
Triangulation-based isogeometric analysis of the
Cahn–Hilliard phase-field model

Ruochun Zhang, Xiaoping Qian ∗

Department of Mechanical Engineering,
University of Wisconsin-Madison,

Madison, WI 53706 - 1572

August 15, 2019

Abstract

This paper presents triangulation-based Isogeometric Analysis of the Cahn–Hilliard
phase-field model. The Cahn–Hilliard phase-field model is governed by a time-dependent
fourth-order partial differential equation. The corresponding primal variational form
involves second-order operators, making it difficult to be directly analyzed with tra-
ditional C0 finite element analysis. In this paper, we construct C1 Bernstein-Bézier
simplicial elements through macro-element techniques, including various triangle-split
based macro-elements in both 2D and 3D space. We extend triangulation-based iso-
geometric analysis to solving the primal variational form of the Cahn–Hilliard equa-
tion. We validate our method by convergence analysis, showing the nodal and degree-
of-freedom advantages over C0 Finite Element Analysis. We then demonstrate de-
tailed system evolution from randomly perturbed initial conditions in periodic two-
dimensional squares and three-dimensional cubes. We incorporate an adaptive time-
stepping scheme in these numerical experiments. Our numerical study demonstrates
that triangulation-based isogeometric analysis offers optimal convergence and time step
stability, is applicable to complex geometry and allows local refinement.

Keywords: Isogeometric analysis, triangulation, Bernstein-Bézier elements, Cahn-Hilliard
equations, phase-field model, C1 element

1 Introduction

Isogeometric Analysis (IGA) has become an established numerical method for solving Partial
Differential Equations (PDEs) in which the same basis functions are used both to represent

∗qian@engr.wisc.edu

1

the geometric models and to approximate the state fields[1]. Compared with the traditional
Finite Element Analysis (FEA), IGA not only allows the exact representation of the geometry
of computational domains, but also features C1 and higher-order continuity, leading to several
advantages in numerical analysis such as numerical accuracy on a per-node basis.

IGA brings new possibilities in solving high-order PDEs, with the governing equation
of the Cahn–Hilliard phase-field model being one of them. The Cahn–Hilliard phase-field
model can be derived from the free energy of an isotropic system of non-uniform composi-
tion or density[2]. This model replaces sharp interfaces by thin transition regions where the
interfacial forces are smoothly distributed[3]. As such, by using the Cahn–Hilliard phase-
field model the need for boundary tracking and mesh moving in certain physics problems
is eliminated. Over the years, the Cahn–Hilliard phase-field model has seen its usage ex-
tended considerably, serving as a numerical approach in the simulation of two-phase flows,
microstructures with elastic inhomogeneity, tumor growth etc., as well as in areas such as
image inpainting and topology optimization[4].

Both FEA and IGA based numerical approaches have been developed for solving the
Cahn–Hilliard equation. Since the primal variational form of the Cahn–Hilliard equation has
second-order operators, it is not directly solvable with C0 FEA. A variety of methods have
been put forward for addressing this issue, notably the mixed method[5], the discontinuous
Galerkin method[6] and the continuous/discontinuous Galerkin method[7]. In IGA however,
the primal variational form can be used directly to obtain the solution of the phase-field
model. For example, Non-Uniform Ration B-spline (NURBS) based IGA of the Cahn-Hillard
equation is given in [3, 8]. Comparison of the advantages and disadvantages of various
C0 and C1 spatial discretizations is given in [9, 10]. While being a powerful modeling
tool, NURBS generally cannot achieve C1-continuous parameterization of complex topology
without incurring extraordinary nodes. Due to the tensor-product nature of NURBS, local
refinement is also challenging. Alternative IGA techniques such as T-spline-based IGA have
their own complications, including degenerated continuity[11, 12].

Recently triangulation-based Isogeometric Analysis (tIGA) has emerged as a powerful
tool for both shape modeling and numerical analysis. Most noticeably in [13], a generalized
framework of tIGA is introduced. A globally Cr-continuous basis for representing geometry
with exact recovery of its NURBS boundary can be constructed in different spaces, including
polynomial macro-element spaces, Powell–Sabin (PS) macro-element spaces[14] and Clough–
Tocher (CT) macro-element spaces[15]. In addition, [16] shows optimal convergence rates
can be achieved in tIGA with several Poisson and linear elasticity problems as examples.
Then a three-dimensional extension with Bézier tetrahedra is demonstrted in [17]. [18] fur-
ther introduces tIGA shape optimization, and [19] adds another application by developing
Kirchhoff–Love shell elements in the context of tIGA. In these works, apart from the flexi-
bility in representing domains of complex topology and higher order of continuity, tIGA also
allows local refinement, thus overcoming the limitations of NURBS-based IGA mentioned
above.

In this paper, we apply C1 tIGA to solve the Cahn–Hilliard equation. We use Bernstein-
Bézier triangles or tetrahedra to construct the computational domain for solving the primal

2

variational Cahn–Hilliard equation. This triangular mesh, consisting of various quadratic,
cubic and quintic elements, has global C1 continuity and the construction scheme has been
automated. We test the tIGA on a model problem with manufactured solution and examine
its convergence rate. A comparison with Lagrange polynomials based FEA in terms of
convergence rates and numerical efficiency is made. We then extend this IGA method to
several Cahn-Hillard modelled problems in both 2D and 3D. With numerical techniques such
as generalized-α method and adaptive time stepping method, the phase separation process
in two and three dimensions governed by the Cahn–Hilliard equation is simulated.

The remainder of the paper is organized as follows. The basics on B-splines and Bézier
triangles are briefly described in Section 2. In Section 3, we outline the Cahn–Hilliard
phase-field model and relevant numerical methodologies. The construction of C1-continuous
meshes and the numerical implementation are detailed in Section 4. The manufactured
solution based convergence analysis is conducted in Section 5. In Section 6 we present
a variety of physically meaningful and numerically representative test examples. Finally,
conclusions are drawn in Section 7.

2 B-splines and Bézier triangles

In this work, we use Bézier triangles and tetrahedra to parametrize the computational domain
and conduct isogeometric analysis. For completeness of the paper, a brief introduction of
B-splines, Bézier triangles and tetrahedra is given in this section. More details on Bézier
triangulations can be found in [20, 21, 22]. and its usage in isogeometric analysis in [16, 17].

2.1 B-splines

A B-spline curve of degree d and n+ 1 control points is defined as

S(u) =
n∑
i=0

ciRi,d(u), (1)

where ci is the i-th control point and Ri,d is the i-th B-spline basis function for a given
parameter u.

2.2 Bézier triangles

A single span of a B-spline curve is a Bézier curve which can be defined by Bernstein
polynomials. The d+ 1 Bernstein polynomials of degree d read

Bi,d(ξ) =
d!

i!j!
ξi(1− ξ)j, | i |= i+ j = d. (2)

3

Accordingly, a Bézier patch can also be defined by bivariate Bernstein polynomials. The
d-th degree bivariate Bernstein polynomial can be defined as

Bi,d(ξ) =
d!

i!j!k!
γi1γ

j
2γ

k
3 , | i |= i+ j + k = d, (3)

where i represents a triple index (i, j, k) and (γ1, γ2, γ3) is the barycentric coordinate of a
point ξ in a domain triangle τ = {v1,v2,v3}. Then any point ξ = (ξ1, ξ2) ∈ R2 in τ can be
written in the form

ξ = γ1v1 + γ2v2 + γ3v3, γ1 + γ2 + γ3 = 1. (4)

A triangular Bézier patch is defined as

b(ξ) =
∑
|i|=d

piBi,d(ξ), (5)

where p represent control points of the patch.
A rational Bézier triangle can be similarly defined as

b(ξ) =
∑
|i|=d

piφi,d(ξ),

φi,d =
wiBi,d∑
|i|=dwiBi,d

=
wiBi,d

w
,

(6)

where wi is the weight of control point pi.
With bivariate Bernstein polynomials, we can also define a polynomial function f(ξ) of

degree d on a triangle τ with vertices v1,v2,v3 as

f(ξ) =
∑
|i|=d

biφi,d(ξ), (7)

where bi (or bijk) are Bézier ordinates of f(ξ). The set of domain points associated with
them is given as

Dd,τ =

{
qijk =

iv1 + jv2 + kv3

d
, i+ j + k = d

}
. (8)

For two triangles τ = {v1,v2,v3} and τ̃ = {v4,v3,v2} who share a common edge, two
polynomials f and f̃ of degree d join r times differentiably across this edge if and only if[20]

b̃ρ,j,k =
∑

µ+ν+κ=ρ

ρ!

