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Abstract

In this paper, we present an approach that extends isogeometric shape optimization from
optimization of rectangular-like NURBS patches to the optimization of topologically complex
geometries. We have successfully applied this approach in designing photonic crystals where
complex geometries have been optimized to maximize the band gaps.

Salient features of this approach include the following: 1) Multi-patch Coons representation
of design geometry. The design geometry is represented as a collection of Coons patches where
the four boundaries of each patch are represented as NURBS curves. The use of multiple patches
is motivated by the need for representing topologically complex geometries. The Coons patches
are used as a design representation so that designers do not need to specify interior control points
and they provide a mechanism to compute analytical sensitivities for internal nodes in shape
optimization. 2) Exact boundary conversion to the analysis geometry with guaranteed mesh
injectivity. The analysis geometry is a collection of NURBS patches that are converted from the
multi-patch Coons representation with geometric exactness in patch boundaries. The internal
NURBS control points are embedded in the parametric domain of the Coons patches with a
built-in mesh rectifier to ensure the injectivity of the resulting B-spline geometry, i.e. every
point in the physical domain is mapped to one point in the parametric domain. 3) Analytical
sensitivities. Sensitivities of objective functions and constraints with respect to design variables
are derived through nodal sensitivities. The nodal sensitivities for the boundary control points
are directly determined by the design parameters and those for internal nodes are obtained via
the corresponding Coons patches.

Keywords: Shape optimal design, Isogeometric analysis, Photonic crystals, band gap

1 Introduction

This paper presents an isogeometric shape optimization approach that is applicable to topologically
complex geometries.

Isogeometric shape optimization refers to the use of the same basis for both shape parameter-
ization and analysis during the optimization. In the context of this paper, non-uniform rational
B-spline (NURBS) is used for both shape parameterization and analysis. NURBS-based isoge-
ometric shape optimization has several advantages over traditional shape optimization methods,
including 1) Efficient shape parameterization. With a few control points, NURBS can represent

1



complex freeform shape [1, 2]. 2) Computational advantage. The use of NURBS base in analysis
has exhibited superior numerical properties, e.g. in terms of per-degree-of-freedom accuracy [3, 4]
over traditional finite element analysis. 3) CAD compatibility. the output of NURBS-based shape
optimization can be directly exported to a computer-aided design (CAD) system since the NURBS
is the standard shape representation underlying all major CAD software.

Isogeometric shape optimization has recently been successfully applied in structural problems
[5, 6, 7, 8, 9, 10]. However, the optimization of topologically complex geometry remains a challenge
since the native NURBS representation is limited to rectangular-like shape due to its tensor-product
nature. Recently, an approach based on trimmed spline surfaces [11, 12] has been proposed to
address this issue.

In this paper, we present a multi-patch approach to the optimization of topologically complex
geometries and apply this general concept to the maximization of band gaps (a range of frequencies
in which the electromagnetic waves cannot propagate through a medium) in photonic crystals
[13, 14]. The use of multiple NURBS patches is a natural choice for modeling complex models in
isogeometric analysis as suggested in [3]. However, how to effectively create numerous (internal)
NURBS control points in complex geometries and how to relate them to boundary shapes for
sensitivity analysis in shape optimization remain unsolved. In this paper, the topological complexity
is resolved via multiple compatible Coons patches which are then automatically converted into
NURBS patches for analysis. Salient features of this approach include the following:

• Multi-patch Coons representation of design geometry. The design geometry is represented
as a collection of Coons patches where the four boundaries of each patch are represented
as NURBS curves. The use of multiple patches is motivated by the need for representing
topologically complex geometries. The Coons patches are used as a design representation so
that designers do not need to specify interior control points and they provide a mechanism
to compute analytical sensitivities for internal nodes in shape optimization.

• Exact boundary conversion to the analysis geometry with guaranteed mesh injectivity. The
analysis geometry is a collection of NURBS patches that are automatically converted from the
multi-patch Coons representation. Each NURBS patch is converted from one Coons patch
with geometrically identical patch boundary, although internal parameterization of Coons
and NURBS patches may differ. The internal NURBS control points are embedded in the
parametric domain of the Coons patches with a built-in mesh rectifier to ensure the injectivity
of the resulting B-spline geometry, i.e. every point in the physical domain is mapped to one
point in the parametric domain. It varies the position of internal NURBS control points until
the minimal Jacobian of the geometry is positive.

