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Abstract 
Coordinate metrology aims to answer two questions: whether a manufactured part meets 
design tolerance specifications and how well the manufactured part meets the 
specifications. Existing methods for analyzing measured coordinate data are not adequate 
or effective for parts of complex tolerance zones. 

This paper presents a new approach to dimensional qualification of manufactured parts. 
In this paper, we view the part qualification problem as an issue of finding an admissible 
point in transformation space. Based on the concept of admissible point, we develop 
theories and algorithms for part geometric dimensioning and tolerancing (GD&T) 
conformance check. A formulation based on containment fit for tolerance check is 
developed. An admissible transformation volume (ATV) is used to quantitatively 
characterize the quality of manufactured parts with respect to design tolerance 
specifications. 

We examine our approach in three tolerance examples and conclude that admissible 
transformation volume is an effective method for part dimensional quality gauging and it 
is especially useful for multi-tolerance zone check where traditional methods fail to 
address it effectively. 

 

1 Introduction 
Dimensional inspection is a critical step in manufacturing processes to ensure 
manufactured parts meet tolerance specifications and perform functions as designed. 
Computational metrology refers to a process computationally analyzing measurement 
data to determine dimensional quality of manufactured parts. Two issues arise in 
computational metrology: whether a part meets tolerance specifications (qualitative part 
conformance check, a.k.a. go/no-go gauge) and how well the part meets tolerance 
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specifications (quantitative quality characterization). Traditionally, measurement data 
analysis determines if a manufactured part is conformal to tolerances specified in 
engineering drawings. Minimal tolerance zones are computed for simple geometry as a 
way of characterizing the manufacturing process quality.  

A critical step in computational metrology is to align inspection data against nominal 
geometry, upon which the comparison can be drawn. Two popular approaches (total 
least-squares and minim-max best fit) for aligning inspection data against nominal model 
do not necessarily reflect true design intent of tolerance specifications. For example, a 
least-squares method may produce incorrect tolerance conformance check result when it 
is used to align inspection surfaces against nominal surfaces of non-uniform tolerance. 
Simple zone fitting only leads to a pass/fail description of the manufactured shape against 
design tolerance specifications.  

The state-of-the-art coordinate data analysis methods are also limited in methods to 
characterize how well the part meets tolerance specification. Existing dimensional quality 
analysis methods are based on either the deviation between as-measured part data and the 
nominal model or the minimal tolerance zone of the measured data. These methods are 
either not conformal to ANSI Y14.5M standard [1] or not directly applicable to complex 
tolerance such as non-uniform tolerance and composite tolerance. Some of these methods 
are dedicated to particular classes of tolerances and are computationally undesirable. For 
example, only limited methods available for calculating minimal tolerance zones of 
simplex geometry. Furthermore, these methods cannot quantitatively evaluate part 
dimensional quality when multiple tolerance requirements need to be simultaneously met. 

As more and more dimensional measurement systems such as trigger probe coordinate 
measurement machines (CMM), scanning CMMs and optical scanning systems become 
readily available, there is an increasing need for quantitative feedback of inspection data 
analysis results so that this information can be used for manufacturing processes 
improvement.  

This paper presents a new approach for dimensional inspection data analysis. It analyzes 
inspected dimensional data in transformation space. It employs a novel concept, 
admissible transformation volume (ATV), to quantitatively evaluate how well the 
manufactured part fits into the design tolerance zone. Advantages of this approach are as 
follows: 

• It conforms to design intent of tolerance specifications since it directly examines 
whether a part shape falls within the tolerance zone. 

• It is applicable to all classes of geometric dimensioning and tolerancing (GD & 
T) that can be represented in tolerance zones. In contrast to many previous minimal 
tolerance zone calculation methods, which are dedicated and only applicable to a 
particular type of tolerance such as cylindricality or flatness. The ATV method is 
applicable to tolerance zones of all types of tolerances. 
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• It is useful for inspection of complex shapes of non-uniform tolerance zones 
where existing methods do not apply. Since a minimum tolerance zone is based on 
two surface envelopes offset from one ideal geometry, it is not applicable to 
tolerances of multiple tolerance features, or composite tolerances. Figure 1 illustrates 
an example of non-uniform tolerance zone and an inspection point data set. In such a 
case (where multiple tolerances are used to define tolerance zone), minimal tolerance 
zone is not uniquely defined and cannot be directly used to characterize 
manufacturing process capability. 

 

Tolerance 
bands (V)

As-inspected 
points (xi)

Figure 1 Non-uniform tolerance zone and inspection data analysis 

In the rest of this paper, we review prior work in measurement data analysis in Section 2. 
We present the theory and algorithms of applying admissible transformation for part 
GD& T conformance check and conformance allowance computing in Section 3 and 
Section 4. Experimental results are listed in Section 5. This paper concludes in Section 6. 

2 Literature Review 
Part dimensional quality analysis requires the comparison of measured part coordinate 
data with respect to part GD&T specifications. GD&T is an important technology in 
product design and manufacturing. Through GD&T, design intent can be represented, 
part quality can be analyzed, part interoperability from different manufacturing processes 
and vendors can be ensured, and manufacturing cost can be reduced.  

Functional and assembly requirements on the manufactured parts are represented as 
tolerance zones to which the surface of a part must conform. These geometric tolerances 
are defined in the ASME Y14.5M-1994 geometric dimensioning and tolerancing standard 
[1]. Based on the standard, tolerances are to be evaluated from envelopes of two ideal 
features with minimum separation distance within which the entire surface of the 
manufactured part must lie. 

To analyze whether a manufactured part meets design tolerance specifications from a set 
of part coordinate data, one needs a proper representation of tolerance and an appropriate 
methodology to compare measured coordinate data with the tolerance. Such comparisons 
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are used not only to determine the qualification of the manufactured part, but also to 
extract quantitative part quality information that can be fed back for process modification 
as well as design change for producibility improvement. 

In this section, we briefly review GD&T theories as well as methods to construct 
tolerance zones. We then present past and current methods on part dimensional quality 
analysis. 

2.1 Geometric dimensioning and tolerancing theories 

Manufactured parts have deviations from the nominal shape. To describe and preserve 
the functional requirements of design, geometric variations are specified in tolerance 
zones. Pasupathy et al gave a comprehensive review of various existing tolerance zone 
construction methods in [20]. 

Offset zone models modeled as Boolean subtraction of maximal and minimal object 
volumes have been explored by Requicha [23] and Roy [24]. Turner developed indirect 
parameterization methods for modeling tolerance zones [27]. A Technologically and 
Topologically Related Surfaces (TTRS) method was developed by Clement [8], where 
they used group theory and displacement torsors to combine the surfaces into 28 different 
geometric relationships. Shah and Zhang developed a graph-based model for geometric 
tolerancing by separating linear variations from angular variations based on degrees of 
freedom for points, lines, and planes [26].  