µ!ν!κ!
bµ,k+ν,j+κγ

µ
1 γ

ν
2γ

κ
3 , j + k + ρ = d, ρ = 0, ..., r, (9)

where γ1, γ2, γ3 are the barycentric coordinates of vertex v4 with respect to triangle τ . This
continuity relation suggests that, as illustrated in Fig. 1, when Cr continuity is enforced,
the values associated with the white nodes are determined by the values associated with the
red nodes through this constraint. The shaded areas in Fig. 1 indicate the triangles with
shared edges where the continuity constraint is imposed for C1 smoothness. Construction

4

(a) Two domain triangles with C1 con-
straints on Bézier ordinates.

(b) Two Bézier patches with C1 continuity.

Figure 1: Triangular Bézier patches with C1 smoothness. The dependent nodes (white
solids) are determined by the free nodes (red solids) through the continuity constraints. The
shaded areas indicate the triangles with shared edges where the constraints are imposed. As
can be seen in (b), the control points in each shaded triangle pair are coplanar. For better
visualization, the control net is shifted up slightly in (b).1

of such dependency plays an important role in tIGA. In this work we use macro-element
technique[13] to generate C1-continuous mesh for solving the phase-field problem.

2.3 Bézier tetrahedra

As explained in [17], by extending the bivariate case we have the trivariate d-th degree
Bernstein polynomial

Bi,d(ξ) =
d!

i!j!k!l!
γi1γ

j
2γ

k
3γ

l
4, | i |= i+ j + k + l = d, (10)

where i represents a triple index (i, j, k, l) and (γ1, γ2, γ3, γ4) is the barycentric coordinate of
a point ξ in a triangle τ = {v1,v2,v3,v4}. Then any point ξ = (ξ1, ξ2, ξ3) ∈ R3 in τ can be
written in the form

ξ = γ1v1 + γ2v2 + γ3v3 + γ4v4, γ1 + γ2 + γ3 + γ4 = 1. (11)

A rational Bézier tetrahedron and its basis are defined similarly as in Eq. 6. The

1Reprinted from Computer Methods in Applied Mechanics and Engineering, Vol 297, Songtao Xia, Xilu
Wang, and Xiaoping Qian, Continuity and convergence in rational triangular Bézier spline based isogeometric
analysis, Pages 292–324, Copyright 2015, with permission from Elsevier.

5

(a) Domain points of a Bézier tetrahedron. (b) Two domain tetrahedra with C1 con-
straints on Bézier ordinates. The Bézier
ordinates corresponding to the dependent
nodes (blue) are determined by the free
nodes (red) through the continuity con-
straints.

Figure 2: Domain points and continuity constraints of Bézier tetrahedra.2

associated domain points of a tetrahedron τ are

Dd,τ =

{
qijkl =

iv1 + jv2 + kv3 + lv4

d
, i+ j + k + l = d

}
. (12)

For two tetrahedra τ = {v1,v2,v3,v4} and τ̃ = {v5,v2,v4,v3} who share a common
face, two polynomials f and f̃ of degree d join r times differentiably across this face if and
only if[20]

b̃ρ,i,j,k −
∑

µ+ν+κ+δ=ρ

ρ!

µ!ν!κ!δ!
bµ,i+ν,j+κ,k+δγ

µ
1 γ

ν
2γ

κ
3γ

δ
4 = 0,

i+ j + k + ρ = d, ρ = 0, ..., r,

where γ1, γ2, γ3, γ4 are the barycentric coordinates of vertex v5 with respect to tetrahedron
τ . As presented in Fig. 2, the values associated with the blue nodes are determined by the
values associated with the red nodes through this constraint if one is to impose Cr constraint.
In our three-dimensional numerical examples such smooth Bézier tetrahedron is used.

2Reprinted from Computer Methods in Applied Mechanics and Engineering, Vol 316, Songtao Xia and
Xiaoping Qian, Isogeometric analysis with Bézier tetrahedra, Pages 782–816, Copyright 2017, with permission
from Elsevier.

6

3 The Cahn–Hilliard phase-field model

This section describes the phase-field model[2] and our Galerkin discretization.

3.1 The Cahn–Hilliard equation

We follow the phase-field numerical model proposed in [3]. The governing equations of our
phase-field model is the Cahn–Hilliard equation

∂c

∂t
= ∇ · (Mc∇(f ′c − λ∆c)) in Ω, (13.1)

c = g on Γg, (13.2)

Mc∇(f ′c − λ∆c) · n = 0 on Γh, (13.3)

Mcλ∇c · n = 0 on Γ, (13.4)

c(x, 0) = c0(x) in Ω, (13.5)

where c is the unknown chemical concentration, Mc is the mobility, f ′c is related to the deriva-
tive of chemical free energy Ψc, λ is related to the transient layer thickness and the derivative
of surface free energy Ψs given in Eq. 15, n is the direction normal to the boundaries and
Γ = Γg ∪ Γh.

According to the original derivation of the Cahn–Hilliard equation[2, 23], we model the
chemical free energy Ψc and the surface free energy Ψs as

Ψc = NkT (clnc+ (1− c)ln(1− c)) +Nωc(1− c), (14)

Ψs = Nω
1

2
λ‖∇c‖2, (15)

where N is the number of molecules per unit volume, k is the Boltzmann’s constant, ω is an
interaction energy, and

ω = 2kTc, (16)

with Tc being the critical temperature at which the two phases attain the same composition.
If Tc/T > 1, the chemical free energy will drive phase separation as Ψc in this case has two
local minimums. As such, f ′c is given by

f ′c = Ψc′/(Nω) =
T

2Tc
ln

c

1− c
− 2c+ 1. (17)

For a better understanding of the system evolution, we model Mc using the degenerate
mobility Dc(1− c)[5], where D is a constant.

In order to carry out the computation in a dimensionless space the following substitution

7

is enforced:

x∗ = x/L0,

∇∗ =
∂

∂x∗ = L0 · ∇,

t∗ = t/T0,

(18)

where L0 and T0 are the characteristic length scale and time scale respectively. Plug them
into Eq. 13.1 and we have

1

T0

· ∂c
∂t∗

=
λ

L4
0

· ∇∗ · (Dc(1− c)∇∗(f ′c ·
L2

0

λ
−∆∗c)). (19)

Then, we choose T0 = L4
0/(Dλ) to integrate the mobility constant D into T0, and we omit

superscript that denotes a dimensionless space, then Eq. 13.1 becomes dimensionless:

ċ = ∇ · (mc∇(pc −∆c)), (20)

where ċ = ∂c/∂t, pc = f ′c · L2
0/λ and it is referred as the dimensionless chemical potential,

mc = c(1− c) and it is referred as the dimensionless mobility. We remark that all reported
results in the dimensionless space can be scaled back to the physical space through L0 and
T0.

In our numerical experiments, we assume Tc/T = 1.5[7], so the concentration equilibrium
with minimal system energy is achieved at c = 0.07 and c = 0.93 (refer to Eq. 17). L2

0/λ
becomes the only parameter that characterize our solution other than boundary conditions.
We refer L2

0/λ as α. Higher α results in a thinner transient layer relative to the length scale
of the computational domain, making numerical experiments more challenging. This effect
is further explained and examined in Section 6.

3.2 Weak form and Galerkin approximation

Assume periodic boundary condition on the domain boundary, and let V be both the weight-
ing function space and the trial function space, the problem then becomes to find c ∈ V s.t.
∀w ∈ V , the following primal variational form of the Cahn–Hilliard equation

G(w, c) =

∫
Ω

w · ċdΩ +

∫
Ω

∇w · (mc∇pc +∇mc∆c)dΩ +

∫
Ω

∆w · (mc∆c)dΩ,

G(w, c) = 0,

(21)

is satisfied.
In order to numerically solve this primal variational form of Cahn–Hilliard equation in a

finite discretized space we use the Galerkin’s approximation. Let Vh be a finite dimensional
subset of V , then the problem becomes to find ch ∈ Vh such that ∀wh ∈ Vh, we have the

8

following:

G(wh, ch) =

∫
Ω

wh · ċhdΩ +

∫
Ω

∇wh · (mh
c∇phc)dΩ

+

∫
Ω

∇wh · (∇mh
c∆c

h)dΩ +

∫
Ω

∆wh · (mh
c∆c

h)dΩ,

G(wh, ch) = 0,

ch =

ndof∑
i

ciψi,

wh =

ndof∑
i

wiψi,

(22)

where ndof is the dimension of the discretized space and ψi are the discretized basis functions.
The presence of second-order operators in Eq. 22 necessitates C1-smooth discretization.

We will describe how we construct such C1 smooth discretization in Section 4.

3.3 Temporal discretization and time stepping scheme

For the temporal discretization of this time-dependent problem we employ the generalized-
α method[24] due to its high-order accuracy in time. For the purpose of addressing the
temporal multi-scale nature of the problem we borrow the adaptive time stepping scheme
from [3], which shares the idea with the embedded Runge–Kutta methods[25], and is shown
to be stable and convenient. For completeness, we briefly introduce those two methods. The
content of this section is from said literature.