• Analytical sensitivities. Sensitivities of objective functions and constraints with respect to
design variables are derived through nodal sensitivities (i.e. the sensitivities of NURBS control
points with respect to design variables). The nodal sensitivities for the boundary control
points are directly determined by the design parameters. The sensitivities for internal nodes
are obtained via the corresponding Coons patches since the internal control points of the
NURBS patches are embedded in the parametric space of the Coons patches.

Although mesh creation via Coons patches, a form of transfinite interpolation, is a common
algebraic approach for creating structured meshes in finite element analysis and shape optimization
[15, 16], our approach differs from others in that the Coons surfaces themselves are not directly
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used as a mesh. Rather, Coons surfaces provide only a medium to generate (internal) control
points for constructing the NURBS mesh for analysis. The method we use to rectify potentially
invalid B-spline meshes is applicable to C0 surfaces. It is done through explicit representation of
the Jacobian of a B-spline surface as a higher-degree B-spline surface. The actual computation of
the Jacobian is performed through its conversion to Bézier patches since they can provide a tighter
bound than B-spline patches. We formulate this as a min-max optimization problem: maximizing
the minimum of the Jacobian B-spline surface’s control points until it becomes positive. We have
successfully applied this shape optimization approach to the optimization of periodic cell shapes in
photonic crystals for maximizing band gaps.

In the remainder of this paper, Section 2 describes how multiple compatible Coons patches
can be constructed, how NURBS meshes for analysis can be constructed from the multiple Coons
patches and how nodal sensitivities can be computed. In Section 3, we detail the procedure for
ensuring that the B-spline mesh is valid (i.e. with positive Jacobian) for analysis. We present our
shape optimization on topologically complex geometries in the context of maximizing band gaps in
photonic crystals in Section 4. We conclude this paper in Section 5.

2 Constructing NURBS meshes via multiple compatible Coons

patches

In this section, we first give basic definitions of curves and surfaces that are used in constructing
multiple compatible Coons patches. We then show how NURBS meshes can be constructed from
these multiple Coons patches.

2.1 Coons surface

c
0
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Figure 1: A Coons surface interpolates four NURBS boundary curves

A Coons surface interpolates two pairs of boundary curves c0(u0) and c1(u1), and c2(v0) and
c3(v1). These four curves meet at four corners S(0, 0), S(0, 1), S(1, 0), and S(1, 1). A linearly
blended Coons surface can be represented as

Sc(u, v) = (1 − v)c0(u) + vc1(u)
+(1 − u)c2(v) + uc3(v)
−(1 − u)(1 − v)S00 − (1 − u)vS01

−u(1 − v)S10 − S11

(1)
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The boundary curves of a Coons patch are represented in NURBS. A degree p NURBS curve
with m + 1 control points Pi is represented as

c(u) =
m∑

i=0

Ni,pPi (2)

where Ni,p is the p-th degree blending functions. When all the weights wi are equal to one, the
NURBS becomes a B-spline. In this paper, we are only concerned with B-splines. The use of
rational B-spline in shape optimization is dealt with in [8]. An example of a Coons surface and the
control points for defining its four boundary curves are shown in Fig. 1.

A Coons surface can be readily converted into a NURBS surface provided that the four boundary
curves are compatible, that is 1) they share four corners; 2) each pair of boundary curves (c0(u)
and c1(u) in u, c2(v) and c3(v) in v) have the same degree, knot vectors, and the number of control
points. When the degrees and knots are not compatible, the compatibility can be achieved through
knot insertion and degree elevation [17].

2.2 Constructing multi-patch Coons geometry

The multi-patch Coons geometry is a collection of Coons patches where the overlapping boundary
between adjacent Coons patches have the same geometry and compatible representation. More
specifically, the adjacent Coons patches are compatible in the sense 1) they are geometrically the
same, 2) representation-wise, the overlapping portions of the two curves have the same degree and
same control points, and 3) the end points of the overlapping curves are C0 end points. The goal of
such compatibility requirement is to ensure that adjacent patches, upon mesh refinement, remain
geometrically and parametrically the same. Note, however, that the knot vectors are allowed to be
scaled and offset to make them compatible.

I II

III IV V

VI

Figure 2: Multiple compatible Coons patches. Corner points in Patch I and II are shown as filled
markers. Corners points in Patch III, IV, V, and VI are shown as square markers.