Recently Davidson and Shah proposed a new mathematical model, Tolerance-Map, a 
hypothetical volume of points that corresponds to all possible locations and variations of 
a segment of a plane which can arise from tolerances in size, form, and orientation [10]. 
A GD&T global model for computerizing GD&T representation was reported in [29]. 

In this paper, we focus on developing a measure of part dimensional quality in its 
conformance to GD&T specifications. We assume the tolerance zone Z is represented as 
a parametric function of nominal geometry S. That is, for a given surface point in its 
parametric representation S(u,v), we can compute the tolerance zone Z(u,v) at that point. 
The methodology and the metric developed in this paper are applicable to other tolerance 
representations as well.  

2.2 Dimensional quality analysis from measurement data 

Dimensional quality analysis of measured coordinate points serves two important 
purposes: 1) to check whether a manufactured part meets design GD&T specifications 
(qualitative GD& T conformance check), 2) to characterize manufacturing process 
capability and examine how much space remains for a manufactured part shape to stay 
within a tolerance zone (quantitative characterization of part dimensional quality and 
process capability). The first question concerns whether a manufactured part meets 
design tolerance specification. The second question concerns whether the manufactured 
part just fits into a tolerance zone or if there is ample space remaining. This quantitative 
characterization of part quality is critical for improving part producibility. Part 
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dimensional quality is often evaluated based on the minimum tolerance zone computed 
from the measured dimensional data. This evaluation is often based on numerical fitting 
algorithms that transform the measured coordinate data into the nominal geometry’s 
coordinate system to minimize the deviation between the nominal shape and the 
inspection point set. The fitting algorithms can be largely divided into two types: least-
squares fit and mini-max fit. Refer to Feng [12] for a detailed review of various fitting 
algorithms. 

An alternative to the numerical fitting algorithms is a combinatorial search for particular 
points that control and govern the minimum tolerance zone. In addition, manual fitting is 
still employed for some complex and high precision part inspection.  

We now review these dimensional quality analysis methods and explain why our 
proposed approach is advantageous for part dimensional quality analysis. 

2.2.1 Numerical fitting based tolerance evaluation 

The numerical fitting based methods are relatively easy to implement and are applicable 
to a variety of GD&T classes. In general, these methods are fast but subject to potential 
errors due to numerical approximations and the lack of true global optimization 
algorithms. 

Least-squares fit 

The total least-squares fit aims to find optimal parameters to minimize the total deviation 
between an inspection point set and a nominal model. Total least-square fitting calculates 
deviation for all the inspection points and then sums its deviations. For example, Menq 
used this method for surface profile inspection [18].  

Mathematically, it is represented as 

 Min      EQ. 1 ))),(),(((
1

2∑
=

−
N

i
i vustxT

In this equation, T(xi , t) represents the inspection points after the transformation, t is the 
transformation parameter, s(u,v) representing nominal geometry, xi (i=1, ..N) is an 
inspection point with N the number of points in the inspection point set. 

Total least-squares fitting is the most widely used approach in CMM data analysis. 
However, it does not always produce results conformal to design intent, especially for 
non-uniform tolerance. Total least-squares fitting minimizes the overall root-mean-square 
error, but may lead to a larger maximum deviation. Therefore total least-squares fitting 
could over-estimate the tolerance values, which would unnecessarily disqualify many 
otherwise qualified parts.  

5 



Mini-max fit 

To resolve the inconsistency between design intent of tolerance specifications and the 
least-squares fit, an alternative fitting method, minim-max fit, has been developed. It 
aims to find an optimal alignment to minimize the maximum deviation between the 
nominal model and an inspection point set. Minimum tolerance is then computed based 
on the maximum deviation between the nominal geometry and the measured point set. 
For example, Murthy used a Monte Carlo simulation algorithm to determine the minimal 
tolerance zone for form tolerance [19]. Lai modified a genetic algorithm for calculating 
the minimum-zone for cylindricity [16]. Endrias proposed the usage of rigid-body 
coordinate transformation to seek the minimum-zone for form tolerance, in which only 
necessary independent transformation parameters were used in the minimal zone 
optimization process [11].  

Mathematically, it is represented as 

))),()(((max( , vustxTfabsMin i −     EQ. 2 

Mini-max fit is useful for estimating tolerances such as roundness, cylindricity and 
flatness. It is not directly applicable to shapes with non-uniform tolerance bands, or with 
asymmetric tolerance bands. Mini-max fitting minimizes the largest deviation error but it 
may lead to alignment with larger overall root-mean-square error. It is also 
computationally undesirable since the first derivative of the objective function may not be 
continuous. 

Zone fit 

Recognizing the deficiencies of the two types of fitting algorithms, Choi and Kurfess 
developed a zone-fitting algorithm [6], in which a quasi-Newton method is used to 
numerically seek a rigid body transformation placing the inspection points inside the 
tolerance zone. Since a simple zone fitting only produces a binary decision regarding the 
GD&T conformance, they extended this method for minimal zone computing to 
quantitatively characterize part quality. They proposed a two-stage zone-fitting 
algorithm, which iteratively optimized the coordinate transformation parameters until a 
minimum-zone solution was obtained [7]. Even though a minimum tolerance zone is an 
effective metric for part quality characterization, it becomes ineffective when multiple 
tolerance zones are involved. When multiple tolerances have to be simultaneously met, 
the minimal tolerance zone of a tolerance feature may vary when the value specification 
of other tolerance zones changes. To address this issue, a conditional tolerance zone 
concept is proposed in [7]. The minimum tolerance zone for a tolerance feature is 
computed while holding a constant tolerance zone on the other tolerance features. This 
would unfortunately lead to multiple minimum tolerance zone values for a given 
tolerance feature. It would also involve combinatorial evaluation of minimal tolerance 
zones for multiple tolerance features. 

The admissible transformation is similar to the zone fitting method in that both 
approaches compare inspection points with a tolerance zone. However, we explicitly 
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quantify the amount of admissible transformation (ATV) in the transformation space and 
examine quantitatively the ATV change due to design tolerance specifications change 
and manufacturing error variation. As such, ATV is applicable to both single and 
multiple tolerance zone specifications. 

2.2.2 Combinatorial minimum zone computing 

Various geometric approaches have also been explored to calculate the minimal tolerance 
zone. In these approaches, points that control the minimum tolerance zone are explicitly 
identified. Huang used a method called control line rotation scheme to identify points to 
calculate minimum-zone straightness [12]. Damodarasamy used a normal plane method 
and simplex search for calculating the minimum zone for flatness [9]. Roy and Zhang 
constructed the nearest and farthest Voronoi diagrams of a data set for circularity 
evaluation [25]. The minimum tolerance zone issue has also been formed as an annulus 
placement issue in computational geometry [2].  

Due to the combinatorial nature of these algorithms, they are computationally expensive 
and are dedicated to particular types of tolerances and not applicable for general classes 
of tolerances. 