Generalized-α method Let Y denote the nodal solution while G denote the nodal
values of the non-linear residual, at each time step, we solve the following system

G(Ẏn+αm ,Yn+αf
) = Mn+αmẎn+αm −N(Yn+αf

) = 0,

Yn+1 = Yn + ∆tẎn + γ∆t(Ẏn+1 − Ẏn),

Ẏn+αm = Ẏn + αm(Ẏn+1 − Ẏn),

Yn+αf
= Yn + αf (Yn+1 −Yn),

(23)

where ∆t is the time step size.
To begin the non-linear iteration at time step n + 1, as the preparation we first set the

predictor

Y
(0)
n+1 = Yn,

Ẏ
(0)

n+1 =
γ − 1

γ
Ẏn.

(24)

9

Then at i-th non-linear iteration we evaluate iterates at α-levels

Y
(i)
n+αf

= Yn + αf (Y
(i−1)
n+1 −Yn),

Ẏ
(i)

n+αm
= Ẏn + αm(Ẏ

(i−1)

n+1 − Ẏn).
(25)

Then solve the following linear system for ∆Ẏ
(i)

n+1

K(i)∆Ẏ
(i)

n+1 = −G(i)(Ẏ
(i)

n+αm
,Y

(i)
n+αf

), (26)

where tangent matrix K(i) is given by

K(i) = αm
∂G(i)(Ẏ

(i)

n+αm
,Y

(i)
n+αf

)

∂Ẏn+αm

+ αfγ∆t

∂G(i)(Ẏ
(i)

n+αm
,Y

(i)
n+αf

)

∂Yn+αf

. (27)

Lastly, we update iterates as

Y
(i)
n+1 = Y

(i−1)
n+1 + γ∆t∆Ẏ

(i)

n+1,

Ẏ
(i)

n+1 = Ẏ
(i−1)

n+1 + ∆Ẏ
(i)

n+1.
(28)

This finishes the non-linear iteration in one time step.
We follow the examples in [3] by setting parameters αm = 5/6, αf = 2/3, γ = 2/3,

and terminating the non-linear iteration when ‖G(i)‖2 < 10−4 · ‖G(0)‖2. In this work, the
linear system in Eq. 26 is solved by MATLAB built-in direct linear solver through matrix
factorization.

Adaptive time stepping scheme We need to select proper strategies to address the
temporal multi-scale nature of the problem. One of the strategies is to change the time step
size by comparing the solution of the aforementioned generalized-α method against that of
the backward-Euler method[3], then adjust the step size for each time step based on its
predecessor by

∆new
t = ∆old

t · ρ(
tol

err
)
1
2 , (29)

where err = ‖Yα − YBE‖∞/‖Yα‖∞, meaning the difference between the generalized-α
solution and the backward-Euler solution. We also follow [3] by setting ρ = 0.9 and tol =
10−3. If err > tol, this time step will be recomputed using ∆new

t ; if err ≤ tol, the solver will
move on to compute next time step with a time step size of ∆new

t .
Another strategy is to control the product of the transient term and the time step size

sufficiently small. So in this case, we can effectively plug err = ∆old
t ‖Ẏα‖∞ in Eq. 29. We

discover that, by setting ρ = 0.9 and tol = 0.002, this time stepping strategy delivers similar
numerical behavior compared to the former one, but does not require the backward-Euler
computation which makes the time step control scheme almost free in computational cost.
In our numerical experiments, we consider those two strategies interchangeable.

10

4 Constructing C1 triangular elements and asembling

Galerkin matrices

In this section, we further detail how we construct C1 simplicial meshes and how we use the
resulting smooth basis to assemble Galerkin matrices.

4.1 Macro-element based construction of C1 simplicial mesh

For simplicity we use a Bézier triangulated uniform grid in a two-dimensional unit square do-
main as an example to describe the construction of C1-continuous Bézier triangular meshes.
The process is similarly followed in [16]. Our approach is to start with a C0-continuous
Bézier mesh, then enforce C1 continuity. As pointed out in [26], the dimension of bivariate
spline spaces of triangulation have dependency on the underlying geometry. To remove this
dependency, we construct our C1-continuous basis in the macro-element space[20, 13]. We
now outline our procedure step by step.

Step 1, construct C0 mesh Fig. 3(a) shows a simple C0 quadratic mesh which can
be comprehended as a triangulated uniform grid in a unit square domain.

(a) C0 quadratic mesh. (b) C0 quadratic mesh after PS split.

Figure 3: C0 Bézier triangular mesh.

Step 2, Powell–Sabin split The mesh in Fig. 3(a) has only C0 continuity. Let Ω
denote a parametric domain, T denote its triangulation and Sd(T) denote the spline space
of piecewise polynomials of degree d over T and furthermore Srd(T) denote that such space
also attains continuity order r over Ω, we aim to construct a S1

d .

11

If we intend to apply Eq. 9 directly a substantial p-refinement is required. Specifically,
it requires a refinement that ensures d ≥ 3r + 2[27]. An alternative is to split each triangle
in T into several micro-triangles before imposing the continuity constraints on the micro-
triangles. The PS split[14] reduces the requirement to d ≥ 9r−1

4
for odd r and d ≥ 9r+4

4

for even r. PS split divides each triangle into six smaller triangles with the centroid point
as the interior split point. Edges are then split by joining the centroid points of adjacent
triangles. Imposing such split yields the mesh in Fig. 3(b), original elements are now called
macro-elements, as opposed to micro-elements.

Step 3, construct C1 mesh Let Dd,T denote the set of all domain points of T , bv
denote the Bézier ordinate of a domain point v ∈ Dd,T . A piecewise polynomial function
f(ξ) ∈ Sd, ξ ∈ R2 can be written in a discretized form with rational C0 Bernstein basis φ
and corresponding nodal ordinates bv

f(ξ) =

ndof∑
i

biφi(ξ) = bTDd,T
φ(ξ). (30)

If instead f ∈ Srd , r ≥ 1, Eq. 30 no longer holds true because we cannot assign arbitrary
values to all coefficients of f but only to those correspond to a determining subset of domain
points, and the remaining coefficients will be determined by them via Eq. 9; when this
subset is the smallest among all possible determining sets we call it a minimal determining
set (MDS) Md,T .

The continuity equation Eq. 9 suggests a linear system

AbDd,T
= 0, (31)

where A is a coefficient matrix governed by the domain connectivity and bDd,T
are Bézier

ordinates for all domain points in Dd,T . The i-th row of A corresponds to the coefficients
in the Bézier ordinates of the i-th constraint equation presented in Eq. 9. The j-th column
in A corresponds to the Bézier ordinate bj. Let m = dim(Srd(T)) and n = dim(S0

d(T)), we
have rank(A) = n−m.

Apply Gauss–Jordan elimination to the linear system Eq. 31 to match each Bézier
ordinates with their governing constraints we can zero out the corresponding items below
and above the diagonal, resulting in[

I(n−m)×(n−m) R(n−m)×m
0m×(n−m) 0m×m

] [
bd(n−m)×1

bfm×1

]
= AbDd,T

= 0, (32)

where bd and bf are the set of dependent and free ordinates, respectively. The m free Bézier
ordinates bf correspond to the domain points inMd,T , we denote these ordinates as bMd,T

.
It then becomes clear that

bDd,T
= CTbMd,T

, (33)

where C =
[
−R(n−m)×m I(n−m)×(n−m)

]
is referred as the continuity matrix. That is, the

12

Bézier ordinates in Dd,T can be transformed from the Bézier ordinates in Md,T with the
continuity matrix C.

Combining Eq. 30 and Eq. 33 yields the following observation:

f(ξ) = bTDd,T
φ(ξ) = bTMd,T

Cφ(ξ) = bTMd,T
ψ(ξ), (34)

where ψ(ξ) = Cφ(ξ). This suggests that a set of Cr-continuous basis functions ψ(ξ) has
been constructed as a linear combination of C0 Bernstein basis φ(ξ) since C implies the
continuity constraints.

The matrix manipulation above serves as a mathematical explanation of MDS construc-
tion and is also a viable way to generate an MDS, but in this work we choose to use the direct
construction method outlined in [20]. In this method, one can directly choose a set of free
domain points based on which all other domain points are determined through continuity
constraints, as demonstrated in Fig. 4. It has been shown in [20] that this method is capable
of generating a plethora of polynomial spaces of different orders of continuity.

