calculate volumes of the estimated tips, V(Pr(Dk) (k ¼ 0,

1, 2,y).
Step 3. Calculate the slope of volume with respect to the d
parameter

mðDkÞ ¼
dðVðPrðDkÞÞÞ

ddk



VðPrðDkÞÞ � VðPrðDk�1ÞÞ

dk � dk�1
(23)

Step 4. Find the dk at which the slope of volume change is
largest. D ¼ 0	 0	dk is the threshold we choose, or we can use a
more conservative criterion by using D ¼ 0	 0	dk+n

(n ¼ 0,1,2,y) where the slope has more or less made a plateau
at a smaller value. Then Pr(Dk+n) is the result for tip estimation
from noisy data.
4. Implementation and examples

In this section, we present the implementation and simulation
results. We have implemented this method based on the
algorithm in Sections 3.4 and 3.5. In order to validate the
correctness of our implementation, we perform simulations in
which we compare the tip estimated from a noisy image to the
ideal tip estimated from the noise-free image, which is an outer
bound of the actual tip.

4.1. Example 1

Figs. 10 and 11 show a 2D example of blind estimation of tip
shape from a noisy image with undercut features. We simulated a
2D surface with two sharp corners. The width of surface in the x

direction is 1200 nm, represented as 1200 dexels (Fig. 10a). The tip
(Fig. 10b) is digitized from an image of an actual tip. We used it to
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Fig. 10. Two-dimensional example of blind reconstruction, all objects are shown in dexel boundary point mode (a) the surface S; (b) the tip P; (c) the noise-free image

I ¼ S�P; and (d) the noisy image, generated by adding Gaussian noise to the noise-free image. (Note that dexels are uniformly separated along the x direction. The spacing

between dexel end-points therefore depends upon the surface slope. It may be large, particularly where the object surface is nearly vertical. This explains the apparent gaps

visible in figures (b) and (c)).

Fig. 11. Blind tip estimation using inputs from Fig. 10, (a) Estimated tips from noisy image for various thresholds, D; (b) volume of those estimated tips vs. threshold

parameter; and (c) the slope of volume with respect to dz, showing the dz that corresponds to the maximum slope.
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dilate the surface and obtain the noise-free image (Fig. 10c). Then
we added Gaussian noise with standard deviation in the x and z

directions sx ¼ sz ¼ 1 nm to the noise-free image to obtain a
simulated noisy image (Fig. 10d). We will try D ¼ 0	 dz.

First we made an initial estimation of the tip’s outer bound.
The size along the x direction is 285 nm, represented as 285
dexels, all with their tops at z ¼ 0. We set the apex point at (142,
0). With the procedure of Section 3, we obtained the estimated tip
with varying values of dz (Fig. 11a). The volume and slope of the
volume with varying dz are shown in Fig. 11b and c. (In 3D it is a
volume that is relevant. For this 2D case, our ‘‘volume’’ assumes a
1 nm thickness.) We get a maximum slope at dz ¼ 2.1 nm (Fig. 11c).
The estimated tip at this value or slightly higher is the tip we want.

To make a quantitative statement of the closeness of this result
to the ideal one (obtained from the noiseless image) we need to
compare differences between tips. Here is how we compare them.

We use the estimated tip, B, from the noiseless image as our
standard. Then we can compare each estimated tip A from a noisy
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image with threshold with the tip B to get their difference. We will
represent the difference between A and B by difference between
their boundaries qA and qB. As we know, the minimum boundary
Table 1
Difference between estimated tip with threshold and nominal estimated tip for

Example 1

D ¼ dz (nm) 0.9 2 2.1 2.2 2.6 3

Minimum error (nm) 0 0 0 0 0 0

Maximum error (nm) 44.7 44.0 7.5 11.8 12.0 12.4

Standard deviation (nm) 13.5 12.9 1.7 2.5 2.4 2.3

Time (s) 56.3 256.5 72.8 82.7 62.75 46.2

Fig. 12. Three-dimensional example of blind reconstruction. (a) Simulated sample surfa

surface, S, shown in dexel boundary point mode; (c) tip P (d) noise-free image, I ¼ S�P; a

image.
along the z direction of estimated tip is always �N, and the
original of A and B are the same when they have the same size
sx	 sy, so when we estimate with same size sx	 sy for A and B, we
only need to compare the finite-valued boundary qAf and qBf,
which can be represented by all the finite-valued height end-
points of all dexels in each object. Assume that all those finite-
valued height end-points of all dexels of A is f~aiji ¼ 0;1;2; . . . ;mg
and all those finite-valued height end-points of all dexels of B is
f~bjjj ¼ 0;1;2; . . . ;ng, then qAf ¼ f~aiji ¼ 0;1;2; . . . ;mg and
qBf ¼ f

~bjjj ¼ 0;1;2; . . . ;ng. We define the discrepancy between
any single point ~x and qBf as

errorð~x; qBf Þ ¼ minf ~x�~bj

��� ���jj ¼ 0;1;2; . . . ;ng.
ce, S, with four 1 nm radius corners, shown in the 3D rendering mode; (b) sample

nd (e) simulated noisy image generated by adding Gaussian noise to the noise-free
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Fig. 13. Blind tip estimation from a 3D image. (a) Volume of estimated tips as a function of threshold parameter; (b) the slope of the volume and location of the dz

corresponding to the maximum slope; and (c) comparison of the tip (red) estimated from the noisy image with threshold to the tip (green) estimated from noise-free image

with dz ¼ 1.2 nm.