Manual fit 

Besides the above automatic fitting methods, another method that is often used in 
checking part dimensional quality is through the use of manual fit. In this method, a 
blueprint drawing with the tolerance zone is magnified and printed on a Mylar or plastic 
paper. The actual part profile is then superimposed against the blue print. The operators 
then manually move the part profile against the tolerance zone in the blue print. If the 
part profile can be placed inside the tolerance zone, the part is considered “pass”. 
Otherwise, it is considered “fail”. The advantage of this approach is that it conforms to 
design intent of tolerance specifications. However, despite its wide usage in high 
precision and complex profile part inspection, this method also has many disadvantages. 
It is subjective, not repeatable, and relies on operators’ judgment. When the shape is very 
complex or the actual shape is very close to the tolerance zone boundary, it is very 
difficult for operators to move the part into the tolerance zone even if the actual part is a 
dimensionally qualified part.  More importantly, this manual fit method can only 
determine whether a part meets tolerance specifications, and it does not provide any 
information regarding how well the part meets tolerance specifications.  

Similar to this manual fit, a geometric framework was developed to quantify the structure 
of positional tolerance evaluation [15]. A comparison between a genetic search method 
and a generalized reduced gradient method was done to explore methods for automatic 
analysis of inspection points for complex classes of objects [4]. 

In summary, so far there is a lack of an effective measure of part dimensional quality that 
is applicable to a variety of GD&T classes and conformal to ANSI Y14.5M standard. The 
current practice using the minimum tolerance zone as a quality measure is 
computationally undesirable. Furthermore, it is not directly applicable to complex 
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tolerances because the minimum tolerance zone characterizes part quality only through 
two surface envelops offset from one ideal geometry and complex tolerances often 
involve more than one tolerance feature. In this paper, part dimensional quality is 
quantified based on the amount of allowable transformation upon which a manufactured 
part shape remains within the tolerance zone. Such a measure is applicable to all GD&T 
classes where tolerance zones can be non-uniform, complex, or composite. 

3 Theory on Transformation Space for Inspection Data 
Analysis 

In this section, we describe a) the concept of an admissible transformation point, b) how 
this concept is utilized in containment fit for part dimensional tolerance conformance 
check, and c) how it is used in ATV computing for conformance allowance check as a 
way of characterizing part dimensional quality with reference to the tolerance zones. 

The basic premise underpinning our approach is that the issue of part GD&T 
conformance check can be transformed into an issue of whether there exists a 
transformation such that, upon this transformation, the inspection points can be contained 
in the tolerance zone. Geometrically speaking, this is essentially a containment problem. 

We can further extend this containment concept into how well the inspection points fit 
into tolerance zone. Instead of calculating minimal tolerance zones, we calculate the 
allowed amount of movement (translation and rotation) of the inspection points such that 
these points can still be contained in the tolerance zone. 

In this paper, we assume the inspection point set represents the actual manufacturing 
shape. So we use the term inspection point set and manufactured shape interchangeably 
in this paper. In addition, we do not consider measurement uncertainty in this paper. 

3.1 Parametric tolerance zone representation for part 
qualification 

In order to conduct a containment check, an efficient representation of tolerance zone is 
needed. In this paper, we represent the tolerance zone as a distance function of nominal 
geometry. If the part surface has parametric representation s(u,v), we can then have 
tolerance zone represented as  

),( vuZZ =    
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Figure 2 Parametric representation of tolerance zone 

That is, given a surface point and its parameter set (u, v), we can calculate the tolerance 
band from the parameter set. Figure 2 illustrates a 2D example. For any given point pi, we 
can find the closest point pi(ui, vi) in the nominal surface. At this closest point, the 
tolerance can be represented as an interval [ , which could be a symmetric two-
sided tolerance, or asymmetric tolerance, or one-sided tolerance. We note the distance 
between the point pi and the nominal geometry as a signed distance d 

], ii dd ul

τ⋅−= ii ppd  

τ equals 1 if ii pp has the same direction as part surface normal at point p. Otherwise, τ 

equals –1. So the point pi lies within tolerance zone if and only if d . The 
manufactured part meets tolerance specification if and only if all inspection points fall 
within the tolerance zone.  

],[ ii dd∈ ul

3.2 Degrees of freedom and admissible transformation 

If we represent tolerance zone as a set Z in an N-dimensional Euclidian space Rn, n=2, 3. 
Its boundary representation is described as a distance function from the nominal shape. 
Its coordinate system is represented as FD, meaning a reference frame in design 
coordinate system.  

The inspection point set is represented as P in the coordinate system FI (a reference frame 
in inspection coordinate system). We assume if all the points in the point set P can be fit 
into the tolerance zone Z, the part is then conformal to part tolerance specifications. This 
can be formed mathematically as a containment problem as following: Given two sets P 
and Z, a part is conformal to tolerance specification if and only if under a transformation t 
such that P is contained within Z,  

ZtPT ⊂),(  

To better describe the process of computing such a transformation, we define a 
transformation space first. 

For n degrees of freedom, we define an n-dimensional transformation space Rn, ,n=1,2,… 
6. A more general representation of a point in the space could be (x, y, z, θ,ϕ,γ), 
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respectively representing three translation components and three rotation components 
around x, y, and z axes. Each point in this transformation space represents a point Ti. 
These degrees of freedom correspond to the movement range if a part needs to be moved 
and qualified manually. A free rigid body has six degrees of freedom, three in translation 
and three in rotation. In the context of part GD&T conformance check, the degrees of 
freedom in fitting inspection data against nominal model/tolerance zone could be less 
than six. For example, a minimum deviation zone of a straightness tolerance can be 
obtained by optimizing a one-parameter objective function. In the case of manual 
inspection of a surface profile through the optical comparator, three are three degrees of 
freedom for profile tolerance conformance check. They are two translations (x and y) and 
one rotation around the z-axis (θ). A point in such a transformation space represents a 
transformation (xi, yi, θi) applied to the measured point cloud P (Figure 3).  

A point is an admissible transformation point if and only if such a transformation leads to 
the measured point set P falling with tolerance zone Z.  