Dependent control
points

Free control points

Figure 4: Using PS-split macro-element technique to impose continuity constraints for gen-
erating C1 Bézier triangular meshes. Shaded areas indicate where the continuity constraint
is imposed.3

With Md,T and corresponding ψ(ξ) we have the C1-continuous mesh we need as shown
in Fig. 5. For the three-dimensional tetrahedra we impose Alfeld split before imposing corre-
sponding continuity constraint[28], where a tetrahedron is subdivided into four subtetrahedra
by connecting its barycenter to each of its vertices.

4.2 Numerical implementation of Galerkin matrices

In order to numerically solve the primal variational form in Eq. 22, the discretized basis
functions ψi must have C1 continuity. We have such basis shown in Eq. 34. The residual G
in Eq. 22 is a scalar function but according to the spatial discretization, we can write down
the residual G (as in Eq. 26) in a matrix form explicitly:

G1 =

∫
ψ · ċhdΩ +

∫
∇ψ · α

3
(∇ch − 6ch(1− ch)∇ch)dΩ

+

∫
∇ψ · (1− 2ch)∆ch∇chdΩ +

∫
∆ψ · ch(1− ch)∆chdΩ.

(35)

3Reprinted from Computer Methods in Applied Mechanics and Engineering, Vol 297, Songtao Xia, Xilu
Wang, and Xiaoping Qian, Continuity and convergence in rational triangular Bézier spline based isogeometric
analysis, Pages 292–324, Copyright 2015, with permission from Elsevier.

13

(a) C1 quadratic mesh with PS split.

(b) C1 cubic mesh with PS split.

(c) C1 quintic mesh with no split.

(d) C0 quadratic basis
function.

(e) C1 quadratic basis
function.

(f) C0 cubic basis func-
tion.

(g) C1 cubic basis func-
tion.

(h) C0 quintic basis
function.

(i) C1 quintic basis func-
tion.

Figure 5: C1 Bézier triangular meshes of various degrees and their basis functions. (a),
(b) and (c) show dependent and free nodes with underlying meshes. Each of the larger red
nodes in the centers has its associated basis functions plotted to its right. (d), (f) and (h)
each shows a C0 basis function associated with the corresponding center red node. It has
cross-element continuity but its derivative does not. (e), (g) and (i) each shows a C1 basis
function associated with the corresponding center red node, which is a linear combination
of nearby C0 basis. Its derivative and itself both have cross-element continuity.

14

With the generalized-α time stepping method we have the tangent matrix K given by Eq.
27. The explicit matrix form is

Km
1 =

∫
ψ ·ψTdΩ,

Kk
1 =

∫
∇ψ · (α

3
∇ψT)− 2α∇ψ · (ch∇ψT +∇chψT − (ch)2∇ψT − 2ch∇chψT)dΩ

+

∫
∇ψ · (∇ch∆ψT + ∆ch∇ψT)− 2∇ψ · (ch∇ch∆ψT + ch∆ch∇ψT +∇ch∆chψT)dΩ

+

∫
∆ψ · (ch∆ψT + ∆chψT − (ch)2∆ψT − 2ch∆chψT)dΩ,

K1 = αmKm
1 + αfγ∆tK

k
1.

(36)
In our numerical implementation, we follow a procedure [16] that is similar to traditional

Lagrange polynomials based FE implementation. That is, we first use C0 Bernstein basis for
assembling the matrices and then use the continuity C matrix to obtain the C1 basis based
matricies, a process that has also been used in NURBS-based isogeometric analysis and is
referred to as Bézier extraction technique[29]. Recall Eq. 34, we substitute ψ by Cφ in Eq.
35 and 36 and have

G1 = CTG0C,

K1 = CTK0C,
(37)

where G0 and K0 are the residual vector and the tangent matrix assembled with C0 Bézier
basis, respectively. Their explicit matrix form are Eq. 35 and 36 with ψ replaced by φ,
subscript 1 replaced by subscript 0. In each non-linear iteration, G0 and K0 are assembled,
we then recover G1 and K1 with Eq. 37, solve the system and proceed as described in
Section 3.3.

5 Numerical study of convergence rates

In this section, we adopt a manufactured solution based method [30] to analyze the conver-
gence rate of our isogeometric approach. This method aims to provide reference solutions
for complicated numerical problems where analytical solutions are not available, so it is also
sometimes referred as a synthetic test. Further, we report the convergence comparison with
Lagrange polynomials based FE to demonstrate the distinctive traits and potential numerical
advantages of our approach.

5.1 A test problem with manufactured solution

In our test case we borrow the computational framework from [9] and we conduct our test
computation in a two-dimensional periodic square (0, 1)2, where the manufactured solution

15

takes the following form

ċ−∇(Mc∇(pc −∆c)) = F(x, t),

F(x, t) = ċm −∇(Mc∇(pc −∆cm)),
(38)

or explicitly

F(x, t) = ċm − [(∇cm − 2cm∇cm)(
∂pc
∂c
· ∇cm −∇(∆cm))

+cm(1− cm)(
∂2pc
∂c2
· ∇cm · ∇cm +

∂pc
∂c
·∆cm −∆(∆cm))].

(39)

To comply with the periodic boundary condition, we select our manufactured solution to be

cm(x, t) =
1

2
(2c̄+ bt

2∏
i=1

cos(aπxi)), (40)

where a can be set to satisfy the boundary condition and b is used to control the time scale.
Let L = 1 and Tm = 0.01 denote the dimension of the computational domain and the

final time, respectively, we select a = 6/L and b = 0.3/Tm, start with α = 1 and a uniform
concentration c̄ = 0.5, solve Eq. 38 in one time step, then perform convergence analysis with
meshes of different resolutions and orders. One example of our numerical solution is shown
in Fig. 6, where the solution was obtained with 3200 PS-split quadratic macro-elements
(4800 free nodes).

Figure 6: Numerical solution to Eq. 38. For this specific plot 3200 macro-elements (4800
free nodes) are in use.

16

5.2 The mixed formulation and element comparison

To perform a Lagrange polynomials based FEA with the manufactured solution for compar-
ison we use a mixed form of the Cahn–Hilliard equation

∂c

∂t
−∇ · (Mc∇µ) = F(x, t) in Ω, (41.1)

µ = (f ′c − λ∆c) in Ω. (41.2)

This coupled system of equations has been studied extensively in literature. It introduces
two second-order PDEs by adding an extra field variable µ thus suitable for analysis with C0

basis, which is why we use it for FEA. In our experiment with Lagrange polynomials based
FEA we are using FEniCS solver version 2018.1.0.r2[31].

We give a visual comparison between tIGA elements and FEA elements in Fig. 7. Nat-
urally, almost all nodes in FEA meshes are free expect for those boundary nodes rendered
dependent by the periodic boundary condition. In tIGA meshes dependent nodes are cre-
ated because of enforcing continuity constraints. For the same number of elements, it can
be clearly seen in the figure that these two classes of meshes employ different numbers of
Degrees of Freedom (DoF). This leads to a discrepancy in numerical performance which will
be discussed in the next section.

Remark: In tIGA since we use the primal variational form of the Cahn–Hilliard equa-
tion the number of DoF is the same as the number of free nodes. But in our FEA, there are
2 DoF per free node. Since we consider both free nodes and DoF in our analysis, we note
this fact here to avoid confusion.

5.3 The convergence

We compare the numerical solutions against the manufactured solution. In this work L2

error and H1 error are defined as

‖ch − cm‖L2 =

√∫
[ch − cm]2dV , (42)

‖ch − cm‖H1 =
√
‖ch − cm‖2

L2 + ‖∇(ch − cm)‖2
L2 . (43)

And the element size h is defined as the length of a leg of a triangle macro-element in tIGA
or an element in FEA.

The result of the convergence analysis can be found in Fig. 8, 9 and 10. Table 1 contains
corresponding mesh resolution information of the points used to fit each line in those plots.

Fig. 8 is about the convergence of L2 error in a log–log scale. The 3 plots in the left
column show the convergence of quadratic, cubic and quintic elements, with respect to the
element size h. The 3 plots in the right column show the convergence of these 3 types of
elements with respect to the square root of the total number of free nodes, one type in each
row. From Fig. 8(a) and (d) we see tIGA with quadratic elements shows the convergence

17

(a) C1 quadratic tIGA mesh.

(b) C1 cubic tIGA mesh.

(c) C1 quintic tIGA mesh.

(d) C0 quadratic FEA mesh.

(e) C0 cubic FEA mesh.

(f) C0 quintic FEA mesh.

Figure 7: Comparison of tIGA elements and FEA elements of different orders (with periodic
boundary conditions) used in the convergence analysis. Red dots are free nodes while white
dots are dependent nodes.

18

Table 1: Mesh data used in the convergence analysis. nM stands for the number of macro-
elements; nm stands for the number of micro-elements; ne stands for the number of elements
(in cases without split); nnode stands for the number of free nodes; ndof stands for the number
of DoF.