Fig. 2 shows a multi-patch representation of a plate with two circular inclusions. It is composed
of six bi-quadratic Coons patches. All the boundary curves are represented in NURBS. This
example illustrates different scenarios of overlapping among adjacent patches: 1) Patch I overlaps
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with patch III and patch IV by quarter circles. It also overlaps with patch VI by a half circle. 2) The
top part of the plate is made of one patch (VI) and the bottom part is made of three patches (III,
IV, V), although the shape is symmetrical. This illustrates the flexibility of multi-patch modeling
in that the same shape can be represented in different ways. 3) All overlapping boundaries between
adjacent patches have exactly the same shape. These overlapping curves are also parametrically
the same when knots are scaled and offset accordingly. Therefore, when the patches are refined for
analysis, the overlapping boundary curves remain geometrically and parametrically the same.

Each Coons patch will be converted to one single NURBS patch. This one-to-one mapping is
always maintained. The number of Coons patches depends on the number of boundary curves in
the design geometry and the shape and topology of the design geometry. How to automatically
generate Coons patches is a task yet to be automated. In general, the number of Coons patches is
never more than the number of boundary curves. Each Coons patch is created to be as rectangular
as possible with its boundary being conformal to the boundary shape.

2.3 Creating the NURBS analysis model

A NURBS surface is represented as

S(u, v) =

m∑

i=0

n∑

j=0

Ni,pNj,qwi,jPij

m∑

i=0

n∑

j=0

Ni,pNj,qwij

(3)

where Ni,p and Nj,q are p-th and q-th degree B-spline functions, wij and Pij are ij-th weight and
control point for the NURBS surface, respectively.

An array of (m + 1) × (n + 1) control points are needed to define a NURBS surface. Each
Coons patch corresponds to one single NURBS patch. When converted from a Coons patch defined
with four compatible boundary curves, these boundary curves’ control points become the boundary
control points of the NURBS curves. Only the internal (m − 1) × (n − 1) control points need to
be additionally generated for completely defining a NURBS surface. Note that, for reasons to be
described in the subsection below, each Coons patch and the converted NURBS patch only share
the same patch boundary and the internal parameterizations may be different. For example, Fig.
3 shows a NURBS surface converted from the Coons patch in Fig. 1 where the boundary control
points of the NURBS come from the Coons patch and the internal control points that need to be
generated are marked in red. We show below how internal control points are generated.

2.3.1 Creating initial internal control points

The internal control points are generated in such a way that their sensitivities with respect to the
boundary shape changes as parameterized by design variables can be easily obtained. Therefore,
we embed the NURBS surface’s internal control points on the parametric domain of the Coons
patch. That is,

Pij = Sc(ũi, ṽj), i = 1, · · · , m − 1, j = 1, · · · , n − 1. (4)

One method to specify the parametric coordinates of the internal control points is based on
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u
v

(ũi, ṽj)

(a) The uv domain of a Coons patch

Pij = Sc(ũi, ṽj)

(b) NURBS patch and internal control
points

Figure 3: NURBS surface constructed from the Coons patch in Fig. 1

their order in the sequence of boundary control points. That is,

ũi =
i

m
, ṽj =

j

n
(5)

This method is effective when the control points are placed approximately equidistantly, leading to
approximately same element size, both geometrically and parametrically. In this paper, all results
shown are generated based on Eq. (5).

Fig. 3 shows the internal NURBS control points defined in the parametric domain of a Coons
patch. Fig. 4 shows the internal control points generated from multiple Coons patches shown in
Fig. 2 with this method. The knot curves are displayed in blue and the internal control points
are displayed in red. The resulting knots curves demarcate the element boundary for isogeometric
analysis.

An alternative would be to link the parametric separation of control points with their physical
separation of boundary control points as follows. If we assume the first curve’s control points
P 1

0 , P 1
1 , · · · , P 1

m, and the second curve’s control points P 2
0 , P 2

1 , · · · , P 2
m, we can set

ũi =
1

2

( ∑i
k=0 ||P

1
i−1P

1
i ||∑m−1

k=0 ||P 1
k P 1

k+1||
+

∑i
k=0 ||P

2
i−1P

2
i ||∑m−1

k=0 ||P 2
k P 2

k+1||

)
, i = 1, · · · , m − 1

The ṽj coordinates can be created likewise from the third and fourth boundary curves.
Another alternative would be to convert Coons patches exactly into NURBS patches. The

process however is cumbersome since it would require degree elevations for bilinear surfaces inter-
polating the four corner points and degrees matching between the two ruled surfaces interpolating
the two pairs of boundary curves.

All methods can lead to reasonably good NURBS meshes, but none of them guarantees that
the generated meshes are always valid. Fig. 5 shows, based on (5), that a slight change of one
boundary control point in the example shown in Fig. 4 would lead to an invalid NURBS mesh in
the sense that there is fold-over, i.e. two points in the parametric domain of the NURBS surface
would be mapped to the same physical point. To preclude this problem, a method for rectifying the
initial mesh is suggested in Section 3. In this rectification, a new (ũ, ṽ) is found for each internal
control point so that the resulting NURBS mesh is valid.