A collection of all such admissible transformation points is called admissible 
transformation volume (ATV). It is a measure of the allowed movement amount for 
inspection point set such that this set remains within the tolerance zone. 

x

Y

θ

ti
Pj

T(Pj, ti)

(b) 3D Euclidian space(a) Transformation space

x
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θ

ti

x

Y

θ

x

Y

θ

ti
Pj

T(Pj, ti)

(b) 3D Euclidian space(a) Transformation space

 
Figure 3 Transformation Space 

3.3 Containment fit 

In order to find an admissible point in the transformation space and to define the 
boundary of the admissible transformation volume, we define a distance function in the 
3D nominal model’s Euclidian Space. In this paper, we define the containment fit 
function as the average point distance between the points outside the tolerance zone and 
the tolerance zone boundary (Figure 4). That is, we only count the points outside the 
tolerance zone. 
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Figure 4 Containment Fit 

 

Mathematically, the objective function is defined as follows 
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In the above equations, t is transformation coordinates, T(pi, t) represents a 
transformation of point pi by t. If t is a point in six-dimensional transformation space, 
t=(x, y, z, θ,ϕ,γ).  N is the total number of points in the inspection point set. The symbol 
m represents the order of distance function g in the containment fit. When m=2, it is the 
root-mean-square (RMS) distance for points outside the tolerance zone. It is also the 
same function used in [6]. However, our containment fit function essentially minimizes 
the Lm norm with m extendable from m=1 to m=∞. In this paper, we also examine the 
computing of containment fit and ATV for m=1 and m=3. In this formulation, the actual 
part quality is not dependent on the choice of m, however, larger m leads to better 
convergence for some numerical algorithms. In EQ.3, when m increases, the gradient also 
increases, which would lead to larger objective function value differences for a given pair 
of points in transformation space. As it turns out in out implementation, a simplex 
method using smaller m in the objective function leads to the iterative process terminated 
prematurely due to its smaller value difference among the vertices. 
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For any given set of parameters (in the transformation space), if the objective function is 
zero, this transformation point is an admissible point. If the minimal objective function 
value is not zero, the part is out of tolerance specification. The minimal value is an 
indication of how much the part is out of tolerance specification. The objective function f 
is a measure of the average distance between points outside of point boundary and the 
tolerance boundary. 

If the objective function is larger than zero, it means under this transformation ti, 
inspection points are still f distance away from lying within the tolerance zone. A 
collection of the transformation points that would lead to the same objective function 
value is called (hyper) iso-surface. If there are two degrees of freedom, such a collection 
would be an iso-curve. If there are three degrees of freedom, it would be an iso-surface. 
When there are more than three degrees of freedom, such a point set forms a hyper-iso-
surface. 

When the objective function value is zero, the corresponding iso-surface and the enclosed 
area in the transformation space form the ATV. We adopt a functional representation of 
the boundary of admissible transformation volume. That is, 

0
)),(),((

  f 1 =
−

=
∑

=m

N

i

m
i

N

vustpTg
 

This function describes exactly the boundary representation of such a geometric shape in 
transformation space. 

By computing the iso-surface and ATV, we can derive part quality information with 
respect to the design specified tolerance zone.  

The ATV as a part dimensional quality metric relates to minimal tolerance zone in the 
following way. An ATV reflects the comparison between an actual part shape and design 
tolerance specification, while a minimum tolerance zone is a minimal zone bounding the 
tolerance feature regardless of design tolerance specification value. As minimal tolerance 
zone gets smaller, ATV gets smaller. When the minimal tolerance zone of a part is 
smaller than design specified tolerance, there exists an ATV for this part. When the 
minimal tolerance zone is the same as design specified tolerance zone, the ATV is 
degenerated into a point. When the minimal tolerance zone is larger than the design 
tolerance specification, ATV is NULL and a volume enclosed by the hyper-iso-surface in 
the transformation space is used as a characterization of how bad the part quality is. 
However, minimal tolerance zone is ineffective in handling simultaneous multiple 
tolerance zone specifications and multiple tolerance zone values may exist for one 
tolerance feature depending on the tolerance zone value for other tolerance features. 
ATV, as a single metric, is applicable to both single and multiple tolerance zone 
specifications. 
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3.4 Propositions for Admissible Transformation Volume 

Compared to traditional methods in characterization part dimensional quality, the ATV 
based approach is more conformal to design intent of tolerance specifications than many 
other best fit based methods since it directly finds a transformation which places the 
inspection point set within the tolerance zone. 

An ATV is a geometric representation, representing the intrinsic geometric relationships 
between tolerance zone and manufactured part shape. It is not dependent on containment 
functions or the initial positions of the manufactured shapes. It is only dependent on the 
design specified tolerance zone and manufactured part shape. 

Based on the definition of the ATV in the transformation space, we have the following 
propositions for ATV.  

Proposition 1: A manufactured part is within tolerance specifications if and only if its 
admissible transformation volume is not null. That is, 

Pass⇔∅≠ATV  

This proposition implies: 

• When an admissible transformation volume is null, the manufactured part is out of 
tolerance specification and vice versa. 

• When an admissible transformation volume is not null, the manufactured part is 
within tolerance specification, and vice versa. 

This proposition is the underlying principle for our inspection data analysis approach. We 
seek to check the existence of an admissible transformation volume to determine the 
manufactured part dimensional quality with respect to tolerance specifications. 

Proposition 2: The Minkowski sum of admissible transformation volume for a fixed 
orientation in transformation space and the inspection point set is a subset of the tolerance 
zone.  

Proposition 3: The larger a tolerance is, the larger a nominal model’s admissible 
transformation volume is. That is 

If ,21 δδ < then V 21 ATVATV V<  

If two parts of same nominal geometry, one has tolerance 1δ  smaller than the other 
tolerance 2δ , then the first part’s ATV is larger than the second ones. Her we use the 
volume of ATV as a measure of the ATV. For example, for transformation space (x, y, θ) 
of three degrees of freedom, the volume is defined mathematically as 
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∫∫∫=
ATV

dxdydV θ  

Within the ATV, the EQ. 3 f(t) equals to zero. As the tolerance of nominal geometry 
becomes larger, so does the tolerance zone. It in turn allows the nominal shape to move 
further yet still within tolerance zone. Thus it would lead to a larger ATV for the nominal 
shape. 

Proposition 4: A manufactured part’s minimal tolerance zone has the same size as 
design specified tolerance zone if and only if the ATV is degenerated into a point. 

When an ATV only contains a point, any deviation from this transformation point, the 
manufactured part would fall out side of tolerance zones. Otherwise, the manufactured 
part’s minimal tolerance zone would be larger than the design specified tolerance zone. 

When an ATV contains more than one point in its neighborhood in the transformation 
space, it means the manufactured part can deviate from a given position while still remain 
in the tolerance zone. It means this part has a minimum tolerance zone smaller than the 
design specified tolerance. 

Proposition 5: The nominal design shape’s admissible transformation volume ATVD 
should be no smaller than the actual manufactured shape’s admissible transformation 
volume ATVM. That is 

,ATVMATVD VV >  

Since no manufacturing process is perfect and without dimensional deviation, the 
manufactured shape always has deviation from nominal geometry. If a manufactured part 
can move more than a nominal geometry can yet both stay within tolerance zone, then the 
tolerance is not properly defined.  

Proposition 6: The ATV is independent from the choice of coordinate system frame of 
design shape FD and inspection point set FI, even though its specific position and 
orientation are dependent on the initial reference frame. The shape of the volume is 
independent from the initial reference frame.  

Since ATV contains a set of transformation, by which the manufactured shape stays 
within tolerance zone, the tolerance zone is completely determined by the design shape, 
the ATV is only dependent on the manufactured shape and the nominal tolerance zone. 
So ATV is an intrinsic property of the manufactured shape with regarding to the tolerance 
zone. It does not depend on the choice of the coordinate system.  