Element Type Point 1 Point 2 Point 3 Point 4 Point 5

tIGA Quadratic

nM : 2× 202

nm: 12× 202

nnode: 1200
ndof : 1200

nM : 2× 302

nm: 12× 302

nnode: 2700
ndof : 2700

nM : 2× 402

nm: 12× 402

nnode: 4800
ndof : 4800

nM : 2× 502

nm: 12× 502

nnode: 7500
ndof : 7500

nM : 2× 602

nm: 12× 602

nnode: 10800
ndof : 10800

tIGA Cubic

nM : 2× 102

nm: 6× 102

nnode: 600
ndof : 600

NM : 2× 122

nm: 6× 122

nnode: 864
ndof : 864

nM : 2× 152

nm: 6× 152

nnode: 1350
ndof : 1350

nM : 2× 202

nm: 6× 202

nnode: 2400
ndof : 2400

nM : 2× 252

nm: 6× 252

nnode: 3750
ndof : 3750

tIGA Quintic
ne: 2× 82

nnode: 576
ndof : 576

ne: 2× 122

nnode: 1296
ndof : 1296

ne: 2× 152

nnode: 2025
ndof : 2025

ne: 2× 202

nnode: 3600
ndof : 3600

ne: 2× 252

nnode: 5625
ndof : 5625

Lagrange Quadratic
ne: 2× 202

nnode: 1600
ndof : 3200

ne: 2× 302

nnode: 3600
ndof : 7200

ne: 2× 402

nnode: 6400
ndof : 12800

ne: 2× 502

nnode: 10000
ndof : 20000

ne: 2× 602

nnode: 14400
ndof : 28800

Lagrange Cubic
ne: 2× 122

nnode: 1296
ndof : 2592

ne: 2× 152

nnode: 2025
ndof : 4050

ne: 2× 202

nnode: 3600
ndof : 7200

ne: 2× 252

nnode: 5625
ndof : 11250

ne: 2× 302

nnode: 8100
ndof : 16200

Lagrange Quintic
ne: 2× 52

nnode: 625
ndof : 1250

ne: 2× 82

nnode: 1600
ndof : 3200

ne: 2× 102

nnode: 2500
ndof : 5000

ne: 2× 122

nnode: 3600
ndof : 7200

ne: 2× 152

nnode: 5625
ndof : 11250

19

10-2 10-1
10-6

10-4

10-2

100

1.95

3.15

tIGA Quadratic
Lagrange Quadratic

(a)

10-2 10-1
10-6

10-4

10-2

100

3.85

3.84

tIGA Cubic
Lagrange Cubic

(b)

10-2 10-1
10-6

10-4

10-2

100

6.34

6.61

tIGA Quintic
Lagrange Quintic

(c)

20 60 100 140
10-6

10-4

10-2

100

-1.95

-3.15

tIGA Quadratic
Lagrange Quadratic

(d)

20 60 100 140
10-6

10-4

10-2

100

-3.85
-3.84

tIGA Cubic
Lagrange Cubic

(e)

20 60 100 140
10-6

10-4

10-2

100

-6.34

-6.61

tIGA Quintic
Lagrange Quintic

(f)

Figure 8: L2 error plots for elements of different orders. (a), (b) and (c) show error versus
the element size h. (d), (e) and (f) show error versus

√
nnode, the number of free nodes along

each direction.
20

10-2 10-1
10-4

10-3

10-2

10-1

100

1.97
1.96

tIGA Quadratic
Lagrange Quadratic

(a)

10-2 10-1
10-4

10-3

10-2

10-1

100

3.43
2.95

tIGA Cubic
Lagrange Cubic

(b)

10-2 10-1
10-4

10-3

10-2

10-1

100

5.11

5.15

tIGA Quintic
Lagrange Quintic

(c)

20 60 100 140
10-4

10-3

10-2

10-1

100

-1.97
-1.96

tIGA Quadratic
Lagrange Quadratic

(d)

20 60 100 140
10-4

10-3

10-2

10-1

100

-3.43

-2.95

tIGA Cubic
Lagrange Cubic

(e)

20 60 100 140
10-4

10-3

10-2

10-1

100

-5.11

-5.15

tIGA Quintic
Lagrange Quintic

(f)

Figure 9: H1 error plots for elements of different orders. (a), (b) and (c) show error versus
the element size h. (d), (e) and (f) show error versus

√
nnode, the number of free nodes along

each direction.

21

20 40 60 80 100 120140160

10-4

10-2

100

-1.95-3.85

-6.34

-3.15

-3.84

-6.61

tIGA Quadratic
tIGA Cubic
tIGA Quintic
Lagrange Quadratic
Lagrange Cubic
Lagrange Quintic

(a) L2 error plot.

20 40 60 80 100 120140160

10-4

10-3

10-2

10-1

-1.97-3.43

-5.11

-1.96
-2.95

-5.15
tIGA Quadratic
tIGA Cubic
tIGA Quintic
Lagrange Quadratic
Lagrange Cubic
Lagrange Quintic

(b) H1 error plot.

Figure 10: Summary of L2 and H1 error analysis. The error is plotted against
√
ndof , the

number of DoF along each direction. In this plot the scattered data points are omitted.

22

rate of 1.95. It is about 1 order lower than that of FEA which is 3.15. Unlike the previous
case, in Fig. 8(b) and (e) tIGA with cubic elements shows the convergence rate of 3.85,
almost the same as that of FEA, 3.84. In Fig. 8(c) and (f) tIGA with quintic elements
shows the convergence rate of 6.34 and is also considered roughly the same order of FEA
which is 6.61.

Fig. 9 is about the convergence of H1 error in a log–log scale. The 3 plots in the left
column show the convergence of quadratic, cubic and quintic elements, with respect to the
element size h. The 3 plots in the right column show the convergence of these 3 types of
elements with respect to the square root of the total number of free nodes. From Fig. 9(a)
and (d) we see tIGA with quadratic elements shows the convergence rate of 1.97. It is about
the same order of FEA which has the rate 1.96. The similar conclusion can be drawn for
cubic and quintic elements, where tIGA also shows the convergence rate of the same order
of FEA. This means all tIGA H1 error test cases recover the convergence rate of p, the same
rate expected in FEA.

It is notable that tIGA with quadratic and quintic elements has nodal advantages over
FEA. In Fig. 9(d), for the same H1 error tIGA with quadratic elements uses 0.752 times the
free nodes along each direction compared to FEA. In Fig. 9(e), tIGA with cubic elements
needs 0.802 times the free nodes along each direction to get the same H1 error as FEA. For
quintic elements in tIGA the number is 0.689.

Because FEA employs 2 DoF per free node due to the usage of the mixed form, when
taking this into account the performance gain of tIGA can be more considerable. To this
end, we summarize our convergence analysis in Fig. 10, where error is plotted against the
numbers of DoF along each direction.

Remarks:

(1) In our experiments tIGA exhibits the optimal L2 error convergence rate of p + 1 for
p ≥ 3, where p is the element order. Unfortunately, tIGA with quadratic elements
gives the rate of 2 instead (see Fig. 8(a) and (d)). In fact, this is not unexpected.
Studies[32, 33, 34] show both mathematically and numerically that due to the presence
of high-order operators in the primal variational form of the Cahn–Hilliard equation,
the optimal L2 convergence rate in IGA with B-spline or NURBS is indeed 2 for
quadratic elements, and recovers to be p+ 1 for higher-order elements. This is in line
with our results in tIGA.

(2) We experimented using both PS and CT split to generate C1 cubic macro-element
spaces[15]. As shown in the paper, tIGA with PS-split cubic elements gives the L2 error
convergence rate of 4, which is optimal. Unfortunately, for CT-split cubic elements the
rate is 3 instead. We have not yet concluded why and how the split scheme affects
the L2 error convergence. Note that PS-split and CT-split macro-element spaces are
different, but for the same mesh refinement they incur the same number of free nodes,
because both of them remove geometrical dependency of the dimension of triangulated
bivariate spline spaces.

23

(3) We provide a brief explanation of the nodal advantages of tIGA shown in H1 error
tests. For two-dimensional meshes, give a certain element order p and element size h,
let mtIGA be the number of free nodes in the tIGA mesh, and mFEA be the number of
free nodes in the FEA mesh. Table 2 analyzes quadratic, cubic and quintic elements
and reveals each of them has a fixed ratio between mtIGA and mFEA. This ratio is
always smaller than 1, meaning for the same element size tIGA uses fewer free nodes.