6



Figure 4: Multiple compatible NURBS patches created from multiple Coons patches by adding
internal control points

(a) Original mesh

Mesh folding
-

(b) Magnified view

Figure 5: Creating NURBS internal control points directly from Coons may lead to mesh fold-over.
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2.3.2 Refining the analysis model

The NURBS model constructed from multiple Coons patches, upon rectification when necessary,
may not have sufficiently dense elements for the accurate analysis required by shape optimization.
The NURBS analysis model can thus be obtained through mesh refinement [8]. A knot insertion
algorithm for creating quasi-uniform mesh in the physical space is available in [3]. In addition, p-
refinement and k-refinement methods are described in [18]. In the section below, we briefly present
the basic procedure for h-refinement through knot insertion.

Knot insertion refers to adding a new knot into the existing knot vector without changing the
shape of the curve. Because the fundamental equality for a B-spline curve is that m = n + p + 1
where m + 1 is the total number of knots for a degree p B-spline curve with n + 1 control points,
inserting a new knot requires a new control point to be added. (More precisely), some existing
control points are removed and new ones are added.

Given a set of n+1 control points P0, P1, ..., Pn, a knot vector {ξ0, ξ1, ..., ξm} and a degree p, we
can insert a new knot ξ̄ into the knot vector without changing the shape of the B-spline curve x(ξ)
as follows. Assuming we need to insert a knot ξ̄ into the knot span [ξl, ξl+1], we have the following
basic knot insertion procedure for a B-spline curve:

• Find l such that ξ̄ lies in the knot span [ξl, ξl+1].

• Find p + 1 control points Pl−p, Pl−p+1, ..., Pl.

• Compute p new control points Qi from the above p + 1 control points by using the formula

Qi = (1 − βi)Pi−1 + βiPi, (6)

where the ratio βi is computed as below:

βi =
ξ̄ − ξi

ξi+p − ξi

for l − p + 1 ≤ i ≤ l.

The above process can be readily extended to a NURBS curve refinement and NURBS surface
refinement [17]. Fig. 6.a shows the 6-patch Coons model and Fig. 6.b shows the refined NURBS
mesh after knot insertion.

2.4 Computing nodal sensitivities

One of the key tasks in gradient-based shape optimization is to compute nodal sensitivities, i.e.
computing how the mesh nodes (control points in the context of isogeometric analysis) change with
respect to design variables α. Design variables α control the boundary shape to be optimized.
These design boundary curves as represented in (2) are a subset of the boundary curves of Coons
patches (1). The internal control points of the NURBS surface (3) are defined in the Coons patch’s
parametric domain (5). When mesh refinement is desired, knot insertion is invoked as shown in
(6). By differentiating these equations, (2), (1) , (5) , and (6) over the design variables, one can
obtain the analytical nodal sensitivities. In practice, these sensitivities are obtained by directly
differentiating these expressions (equations (2), (1), (5) and (6)). Such differentiation can be done
analytically by hand or symbolically with an algebraic manipulation program (i.e. Mathematics or
Maple). The results can then be inserted in the computer code.
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(c) Design B by moving P1 in Design A (d) Analysis model B

Figure 6: Nodal sensitivity propagating the influence of design variables to the analysis nodes

Fig. 6 gives an example where a 5-patch Coons design model is used to construct the NURBS
analysis model. From the Coons patches (Fig. 6.a), its internal control points are first generated to
construct a NURBS model (Fig. 4) and 1× 1 (once in u and once in v directions) knot insertion is
invoked to obtain the analyis model (Fig. 6.b). When the design variable P1 is moved (Fig. 6.c),
the new nodal positions in the analysis model can then be regenerated according to the procedure
described above. Sensitivity of each node in the analysis model with respect to P1 can be computed
analytically by differentiating the above equations.

3 B-spline mesh rectification

The procedure described in the above section, although usually generating a good quality mesh,
may lead to meshes with fold-over during optimization, i.e. two parametric points correspond
to one spatial point. This is especially true when the boundary curves from the Coons patches
contain C0 points, which allows sharp kinks of the boundary curve. This mesh fold-over is caused
by the changing sign of the Jacobian of the geometric mapping from the parametric domain to the
physical space. Unless otherwise noted, in this paper, we assume the boundary of Coons patches is
so constructed that it admits surface parameterization with positive Jacobian. When some portion
of the surface has negative Jacobian, the fold-over occurs. An example is shown in Fig. 7, where
the initial B-spline surface converted from the Coons patch is defined by a bi-quadratic 5×3 control
net. The knot vectors are U = {0, 0, 0, 0.5, 0.5, 1, 1, 1} and V = {0, 0, 0, 1, 1, 1}. The three internal
control points are marked in red. The B-spline surface is subdivided many times to show the fold-
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over. The magnified view of the fold-over is shown in Fig. 7.b. The corrected B-spline mesh by
varying the internal control points in the parametric domain (Fig. 7c) are shown in Fig. 7d.