Proposition 7:The ATV is independent from the containment objective functions.  

Containment fit objective functions as listed in EQ.3 only serves to mathematically 
describe the boundary of ATV. The ATV is independent from the specific form of the 
containment fit function. 
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The objective function for containment fit could also be a minimal maximum function for 
points outside tolerance zones. 

)),(),(((maxf  vustpTgMin i −=     EQ. 5 

EQ.5 and EQ.3 would produce the same shape for the ATV. However, mini-max 
objective functions tend to have more local minimum. 

4 Algorithms for Containment Fit and ATV Computing 
Based on the ATV concept, we will address how this concept is utilized in both part 
conformance check (go/no-go gauging) and part conformance allowance calculation for 
manufacturing process capability characterization. The overall flowchart of inspection 
data analysis based on ATV is shown in Figure 5. The input of this process includes 
nominal shape, inspection data and tolerance zone. Nominal shape is used to compute the 
ATV for the nominal geometry and to calculate the distance to the inspection points. The 
output of this process includes whether the manufactured part meets design tolerance 
specifications and how well it meets the specifications  

This process involves three basic algorithms: distance calculation between inspection 
points and tolerance zone boundary, containment-fit objective function minimization and 
ATV computing. Since this part conformance is formed as a containment-fit problem, we 
use simplex search to check if the part falls within part tolerance specification. A least-
squares method to minimize the deviation between the nominal shape and the 
manufactured shape can be used initially to transform inspection data closer to nominal 
geometry. This would lead to fewer iterative times for simplex search. The nominal 
shape’s ATV can provide initial conditions for simplex vertices in the simplex search for 
manufactured parts’ conformance check. To calculate a manufactured part’s conformance 
allowance, we use the Marching Cubes algorithm to calculate both nominal shape and as-
inspected shape’s ATV. 
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Figure 5 Flowchart for inspection data analysis 

We now detail the three algorithms as follows. 

4.1 Inspection point and tolerance zone distance calculation 

Containment fit requires the calculation of distance between a set of inspection points and 
design specified tolerance zone. Naïve implementation of such a containment check 
would compare each inspection point against all the boundary surfaces of the tolerance 
zone to determine if an inspection point fits into the tolerance zone. 

In this paper, we represent the tolerance zone as a function of parametrized representation 
of nominal geometry. That is, if the nominal geometry has the parametrization s(u,v), we 
can represent the tolerance zone as . For each inspection point p, we calculate 
the closest point p in the nominal geometry, we then calculate the distance between point 
p and tolerance zone using EQ.4. 

),( vuZZ =

4.2 Simplex-Containment Fit 
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Figure 6 Initial positions for a simplex method 

To minimize the objective function as defined in EQ.3, there are multiple methods that 
can be employed. In this paper, we choose the simplex method [21] because it is simple 
to implement and the end result is also less sensitive to initial condition since it samples 
N+1 points in the transformation space where N is the dimension of the transformation 
space. 

The simplex method starts with a set of initial vertices. It computes the objective function 
for all the vertices. It then compares the objective values and determines whether to 
expand or contract the simplex by moving the vertex with the highest objective function 
value. The initial position of the simplex vertices can be set by the following equation. 

ii ePP ⋅+= λ0  

where P0 is at the original point in the transformation space, ei is the principal axis vector. 
The initial step length λ is set to be the minimal tolerance. 

The least-squares based best fit provides a transformation to align inspection data closely 
with nominal model, even though such as transformation itself may not directly lead to 
the inspection data falling within tolerance zone. However, such a transformation can 
reduce the number of iterations the simplex method needs to converge. One of the most 
computationally intensive procedures in the simplex method is the closest-distance 
calculation between inspection data and nominal shape. The least-squares based method 
provides an initial position for alignment, which would lead to a significant amount of 
time saving in simplex search. Our experimental result will further demonstrate that. 

Another input for the simplex method that can be helpful for the computing time saving 
is the initial vertices in the simplex. After we have calculated the shape of the admissible 
transformation volume for the nominal geometry, we can sample this ATV into several 
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points, which would then be the initial vertices for the manufactured part’s ATV 
computing. This is based on the proposition in the last section, that a nominal shape’s 
ATV provides bounds for actual shape’s ATV. 

4.3 Marching Cubes and ATV Computing 

The containment function gives a precise mathematical description of the iso-surfaces of 
target containment objective function values in the transformation surface. To help 
visualize the containment function and quantify the ATV size, we use the Marching 
Cubes algorithm [17]. The marching cubes algorithm is an efficient algorithm to rapidly 
approximate a mathematical surface with a set of polygons in a given function governing 
space. The result of the marching cubes algorithm is a surface that approximates the iso-
surface that is constant throughout the field. 

In order to obtain a polygon representation for an iso-surface using the Marching Cubes 
algorithm, we need to determine the location, size bound and resolution of the cubes of 
the iso-surface in the transformation space. 

The original point in the transformation space can be used as the center point in locating 
the nominal geometry’s ATV. After a least-squares based best-fit aligns the manufactured 
part close to the nominal shape, the original point can also be a good location for the 
manufactured part’s ATV computing. For the nominal shape’s ATV, the sizes of the 
tolerances provide a good bound for polygonal representation of ATV. For the 
manufactured shape’s ATV, we can use the same tolerance or the nominal shape’s ATV’s 
as the bounds.  The smoothness of the ATV depends on the cube resolution. 

To have a characterization of the size of the ATV, we compute the extremes values along 
the principal axes. We iterate through all the cubes. For each potential triangle within 
each cube, we compute the extreme values. Based on these extreme values, we then form 
a boundary box for the ATV.  

5 Implementation and Examples 
A system for part conformance check based on the ATV concept has been developed on 
an HP-UX 11.0 machine. It has the following components: 

• Fletcher-Powell minimization module, minimizing the objective functions according 
to the calculated gradient [13]. We use this method to find a least-squares optimal 
transformation to minimize RMS (root-mean-square) error between nominal shape 
and manufactured shape. 

• Simplex optimization module, minimizing the objective functions by moving the 
simplex vertices in an N-dimensional space. We use this method for a final 
containment fit. 
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• Tolerance zone representation module, representing tolerance zone as a function of 
nominal geometry. We use this representation to facilitate the computing of 
containment fit objective function under a given transformation of inspection data. 

• Marching Cubes module, computing the approximate polygons for iso-surfaces and 
visualizing the iso-surface and the ATV in transformation space.  

In this paper, to demonstrate the flexibility of applying our ATV in different tolerance 
applications, we present three examples with dimensional tolerance, positional tolerance 
and non-uniform profile tolerance specifications respectively. Through these examples, 
we highlight 1) how containment fitting is used for part tolerance conformance check, 2) 
how the ATV is used for quantitative evaluation of manufactured part dimensional 
quality, and how well the manufactured part fits into the design specified tolerance zone. 
We will also compare our method with other methods in inspection data analysis. 