To further show this ratio is related to the nodal advantages, we provide Table 3, where
for a fixed H1 error, we compare hFEA/htIGA (the ratio of element number per unit
length between tIGA and FEA), ntIGAnode /n

FEA
node (the ratio of the number of free nodes

between tIGA and FEA) and ntIGAdof /nFEAdof (the ratio of the number of DoF between
tIGA and FEA). Again quadratic, cubic and quintic elements are analyzed. For all
cases in Table 3, though the ratio hFEA/htIGA is close to 1, tIGA requires much fewer
free nodes, since the ratio ntIGAnode /n

FEA
node is way below 1. This nodal performance gain is

the result of the aforementioned nodal ratio, namely(
hFEA

htIGA

)2

× mtIGA

mFEA

=
ntIGAnode

nFEAnode

. (44)

In terms of DoF, tIGA elements show even more significant per-degree-of-freedom
advantages over FEA elements of the same order.

The nodal advantages claimed in Table 3 agree with Fig. 9(d), (e), (f) and Fig. 10(b).

Table 2: The comparison between tIGA and FEA meshes in terms of the node numbers.

Element Order Refinement 1 Refinement 2 Refinement 3 Nodal Ratio

Quadratic
h: 0.5

mtIGA: 12
mFEA: 16

h: 0.25
mtIGA: 48
mFEA: 64

h: 0.125
mtIGA: 108
mFEA: 144

mtIGA

mFEA
= 3

4

Cubic
h: 0.5

mtIGA: 24
mFEA: 36

h: 0.25
mtIGA: 96
mFEA: 144

h: 0.125
mtIGA: 216
mFEA: 324

mtIGA

mFEA
= 2

3

Quintic
h: 0.5

mtIGA: 36
mFEA: 100

h: 0.25
mtIGA: 144
mFEA: 400

h: 0.125
mtIGA: 324
mFEA: 900

mtIGA

mFEA
= 9

25

(4) In our FEA with quintic Lagrange elements, we observe that data points are somewhat
distant from the regression lines. This is probably because the numbers of elements
in each direction are low, only on pair with the wave number of the manufactured
solution. We suspect, as claimed in [35], higher-order Lagrange basis does not adjust
as well to fast changes compared to its lower-order counterparts thus fluctuates in

24

(a) Refining quadratic tIGA meshes.

(b) Refining cubic tIGA meshes.

(c) Refining quintic tIGA meshes.

Figure 11: Refinement of tIGA meshes of different orders that are present in Table 2.

Table 3: Nodal and DoF advantages comparison in terms of a fixed H1 error 10−1.

Element Order hFEA

htIGA

ntIGA
node

nFEA
node

ntIGA
dof

nFEA
dof

Quadratic elements 0.868 0.8682 × 3
4

= 0.565 0.565× 1
2

= 0.283

Cubic elements 1.018 1.0182 × 2
3

= 0.691 0.691× 1
2

= 0.346

Quintic elements 1.148 1.1482 × 9
25

= 0.474 0.474× 1
2

= 0.237

25

performance in this experiment. Nevertheless, the FEA data with quintic Lagrange
polynomials still exhibits convergence rates close to that of the theory so we consider
them valid for comparison. In contrast, we do not see such performance fluctuation in
our tIGA with quintic basis in Fig. 8(f) and Fig. 9(f).

6 Numerical examples

In this section, we present numerical examples of the Cahn–Hilliard phase-field model, which
can provide understanding into the evolution of the systems and demonstrate the capacity
of our tIGA. We show numerical results under various initial conditions, model parameters
and domain configurations. The first example is the system evolution from a random initial
condition in two-dimensional periodic squares, which serve as a common benchmark in phase-
field problems. To demonstrate the parameterization of complex domains with tIGA, the
second example simulates phase separation in such a domain. The third example conducts
the computation with a locally refined Bézier triangular mesh and explain the relevance of
local refinement in phase-field problems. The last example is a three-dimensional extension
of the periodic square example.

6.1 Two-dimensional system evolution

We first conduct this computation in a two-dimensional unit square domain (0, 1)2. Periodic
boundary condition, which allows the species that leave the domain reenter from the opposite
side, is enforced on domain boundary. The initial concentration c(x, t = 0) is set to be a small
perturbation around an average concentration c̄, namely c(x, t = 0) = c̄+ r(x). Throughout
the numerical examples in this paper, different average concentrations were studied and r(x)
is kept to be a random variable with a uniform distribution in [−0.05, 0.05].

For the first example we set c̄ = 0.5 and α = 9000. Our spatial discretization here
is a C1-continuous quadratic mesh with PS split. It consists of 7200 macro-elements with
10800 free nodes (86400 total nodes). The complete system evolution is demonstrated in
Fig. 12. The system evolves into connected bands across the entire domain. After a binodal
concentration is roughly achieved, the coarsening effect takes place in a much larger time
scale, as the transient surface area gradually decreases. The steady state contains two parallel
surfaces between phases.

Motivated by [3], we further examine the second order statistical moment M2 of the
system defined by

M2 =

∫
(c− c̄)2dΩ, (45)

in order to characterize and quantify the system evolution. The result in Fig. 13(a) sees
a sharp increase from t = 5 × 10−6 to t = 10−5, but a much slower climb after that. This
further demonstrates our observation in the previous paragraph and highlights the impor-
tance of addressing the temporal multi-scale nature of this problem through the adaptive

26

(a) t = 3.30× 10−6 (b) t = 5.70× 10−6

(c) t = 1.65× 10−5 (d) t = 1.67× 10−4

(e) t = 2.14× 10−3 (f) Steady state

Figure 12: The evolution of the concentration from an initial concentration c̄ = 0.5 and
α = 9000 in a periodic square.

27

time stepping scheme.

(a) Initial concentration c̄ = 0.5.

(b) Initial concentration c̄ = 0.75.

Figure 13: The evolution of the second-order moment in a periodic square.

In the second example we employ a C1-continuous quintic mesh with 12800 quintic el-
ements, 57600 free nodes (160000 total nodes). No split scheme is enforced. α is set to be
20000 and c̄ = 0.75. The system evolution is shown in Fig. 14. For the corresponding mo-
ment evolution see Fig. 13(b). Compared to the previous experiment, we observe generally
faster phase separation. The topology of the solution differs from the former case, separated
nucleation happens. In the end, the system reaches its steady state with a single bubble
being present.

28

(a) t = 3.30× 10−6 (b) t = 1.52× 10−5

(c) t = 3.12× 10−5 (d) t = 1.48× 10−4

(e) t = 6.25× 10−4 (f) Steady state

Figure 14: The evolution of the concentration from an initial concentration c̄ = 0.75 and
α = 20000 in a periodic square.

29

(a) The mesh with 4 square holes. (b) The mesh with 3 irregular holes.

Figure 15: The triangular mesh parameterizing a domain involving complex topology. The
wireframes of macro-elements is shown.

6.2 Phase-field model over complex topology

Previous examples include only simple domains. Such problem setup may be useful as a
numerical benchmark but it is not easily extendable to realistic applications. In practical
problems complex topology is often required. Solving phase field models over such complex
topology poses difficulties for tensor-product NURBS based IGA, and is especially suitable
for Bézier triangles and tetrahedra due to their topological flexibility. To this end, we
present two two-dimensional benchmark examples containing topology that are difficult to
model with single NURBS patch.

We start with a different topology in the first example. On top of the aforementioned
periodic unit square domain, the computational domain now consists of four solid squares
that each has the dimension of 0.2 × 0.2. The centers of the squares are positioned at co-
ordinate (0.25, 0.25), (0.25, 0.75), (0.75, 0.25) and (0.75, 0.75), respectively. This experiment
uses a C1 mesh consisting of 10752 quadratic macro-elements with PS split, 16500 free nodes
out of 134045 total nodes. The exact mesh is given in Fig. 15(a). We show the wireframe
of macro-elements here.

For this numerical example we set α = 9000 and start from an initial concentration of
c̄ = 0.75 with perturbation. The system evolution is given in Fig. 16. One of the species
clearly nucleates. The spheres formed in the process merge over time. We observe that in
the process the spheres attached to the walls have the contact angles kept 90 degrees (as
suggested by Eq. 13.4). The steady state solution features a single deformed bubble. The
surface of this bubble adheres to the solid walls so is divided into 3 parts, with some of them
being straight. This is unlike the previous experiment in a simple periodic domain.

We further demonstrate the advantages of tIGA with a second example, where we incor-

30

(a) t = 8.03× 10−5 (b) t = 2.12× 10−3

(c) t = 7.92× 10−3 (d) Steady state

Figure 16: The system evolution of the concentration from an initial profile with c̄ = 0.75
and α = 9000. The periodic domain contains square islands with solid-wall boundaries.

31

porate “general” shapes and asymmetry. The corresponding mesh is in Fig. 15(b), where
again the wireframe of macro-elements is shown. 3 “islands” of irregular shapes are added
to a periodic unit square domain. The C1 mesh consists of 10450 quadratic marco-elements,
16176 free nodes out of 130590 total nodes.