Table 2
Difference between estimated tip with threshold and nominal estimated tip for

Example 2

dz (nm) 0.9 1.1 1.2 1.5 2.5 3.0

Minimum error (nm) 0 0 0 0 0 0

Maximum error (nm) 9.1 8.9 5.8 5.8 7.8 8.6

Standard deviation (nm) 1.18 1.18 1.01 1.01 1.42 1.38

Time (s) 1429 1231 1380 1515 5167 3113
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Then we compare A and B by minimum discrepancy, maximum
discrepancy, and standard deviation, defined as

min_errorðA;BÞ ¼minferrorð~ai; qBf Þji ¼ 0;1;2; . . . ;mg;

max_errorðA;BÞ ¼maxferrorð~ai; qBf Þji ¼ 0;1;2; . . . ;mg;

stdevðA;BÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm

i¼1

ðerrorð~ai; qBf Þ � errorÞ2

vuut ,

where error ¼
1

m

Xm

i¼1

errorð~ai; qBf Þ.

If qAf and qBf are dense enough, those will represent the
difference of A and B very well; if qAf and qBf are not dense enough
(usually along the z direction), we can upsample the point by
interpolation on dexel contours [20].

With the definitions above, we compare those estimated tips
Pr(dz) with the estimated tip Pr from the noise-free image in Table 1
by min_error(Pr(dz), Pr), max_error(Pr(dz), Pr), and stdev(Pr(dz), Pr).
We find that the estimated tip with D ¼ 2.1 nm is closest to the
noise-free result. Using a more conservative criterion, we might
choose D ¼ 2.2 nm. The corresponding tip is still close to the
noise-free result (Table 1). The running time in seconds (on a PC
equipped with a Pentiums D 3.40 GHz	2 CPU with 2 G RAM2) is
also presented in the table. This example demonstrates that we
can get a good estimate of a tip from the noisy image with
undercut features by using the proper threshold, D, and this
2 Certain commercial equipment is identified in this report in order to specify

the measurement procedure adequately. Such identification is not intended to

imply recommendation or endorsement by the National Institute of Standards and

Technology, nor is it intended to imply that the equipment identified is necessarily

the best available for the purpose.
proper threshold can be found by the slope of the volume of the
estimated tip.
4.2. Example 2

Figs. 12 and 13 show a 3D example of blind estimation of tip
shape with undercut features. We simulate a 3D surface with four
sharp corners (radius 1 nm). The lateral size of the surface is
300 nm	300 nm, represented by a 300	300 array of dexels. The
tip is simulated with a 41	61 dexel array, with the dexel at (20,
30) chosen as the origin point (Fig. 12c). The tip was used to dilate
the surface and obtain the noise-free image (Fig. 12d), to which
Gaussian noise with sx ¼ sz ¼ 1 nm was added to obtain the
simulated noisy image of Fig. 12e. We used D ¼ 0	 0	dz.

Using a similar procedure as for Example 1, the tip’s initial
outer bound is simulated with a 81	81 dexel array, with the
dexel at (40, 40) chosen as the origin point. We calculated the
volume (Fig. 13a) and slope of volume (Fig. 13b) of the varying
estimated tips. The maximum slope was obtained at dz ¼ 1.2 nm.
The corresponding tip is shown in Fig. 13c. Estimated tips at
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varying ffiz are compared to the noise-free result in Table 2. The
estimated tip with D ¼ 1.2 nm is closest to the noise-free result.
A more conservative criterion, D ¼ 1.5 nm, also produces a result
close to the right one (Table 2). This demonstrates that the
method described in Section 3 also works for a fully 3D example.
5. Discussion and conclusions

In this paper, we have used dexels to represent images,
surfaces, and tips of general shape. We have described a general-
ization of blind reconstruction that applies to such dexel-
represented objects. The method enables the blind tip estimation
method for the first time to estimate tips of general shape from
both noise-free and noisy images. We have used simulations to
demonstrate that this generalization of blind reconstruction
works. The estimated tips are found to be the outer bounds of
and close to the tip estimated from the noise-free image, which is
itself an outer bound and close to the actual tip. The advantage of
a simulation for a demonstration of this kind is that the right
answer is unambiguously known. This makes it a good test of the
algorithm. It is not, of course, a test of the model; for example, it
does not prove that imaging in the AFM is actually a dilation. For
this reason, it will be desirable in future work to validate this blind
reconstruction procedure experimentally. However, experiments
have already validated blind reconstruction applied to ordinary
grayscale images [21] and tip reconstruction using erosion of
known tip characterizers [22–25], even for flared tips. These
procedures rely upon the same dilation tip–sample interaction
model that we have assumed.

An advantage of blind reconstruction is that it combines
relevant information about the tip from many different locations
on the image and it does not require independent calibration of
the sample. As has been pointed out [11,15], this can be extended
even to multiple images and it can be combined with the use of a
known tip characterizer when one is available. One possible
application of this kind is suggested by the following problem:
single crystal critical dimension reference materials (SCCDRM)
have been used to ascertain the widths of flared tips like those in
Fig. 10b [26]. The advantage of the SCCDRM is that it has a
calibrated width. However, dimensions other than the width (e.g.,
corner radii) are not calibrated, and these characterizers are lines
with rectangular cross-sections, i.e., vertical (not undercut or
flared) sidewalls; they do not touch and therefore cannot
characterize the reentrant parts of the tip. On the other hand,
there are commercial tip characterizers that are constructed to
access these parts of the tip. Unfortunately, these have unknown
widths. No single tip characterizer embodies all of the desirable
features. The availability of a full suite of mathematical morphol-
ogy tools, with blind reconstruction in addition to erosion, should
allow the strengths of the various characterizers to be optimally
combined.
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