 

Nominal point q
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Offset 
distance d

Nominal 
geometry
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zonen

Nominal point q

Synthetic 
inspection point ps

Offset 
distance d

Nominal 
geometry

Tolerance 
zonen

Figure 7 Synthetic inspection point creation 

In order to have a ground truth for evaluating these methods, we used the synthetic 
inspection points. These synthetic points were created from the offsetting of nominal 
points by a random distance d (Figure 7). For each nominal point q, we find its normal 
direction n  on the nominal surface and its tolerance δ. So a synthetic point, ps, from a 
nominal point q, can be obtained from a deviation coefficient c and a random function r. 
Mathematically, it can be represented as  

rncqps *** δ+=       EQ. 6 

Here C is an adjusted deviation coefficient based on the maximum sample r value so that 
the maximum deviation from the nominal model is either δ**nc+q  or δ** ncq − . 
When deviation coefficient C=0, the synthetic points lie exactly on the nominal shape. As 
deviation coefficient C increases, the synthetic points deviates more from the nominal 
shape. When deviation coefficient C=0.5, the synthetic points are just within the 
tolerance zone. When the deviation coefficient C>0.5, some of the synthetic points are 
outside of the tolerance boundaries. 

In the rest of this section, we describe the following: 

• examples of different tolerance specifications used in this study, 
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• results of simplex-containment fit on these examples, 

• comparison of iso-surface and the calculated ATV, 

• further discussion on the choice of containment fit objective functions and the initial 
position for ATV calculation. 

5.1 Description of three examples of different tolerances 

We first describe the three tolerance examples. We then describe how containment fit and 
ATV were used to in part quality inspection analysis. All the tolerance examples 
presented in this paper has two or three degrees of freedom. However, the methodology 
developed in this paper is applicable to 3D examples of more degrees of freedom. 

5.1.1 Example 1 Dimensional tolerance for a hole diameter 

A 2D hole with diameter 4.0 and dimensional tolerance [-0.4, 0.4] is shown in Figure 8.a. 
Shown in Figure 8.b is a synthetic inspection data fitting into the tolerance zone. In this 
example, there are 100 synthetic inspection points. 

(a) Nominal shape and 
dimensional tolerance zone

(b) Inspection data from 
manufactured shape

4.00.4 ±φ

Tolerance zone

4.00.4 ±φ

Tolerance zone

Figure 8 Hole dimensional tolerance 

5.1.2 Example 2 Positional tolerances on 4 holes 

Figure 9 shows a four-hole positional tolerance at maximum material condition, a 
classical example in simultaneous tolerance control. The four holes have diameter 4.0. 
The manufactured four holes should simultaneously fit into a tolerance zone. In this 
example, there are 400 synthetic inspection points. 
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Figure 9 Positional tolerance for four holes 

5.1.3 Example 3 Non-uniform profile tolerances 

Figure 10 shows a dovetail part used in an aircraft engine. To ensure the even load among 
the pressure surfaces for the dovetail, there is a tighter profile tolerance on the pressure 
surface (0.001 mil). For the non-critical surfaces, the profile tolerances are relatively 
looser. It should be noted that the specific tolerance values in Figure 10 have been altered 
from the true values used in dovetail manufacturing. In this example, there are 300 
synthetic inspection points. The original geometric entities in the surface profile are 
either an arc or a straight line. We constructed a NURBS curve through these lines and 
arcs. We then associated each tolerance with a parametric segment in the NURBS curve. 
Thus, we have a parametric representation of tolerance zone. 

.001

.001 .001

.001

.002

Others: 0.004

.001

.001 .001

.001

.002

Others: 0.004

(a) 3D solid Model (b) Non-uniform tolerance band
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6

Figure 10 Non-uniform profile tolerances 

5.2 Simplex-Containment fit  

5.2.1 Results of simplex-containment fit 

Non-uniform profile tolerance 

We selected the non-uniform profile tolerance (Figure 10) as an example for comparing 
containment fit, least-squares fit and mini-max fit since it is the most complex one out of 
the three tolerance examples. In this example, the λ=0.001 was chosen for our simplex 
method. We tested these methods under different initial positions to examine the 
robustness of various methods. The points at different initial positions were created by 
the transformation of synthetic points. The synthetic points were created in the nominal 
geometry’s coordinate system (EQ.7). The transformation (x, y, θ) is a point in the 
transformation space, representing the amount of translation in x-axis and y-axis and the 
rotation θ around z-axis applied upon the synthetic points. 
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Three methods, total least-squares fit, mini-max fit, and containment fit were used to 
check if a given inspection data meets the specified tolerances. The specific test examples 
include c=0.40, 0.48, 0.499, and 0.51. We also created synthetic points from nominal 
geometry of selected particular tolerance bands (Figure 10). 

Table 1Testing results at initial condition (0, 0, 0) 

Test Cases Expected result LS fit Mini-max fit Simplex-
Containment fit 

0.4 random Y Y Y Y 

0.48 random Y N Y Y 

0.499 random Y N N Y 

0.51 random N N N N 

0.48 – 1 Y N Y Y 

0.48 –6 Y Y N Y 

0.48 –1- 6 Y N N Y 

 
Table 2 Testing results at initial condition (0.001, -0.001, 1) 

Test Cases Expected result LS fit Mini-max fit Simplex-
Containment fit 

0.4 random Y Y Y Y 

0.48 random Y N Y Y 

0.499 random Y N N Y 

0.51 random N N N N 

0.48 - 1 Y N Y Y 

0.48 –6 Y Y N Y 

0.48 –1- 6 Y N N Y 

 
Table 3 Testing results at initial condition (0.005, -0.005, 5) 

Test Cases Expected result LS fit Mini-max fit Simplex-
Containment fit 
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0.4 random Y Y Y Y 

0.48 random Y N Y Y 

0.499 random Y N N Y 

0.51 random N N N N 

0.48 - 1 Y N Y Y 

0.48 –6 Y Y N Y 

0.48 –1- 6 Y N N Y 

 

We listed the results from the three methods under different initial conditions in Table 1, 
Table 2, and Table 3.  The (x, y, θ) for three initial conditions are (0, 0, 0), (0.001, -0.001, 
1*PI/180) and (0.005, -0.05, 5*PI/180). In all the three tables, Column 1 refers to the 
deviation coefficient C. For example, “0.4 random” refers to points are randomly created 
for all the tolerance bands. “0.48 –1-6” refers to points are randomly created only for 
tolerance band 1 and band 6 and points in the other tolerance bands remain nominal. 
Column 2 lists the expected part conformance results. That is, when the deviation 
coefficient C is smaller than 0.5, the part is expected to pass the tolerance test. When C is 
larger than 0.5, it is expected to fail in the tolerance test. Column 3, Column 4 and 
Column 5 list the results obtained from three best-fit methods: least-squares, mini-max, 
and containment fit. 