In this example, we also set α = 9000 and c̄ = 0.75. The system evolution is provided in
Fig. 17. Again, the steady state solution is a single bubble attached to the walls, minimizing
the surface area.

(a) t = 1.65× 10−4 (b) t = 8.61× 10−4

(c) t = 1.14× 10−2 (d) Steady state

Figure 17: The system evolution of the concentration from an initial profile with c̄ = 0.75
and α = 9000. The periodic domain contains irregular islands with solid-wall boundaries.

32

We see our approach is applicable to domains of complex topology without extraneous
processing. Our mesh in this experiment remains to be in one single patch and the C1

continuity is preserved everywhere. These examples demonstrate that our C1 tIGA can
adapt to Cahn–Hillard problems of complex topology.

Remark: The walls of the internal islands has boundary conditions Eq. 13.3 and Eq.
13.4 imposed. Our numerical implementation is a weak imposition, the same as presented
in [36]. Since the right hand sides of Eq. 13.3 and 13.4 are always 0 in our examples, we
only need to add the following terms to the Galerkin form Eq. 22:∫

Γ

(
a

he
∇wh · n−∆wh) · (mh

c∇ch · n)dΓ−
∫

Γ

(∇wh · n) · (mh
c∆c

h)dΓ, (46)

where a is a penalty parameter, n is the surface outward normal and he is the element length
scale. We follow [36], set a = 5 and he =

√
2Ae, where Ae is the element area.

6.3 Local refinement example

For the Cahn–Hilliard model, the physics in the transient layer needs to be captured by the
mesh. In many problems this layer is required to be extremely thin, thus could benefit from
the use of local refinement in the solution process. tIGA is particularly suitable for such local
refinement. It is often argued that for quality control, the thin transient layer needs to be
captured by at least three elements[3, 35]. Since not all regions in the computational domain
demand such resolution, the computational cost of the Cahn–Hilliard phase-field model can
be reduced to a fraction by the local refinement of the transient region on a relatively
coarse mesh. Here, the efficacy of tIGA concerning local refinement is demonstrated with a
numerical example.

The initial concentration is shown in Fig. 18. The purpose is to mimic a scenario where
the position of the transient layer is roughly known. In this computation the domain remains
to be (0, 1)2 two-dimensional square, but we use soild wall boundary conditions, meaning
Eq. 13.3 and 13.4 are satisfied on all 4 sides. In this way, we focus only on capturing the
layer sufficiently in the middle of the domain. We set α = 15000 which is higher to make
the affect of mesh resolution more pronounced.

In Fig. 19(a), 968 quintic elements are used to parameterize the domain in a triangulated
uniform grid style. Fig. 19(b) shows an oscillation pattern and the distorted layer since the
mesh does not possess enough resolution to capture the layer. The concentration along the
line x = 0.5 is given in Fig. 19(c) as an illustration of this statement, where the transient layer
appears to be captured by only 2 elements, with oscillations being present in neighboring
elements.

In Fig. 19(d) however, only 952 quintic elements are present but since they are locally
refined at the approximate position of the layer, the resolution is shown to be sufficient to
recover the physically correct transient layer, as in Fig. 19(e). Again, the concentration
along the line x = 0.5 is given in Fig. 19(f). We see in this case the layer is captured by 4
elements.

Due to the triangulation nature, tIGA allows local refinement precisely at the loca-

33

Figure 18: The initial concentration for the local refinement experiment. The ring area
has a inner radius of 0.3 and an outer radius 0.4, and is centered at the domain center. In
the ring region is a random concentration with c̄ = 0.5 and a perturbation of [−0.05, 0.05].
The concentration in the inner circle is set to be 0.08, and in the rest of the domain 0.92.

34

(a) The uniform triangular mesh with
968 macro-elements.

(b) The steady state solution with the
uniform mesh.

(c) The concentration along x = 0.5 for
the uniform mesh case. Dots represent
element vertex points.

(d) The locally refined triangular mesh
with 952 macro-elements.

(e) The steady state solution with the
locally refined mesh.

(f) The concentration along x = 0.5 for
the locally refined case. Dots represent
element vertex points.

Figure 19: The local refinement experiment starts the computation with the initial profile
shown in Fig. 18. Quintic elements are used in this test. This test shows locally refined
meshes can resolve the transient layer in the steady state solution.

35

tions needed. In [13] a tIGA adaptive refinement algorithm was implemented using Rivara
method[37], where the macro-elements with large energy error were sequentially bisected in
the process. As a direction of our future tIGA research, we plan to incorporate the said
technique, use the residual as our error metric, so that we can adaptively capture the thin
transient layers with local refinements during the computation.

6.4 Three-dimensional system evolution

Similar to the two-dimensional case, we carry out this computation in the three-dimensional
unit cube domain (0, 1)3 with periodic boundary condition on all directions. The initial con-
centration c(x, t = 0) is again set to be a small perturbation around an average concentration
c̄.

Different from the two-dimensional case, the isoperimetric problem related to the three-
dimensional Cahn–Hilliard model in a periodic cube remains an open question[9, 35], with
the topology of the steady state solution having several hypothetical candidates, which are
lamellar, cylindrical, spherical structures as well as the Lawson and the Schwarz P mini-
mal surfaces[38, 39]. Nevertheless, the discoveries reported in the literature can be useful
references for us to understand both the morphing process and the final topology.

For the two tests in this section, we follow the examples in [3]. The three-dimensional
computation uses 6000 quintic tetrahedral macro-elements with Alfeld split in each case,
resulting in 24000 micro-elements in total, 66000 free nodes out of 515000 total nodes. The
method to generate the three-dimensional C1-continuous tetrahedral mesh is introduced
in Section 4 and also detailed in [17]. The mesh is, similar to the two-dimensional cases,
arranged in a tetrahedralized uniform grid style. For a quick look at one “block” of this mesh
see Fig. 20. Fig. 20(a) and (b) give an overview of node distribution, with red indicating
free nodes and blue dependent nodes. (c) shows the connectivity. Each of these blocks is
made of 6 tetrahedral macro-elements, with an example in (d). As discussed, Alfeld split is
enforced on macro-elements and one resulting micro-element is shown in (e).

The first example sets α = 600 and c̄ = 0.63. The complete system evolution is shown
in Fig. 21. We see in this case, the species separate into two interconnected regions in a
short period of time. Unlike in two dimensions, this time no nucleation is observed. The
surface has its area decreased as the system evolves. At last, the remaining feature of the
surface classifies itself to be a Lawson minimal surface. This result differs from that reported
in [3] which turns out to be a cylindrical surface, however is supported by similar test case
reported in [9, 35]. We note, because this experiment uses relatively coarse mesh and the
numerical research suggests the steady state solution has mesh dependency.

The second example has the configuration of α = 1800 and c̄ = 0.75. Examining the
morphology presented in Fig. 22 we can observe clear nucleation, suggesting the significance
of initial concentration on the topology of the time-dependent solution.

36

(a) Element surfaces and sur-
face nodes.

(b) Interior nodes. (c) Connectivity wireframe.

(d) Alfeld-split macro-
element and all associated
nodes.

(e) Alfeld-split micro-element
and all associated nodes.

Figure 20: An example of C1 quintic tetrahedral mesh with Alfeld split, red nodes represent
free nodes and blue nodes represent dependent nodes: (a), (b) and (c) are the overview of
one such mesh “block”, which can easily used to discretize a unit cube; (d) shows one macro-
element within a “block”; (e) shows one micro-element within a macro-element.

37

(a) t = 1.87× 10−5 (b) t = 6.35× 10−4

(c) t = 1.50× 10−3 (d) t = 2.37× 10−3

(e) t = 4.07× 10−3 (f) Steady state

Figure 21: The evolution of the concentration from an initial concentration c̄ = 0.63 and
α = 600 in a periodic cube.

38

(a) t = 1.90× 10−5 (b) t = 8.66× 10−4

(c) t = 1.01× 10−3 (d) t = 1.21× 10−3

(e) t = 3.98× 10−3 (f) Steady state

Figure 22: The evolution of the concentration from an initial concentration c̄ = 0.75 and
α = 1800 in a periodic cube.

39

7 Conclusion

This paper presents a C1 triangulation-based isogometric analysis of the Cahn–Hilliard
phase-field model. We have obtained C1 simplicial elements through macro-element tech-
niques. PS split and macro polynomial elements are used to generate quadratic, cubic and
quintic C1 Bézier triangular elements. For 3D, we have used Alfeld-split to create C1 Bézier
tetrahedral mesh. Based on the C1 simplicial elements, we obtained optimal convergence
rates for a model Cahn-Hillard problem with manufactured solution.