As the results in the three tables (Table1, Table2, Table3) show, under various initial 
conditions, only containment fit using a simplex optimization method gives results 
consistent with the expected results. Both total least-squares and mini-max fitting give 
false pass/fail part conformance checks in some cases. The least-squares method led to 
false results when the c is 0.48 and 0.49 for all tolerance bands, and for the case when 
there are deviations only at band 1 and band 6. Likewise, the mini-max fit method created 
false results when the c is 0.499 under all three initial conditions, and the cases when 
there are deviations only at band 1 and band 6, or only at band 6. 

Table 4 Containment function evaluation times 

Test Cases W/O LF FIT W LS FIT 

0.4 random 109 22 

0.48 random 134  34 

0.499 random 158 64 

0.51 random 251 148 

0.48 - 1 114 33 

0.48 –6 100 16 

0.48 –1- 6 153 49 
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In the iterative simplex search process, the time of calculating the objective function from 
an inspection point to nominal geometry is large. So we compare the objective function 
invoking times during the simplex converging process. The number of containment 
function calculation times in the simplex method with and without the initial least-
squares fit is shown in Table 4 for the initial condition (0.005, -0.05, 5). With or without 
the initial least squares best fit, simplex method gave the correct results. As revealed in 
this table, when the initial position is far off from the nominal shape, a least squares fit in 
combination with a simplex fit would reduce the number of times it needs for the simplex 
method to converge.  

Position Tolerance 

To further evaluate the iterative times in simplex search for different manufactured 
shapes, we examined the method for the four-hole position tolerance at maximum 
material condition (Figure 9). 

Table 5 shows how the simplex method converges for different manufactured shapes (i.e. 
with different deviations from nominal shape) and at different initial position for the 
positional tolerance example. During the simplex search process, we set the step length to 
be 0.01 and terminating tolerance (the difference of objective function values at simplex 
vertices) ftol=1.0e-8. Table 5 lists the times of containment function calculation it takes 
for a simplex method to converge. The numbers with asterisk (*) sign mean that a 
simplex re-initialization process was invoked. The times are the combined containment 
function invoking times. The initiation condition listed in the Column 1 in the table is a 
point in the transformation space. That is, a transformation is applied to the synthetic 
points so they are away from the tolerance zone. The results in this table show, as the 
manufactured part moves further away from tolerance zone, more time it takes for the 
method to converge. When the part is out of tolerance specification, it takes significantly 
more times to converge. 

Table 5 Containment function evaluation times in simplex-containment fit 

Initial condition Nom C=0.40 C=0.48 C=0.499 C=0.60 

(0,0,0) 2 10 24 31 589* 

(0.001, -0.001, 1) 12 40 65 66 702* 

(0.002, -0.002, 2) 18 36 50 51 417* 

(0.003, -0.003, 3) 21 44 46 50 477* 

(0.004, -0.004, 4) 27 64 78 76 572* 

(0.005, -0.005, 5) 31 86 96 90 654* 

(0.005, -0.05, 5) 27 87 94 87 501* 

(0.005, 0.005, 5) 58 383* 560* 348 718* 
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5.3 ATV calculation in transformation space 

5.3.1 ATV computing 

To further quantify the part dimensional quality and examine how well the manufactured 
part fits within the design tolerance zone, we present the results of using iso-surfaces and 
ATVs for dimensional quality analysis. 

Figure 11 shows the rendered image and wire-frame image of the nominal shape’s ATV 
for the hole’s diameter tolerance. Figure 12 shows the iso-surfaces for a variety of holes 
with different deviations from the nominal shape. C is the deviation coefficient, changing 
from 0 to 0.60. The containment function values of the iso-surfaces are 0.075131, 
0.56447, 0.000937 and 0.000000.  The last iso-surfaces and the enclosed area at column 
f=0.000000 corresponds to the ATV shapes. We used 20*20*20 voxels in the (x, y, θ) 
transformation space (with x ranging in [-0.05, 0.05], y ranging in [-0.05, 0.05] and θ 
ranging in [-0.007, 0.007]) to visualize the iso-surface and the ATV. As it is shown in 
Figure 12, the nominal shape has a much larger ATV than the manufactured shape does. 
Since the shape is a 2D hole, there are only two effective degrees of freedom. Due to the 
synthesized shape is close to a circle, so the rotation around the hole center does not 
change the iso-surface. 

Figure 13 shows the rendered image and wire-frame image of the nominal shape’s ATV 
for the four-hole position tolerance. Figure 14 shows a set of iso-surfaces for shapes with 
different deviation coefficients C=0.00, 0.40, 0.48, 0.499, and 0.60. The respective 
objective functions are 0.177156, 0.121000, 0.007628, and 0.000000. The last iso-
surfaces and the enclosed area at column f=0.000000 corresponds to the ATV shapes. We 
also used 20*20*20 voxels in the transformation space with x ranging in [-0.05, 0.05], y 
ranging in [-0.05, 0.05] and θ ranging in [-0.007, 0.007] to visualize the iso-surface and 
the ATV. 

Figure 15 shows the rendered image and wire-frame image of the nominal shape’s ATV 
for the four-hole position tolerance.  Figure 16 shows a set of iso-surfaces for shapes with 
different deviation coefficients C=0.00, 0.40, 0.48, 0.499, and 0.60. The respective 
objective functions are 0.000328, 0.000049, 0.000010, and 0.000000. The last iso-
surfaces and the enclosed area at column f=0.000000 corresponds to the ATV shapes. We 
used 16*16*16 voxel in the transformation space with x ranging in [-0.0016, 0.00016], y 
ranging in [-0.0016, 0.0016], and θ ranging in [-0.0032, 0.0032] to visualize the iso-
surface and the ATV. As it is shown in the figure, the nominal shape’s iso-surface is 
larger than any other surfaces at the same iso-surface value. Likewise, the admissible iso-
surface (in the last column) for the nominal shape is also larger than all other shapes. The 
admissible iso-surface when c is 0.51 is null, which indicated that the admissible volume 
is null and the part is not conformal to tolerance specifications. 
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Beside the iso-surface calculation for the containment function and the ATV modeling, 
we also quantitatively compared the boundary boxes of the ATVs (minimum and 
maximum values along the three axes). They are listed in Table 6, Table 7, and Table 8. 
These three tables are respectively corresponding to the tolerances in the three examples. 
As revealed in these three tables, as the deviation coefficient increases, the minimal 
values of the ATV become smaller and the maximum values of the ATV become larger. 
The distance between the minimal and maximum values along each axis is getting 
smaller as the deviation coefficient C increases. Thus, we can use ATV to characterize 
how far manufactured shape deviates from nominal shape w.r.t the tolerance zone. That is 
to say, when a manufactured shape deviates more from the nominal shape, the ATV 
becomes smaller. Note, in some adjacent rows (for example, when C=0.48 and C=0.499 
in Table 6), the mini-max values are the same. This is due to the transformation space 
sampling resolution. 

Table 6 Mini-max values of ATV for a dimensional tolerance 

X Y Z C 

min max min Max Min max 

0.00 -0.037500 0.043750 -0.037500 0.043750 -0.007000 0.007000 

0.40 -0.006250 0.006250 -0.006250 0.006250 -0.007000 0.007000 

0.48 -0.000000 0.000000 -0.000000 0.000000 -0.007000 0.007000 

0.499 -0.000000 0.000000 -0.000000 0.000000 -0.007000 0.007000 

 
Table 7 Mini-max values of ATV for a positional tolerance 

X Y Z C 

min max min max Min max 

0.00 -0.031250 0.037500 -0.031250 0.037500 -0.005250 0.006125 

0.40 -0.006250 0.006250 -0.000000 0.006250 -0.000875 0.001750 

0.48 -0.000000 0.000000 -0.000000 0.000000 -0.000000 0.000000 

0.499 -0.000000 0.000000 -0.000000 0.000000 -0.000000 0.000000 

 
Table 8 Mini-max values of ATV for a profile tolerance 

X Y Z C 

min max min max Min max 

0.00 -0.001000 0.001000 -0.000600 0.000602 -0.001201 0.001201 
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0.40 -0.000200 0.000200 -0.000000 0.000046 -0.000401 0.000001 

0.48 -0.000000 0.000000 -0.000000 0.000010 -0.000001 0.000001 

0.499 -0.000000 0.000000 -0.000000 0.000000 -0.000000 0.000001 

 

Figure 11 ATV for the dimensional tolerance 

 

 

(a) ATV for nominal shape (b) ATV for manufactured shape
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Figure 12 Iso-surfaces in transformation space for a dimensional tolerance 
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Figure 13 ATV for the positional tolerance 
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Figure 14 Iso- surfaces in transformation space for positional tolerances  
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Figure 15 ATV for the profile tolerance 
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Figure 16 Iso-surfaces in transformation space for profile tolerances 

5.4 Further discussions on containment fit and ATV calculation 

We have examined how to use containment fit and ATV for inspection data analysis. We 
then further experimentally evaluated 1) the impact of different objective functions on the 
containment fit and iso-surfaces in the transformation space, and 2) the effect of the 
initial position of an inspection data set on the ATV. 
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Different objective functions (different m) lead to the same result, even though the iso-
surface is different when the objective function is larger than zero. However, the shape of 
the ATVs remains the same. 

Table 9 compares the containment function invoking times for different objective 
functions, respectively m=1, 2 and 3 for EQ.3 for the four-hole position tolerance 
example. We compared the computing times for two sets of shapes with deviation 
coefficients C=0.48 and C=0.499. There are no major differences in terms of the 
computing times. Even though, with the increased order of m, the gradient function 
becomes steeper which would be less likely for the simplex search to get stuck in a local 
neighborhood. For example, when C=0.48, m=2 at initial condition (0.005, 0.005, 5), the 
re-initialization process was invoked. After the re-initialization, it took 27 times for the 
simplex iteration process to terminate. 

 
Table 9 Different objective functions for simplex-containment fit 

Initial 
condition 

C0.48-
m=1 

C0.48-
m=2 

C0.48-
m=3 

C0.499-
m=1 

C0.499-
m=2 

C0.499-
m=3 

0 31 24 24 33 31 33 

(0.001, -
0.001, 1) 

66 65 64 164 66 66 

(0.002, -
0.002, 2) 

51 50 50 101 51 51 

(0.003, -
0.003, 3) 

50 46 60 73 50 59 

(0.004, -
0.004, 4) 

76 78 60 74 76 74 

(0.005, -
0.005, 5) 

90 96 70 70 90 77 

(0.005, -
0.05, 5) 

87 94 92 70 87 90 

(0.005, 
0.005, 5) 

348 560-27 109 71 348 124 

 

30 



 

 

m=3

m=1

m=1

f 0.0000000.0179860.0513160.082645

m=3

m=1

m=1

f 0.0000000.0179860.0513160.082645

Figure 17 Iso-surfaces for different objective functions 

 

Figure 17 shows the iso-surfaces when C=0.40 for a set of different objective functions. 
As predicted, higher m leads to a larger gradient. It is exhibited in the figure as the large 
deviations of the iso-surface shapes between two adjacent objective function values. 
Corresponding to EQ.3, m=1, 2, 3 are listed in the 1st column. The objective function 
values are 0.082645, 0.051316, 0.017986 and 0.0000000. As expected, the ATVs are the 
same for different objective functions. In all three cases when m=1, 2, 3, the boundary 
boxes of the ATVs are the same, with x ranging in [-0.000200, 0.000200, y ranging in [-
0.000200, 0.000200], θ ranging in [-0.000400,0.000800]. The experiment indicates that 
the higher m is, the larger gradient is and the less likely we need to re-initialize the 
simplex during the iteration process. 
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Figure 18 Iso-surfaces at different initial conditions 
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Figure 18 Shows a set of iso-surface and ATV for the four holes when C=0.40 at a 
variety of initial positions. These initial positions are the positions of the four holes from 
the initial position with a translation and rotation at (0, 0, 0), (0.0001, -0.0001, 0.1), 
(0.0005, -0.0005. 0.5) and (0.0005, -0.0005. 0.5). As shown in this figure, inspection data 
at different initial positions do not change the shape of the iso-surface or ATV, even 
though the ATV position and orientation may change. In this particular case, the iso-
surface is moving along the negative axis of angle theta in the transformation space. 

6 Conclusions 
This paper presents a new approach for inspection data analysis based on a novel 
concept, admissible issues in coordinate 
metrology, qualitative part conformance check and quantitative quality evaluation, are 

lysis 
methods often do not produce correct results. An ATV is an intrinsic property between 

ons and the manufactured part shape. It is invariant to the 
nate system for the measurement data. In addition, the size of 

hough the 

 

a, 2d edition, 1986. 

transformation volume. Two basic analysis 

studied from the perspective of admissible transformation. Theories and algorithms on 
how to compute and apply the ATV for inspection data analysis are presented. 

Three examples involving hole diameter, positional tolerance, and non-uniform profile 
tolerances are presented. Experimental results on these examples demonstrate that ATV 
provides an effective means for inspection data analysis. It is especially useful for the 
inspection of shapes with complex tolerance zones where many traditional data ana

design tolerance specificati
objective function or coordi
ATV in the transformation space is indicative of the amount of deviation between the 
nominal shape and the manufactured part shape. It is particularly effective for complex 
shape gauging when conventional minimum tolerance zone calculation is not applicable. 

A potential challenge to ATV computing is with “floating” tolerance zones such as a 
cylindricity tolerance, in which the specific tolerance zone is not defined even t
radii difference is defined. Our future work is to adopt a scalable representation of 
tolerance zones to address this kind of issues. 
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