This approach has been applied to several phase-field problems, such as the two- and
three-dimensional system evolutions starting form an average concentration with a small
perturbation and the periodic isoperimetric problem. These examples demonstrate that C1

triangulation-based isogeometric analysis has several salient features in solving high-order
PDEs such as the Cahn-Hillard equation. These features include nodal and DoF advantages
over C0 FEA, local refinement, applicable to complex topology and C1 smooth elements.

Acknowledgment

This work is supported by ARO grant W911NF-17-1-0020 and NSF grant 1435072.

40

References

[1] Thomas JR Hughes, John A Cottrell, and Yuri Bazilevs. Isogeometric analysis: CAD,
finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in
Applied Mechanics and Engineering, 194(39):4135–4195, 2005.

[2] John W. Cahn and John E. Hilliard. Free energy of a nonuniform system. i. interfacial
free energy. The Journal of Chemical Physics, 28(258), 1958.

[3] Héctor Gómez, Victor M. Calo, Yuri Bazilevs, and Thomas J.R. Hughes. Isogeometric
analysis of the Cahn–Hilliard phase-field model. Computer Methods in Applied Mechan-
ics and Engineering, 197(49):4333 – 4352, 2008.

[4] Junseok Kim, Seunggyu Lee, Yongho Choi, Seok-Min Lee, and Darae Jeong. Basic prin-
ciples and practical applications of the Cahn–Hilliard equation. Mathematical Problems
in Engineering, 2016, 2016.

[5] John W. Barrett, James F. Blowey, and Harald Garcke. Finite element approximation
of the Cahn–Hilliard equation with degenerate mobility. SIAM Journal on Numerical
Analysis, 37(1):286–318, 1999.

[6] Yinhua Xia, Yan Xu, and Chi-Wang Shu. Local discontinuous Galerkin methods for
the Cahn–Hilliard type equations. Journal of Computational Physics, 227(1):472 – 491,
2007.

[7] Garth N. Wells, Ellen Kuhl, and Krishna Garikipati. A discontinuous Galerkin method
for the Cahn–Hilliard equation. Journal of Computational Physics, 218(2):860 – 877,
2006.

[8] Ju Liu, Luca Dede, John A Evans, Michael Borden, and Thomas J.R. Hughes. Isogeo-
metric analysis of the advective Cahn–Hilliard equation: Spinodal decomposition under
shear flow. Journal of Computational Physics, 242:321350, 06 2013.

[9] S. Kaessmair and P. Steinmann. Comparative computational analysis of the Cahn–
Hilliard equation with emphasis on C1-continuous methods. Journal of Computational
Physics, 322:783 – 803, 2016.

[10] Liangzhe Zhang, Michael R. Tonks, Derek Gaston, John W. Peterson, David Andrs,
Paul C. Millett, and Bulent S. Biner. A quantitative comparison between C0 and C1

elements for solving the Cahn–Hilliard equation. Journal of Computational Physics,
236:74 – 80, 2013.

[11] Yongjie Zhang, Wenyan Wang, and Thomas J.R. Hughes. Solid t-spline construction
from boundary representations for genus-zero geometry. Computer Methods in Applied
Mechanics and Engineering, 249-252:185 – 197, 2012. Higher Order Finite Element and
Isogeometric Methods.

41

[12] Wenyan Wang, Yongjie Zhang, Lei Liu, and Thomas J.R. Hughes. Trivariate solid
t-spline construction from boundary triangulations with arbitrary genus topology.
Computer-Aided Design, 45(2):351 – 360, 2013. Solid and Physical Modeling 2012.

[13] Noah Jaxon and Xiaoping Qian. Isogeometric analysis on triangulations. Computer-
Aided Design, 46:45–57, 2014.

[14] M. J. D. Powell and M. A. Sabin. Piecewise quadratic approximations on triangles.
ACM Trans. Math. Softw., 3(4):316–325, December 1977.

[15] Hendrik Speleers. A normalized basis for reduced Clough–Tocher splines. Computer
Aided Geometric Design, 27(9):700 – 712, 2010.

[16] Songtao Xia, Xilu Wang, and Xiaoping Qian. Continuity and convergence in rational
triangular Bézier spline based isogeometric analysis. Computer Methods in Applied
Mechanics and Engineering, 297:292–324, 2015.

[17] Songtao Xia and Xiaoping Qian. Isogeometric analysis with Bézier tetrahedra. Com-
puter Methods in Applied Mechanics and Engineering, 316:782 – 816, 2017. Special Issue
on Isogeometric Analysis: Progress and Challenges.

[18] Cunfu Wang, Songtao Xia, Xilu Wang, and Xiaoping Qian. Isogeometric shape opti-
mization on triangulations. Computer Methods in Applied Mechanics and Engineering,
331:585 – 622, 2018.

[19] Mehrdad Zareh and Xiaoping Qian. Kirchhoff–Love shell formulation based on trian-
gular isogeometric analysis. Computer Methods in Applied Mechanics and Engineering,
347:853 – 873, 2019.

[20] Ming-Jun Lai and Larry L Schumaker. Spline functions on triangulations. Number 110.
Cambridge University Press, 2007.

[21] Gerald E Farin. Curves and surfaces for CAGD: a practical guide. Morgan Kaufmann,
2002.

[22] Michael Andreas Matt. Trivariate Local Lagrange Interpolation and Macro Elements of
Arbitrary Smoothness. Springer Science & Business Media, 2012.

[23] John W. Cahn and John E. Hilliard. Free energy of a nonuniform system. iii. nucleation
in a two-component incompressible fluid. The Journal of Chemical Physics, 31(3):688–
699, 1959.

[24] Kenneth E. Jansen, Christian H. Whiting, and Gregory M. Hulbert. A generalized-
α method for integrating the filtered Navier–Stokes equations with a stabilized finite
element method. Computer Methods in Applied Mechanics and Engineering, 190(3):305
– 319, 2000.

42

[25] Yinnian He, Yunxian Liu, and Tao Tang. On large time-stepping methods for the Cahn–
Hilliard equation. Applied Numerical Mathematics, 57(5):616 – 628, 2007. Special Issue
for the International Conference on Scientific Computing.

[26] Peter Alfeld. Bivariate spline spaces and minimal determining sets. Journal of Compu-
tational and Applied Mathematics, 119(1):13 – 27, 2000.

[27] Hong Dong. Spaces of bivariate spline functions over triangulation. Approx. Theory
Appl, 7, 03 1996.

[28] Ming-Jun Lai and Michael A. Matt. A Cr trivariate macro-element based on the Alfeld
split of tetrahedra. Journal of Approximation Theory, 175:114 – 131, 2013.

[29] Michael J. Borden, Michael A. Scott, John A. Evans, and Thomas J. R. Hughes. Iso-
geometric finite element data structures based on Bézier extraction of NURBS. Inter-
national Journal for Numerical Methods in Engineering, 87(1-5):15–47, 2010.

[30] Patrick J. Roache. Code verification by the method of manufactured solutions. Journal
of Fluids Engineering, 124(1):4–10, November 2001.

[31] Martin Alns, Jan Blechta, Johan Hake, August Johansson, Benjamin Kehlet, Anders
Logg, Chris Richardson, Johannes Ring, Marie Rognes, and Garth Wells. The fenics
project version 1.5. Archive of Numerical Software, 3(100), 2015.

[32] Y. BAZILEVS, L. BEIRO DA VEIGA, J. A. COTTRELL, T. J. R. HUGHES, and
G. SANGALLI. Isogeometric analysis: Approximation, stability and error estimates for
h-refined meshes. Mathematical Models and Methods in Applied Sciences, 16(07):1031–
1090, 2006.

[33] Markus Kastner, Philipp Metsch, and René de Borst. Isogeometric analysis of the Cahn–
Hilliard equation - a convergence study. Journal of Computational Physics, 305:360 –
371, 2016.

[34] Stan Cabay. An analysis of the finite element method (Gilbert Strang and George J.
Fix). SIAM Review, 17(3):577–578, 1975.

[35] Olga Wodo and Baskar Ganapathysubramanian. Computationally efficient solution to
the Cahn–Hilliard equation: Adaptive implicit time schemes, mesh sensitivity analysis
and the 3d isoperimetric problem. Journal of Computational Physics, 230(15):6037 –
6060, 2011.

[36] Garth N. Wells, Ellen Kuhl, and Krishna Garikipati. A discontinuous galerkin method
for the cahnhilliard equation. Journal of Computational Physics, 218(2):860 – 877, 2006.

[37] Maria-Cecilia Rivara. New mathematical tools and techniques for the refinement and/or
improvement of unstructured triangulations. 1999.

43

[38] Antonio Ros. The isoperimetric problem. In Global Theory of Minimal Surfaces, pages
175–209. 2001.

[39] Rustum Choksi and Peter Sternberg. Periodic phase separation: the periodic Cahn–
Hilliard and isoperimetric problems. Interfaces and Free Boundaries, 8:371–392, 2006.

44