(a) Original mesh (b) Magnified view of folding in a)

u
v

(c) Varying control point positions in
the uv domain of the Coons patch

(d) Rectified mesh

Figure 7: Rectifying a bad B-spline mesh by varying internal control points (red points)

Our B-spline mesh rectification approach seeks to vary a B-spline surface S(u, v)’s internal
control points Pij by changing their positions , (ũi, ṽj) (cf. Eqs. (4) and (5) ), in the parametric
domain of the Coons patch until the B-spline surface’s Jacobian J(u, v) is positive. The premise of
this approach is that in order to ensure a B-spline surface’s injectivity, the Jacobian of the B-spline
surface needs to be positive. The basic approach to ensure the surface’s injectivity is based on the
fact that the Jacobian of a B-spline surface remains a B-spline surface (by forming the product of
B-splines into a B-spline form [19]) and through a sufficient condition that, if all control points of
the Jacobian B-spline surface is positive, then the Jacobian is positive.

Similar approaches to prevent self-intersection have been attempted in the past, including
preventing self-intersection under free-form deformation [20], and generating non-self-overlapping
quadrilateral grids from a Bézier patch [21]. In the context of isogeometric analysis, an effort to
obtain optimal B-spline parameterization via Winslow functional with positive Jacobian as a con-
straint is also being conducted [9]. However, our approach is applicable to C0 B-spline surfaces
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without an extra layer of phantom zone [20] or repeated control vertices [22].
Our assumption is that the boundary control points of the B-spline surface allows such a valid

B-spline mesh. In order to obtain a tighter bound on the Jacobian, our approach subdivides the
original B-spline surface, converts the subdivided surface into Bézier patches, computes the Jacobian
of the Bézier patches and recomposes them into the B-spline form. We adopt a gradient-based
optimization approach to maximize the minimal control point of the Jacobian B-spline surfaces
until the minimal control point is positive. Since analytical gradients are used, the gradient-based
optimization converges very fast to a positive Jacobian, typically in a few iterations.

We detail below our approach to rectifying the B-spline mesh.

3.1 Jacobian of a B-spline surface

We first show that the Jacobian of a B-spline surface is a higher degree B-spline surface.
Let the B-spline surface S(u, v) be represented as

S(u, v) =
m∑

i=0

n∑

j=0

Ni,p(u)Nj,n(v)Pij (7)

The Jacobian is
J(u, v) = det

[
Su Sv

]

Su(u, v) =
m−1∑

i=0

n∑

j=0

Ni,p−1(u)Nj,q(v)αi(P(i+1)j − Pij)

Sv(u, v) =
m∑

k=0

n−1∑

l=0

Nk,p(u)Nl,q−1(v)βl(Pk(l+1) − Pkl)

where
αi =

p

up+i+1 − pi+1
, βl =

q

vq+l+1 − vl+1

If we note ∆Pij,u = P(i+1)j − Pij and ∆Pkl,v = Pk(l+1) − Pkl, we have

J(u, v) =
m−1∑

i=0

n∑

j=0

m∑

k=0

n−1∑

l=0

Ni,p−1(u)Nj,q(v)Nk,p(u)Nl,q−1(v)αiβl det
[
∆Pij,u ∆Pkl,v

]
(8)

Note, the product of two B-splines is a higher-degree B-spline, as first reported in [19].

Ni,p(t)Nj,q(t) =
∑

h

Γi,j,p,q,(h)Nk,p+q(t)

where the coefficient Γi,j,p,q(h) is recursively defined in [19]. The knot vectors for the new B-spline
is a union of all knots in the two knot vectors of its component B-splines with the knot mulitiplicity
as

mi =





max(p + ma, q + mb), ma > 0 and mb > 0
p + mb, ma = 0 and mb > 0
q + ma, ma > 0 and mb = 0

(9)
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where ma represent the knot ti’s multiplicity in the B-spline a and mb the knot multiplicity in
B-spline b.

Thus the multiplication of four B-spline basis functions in Eq. (8), Ni,p−1(u)Nj,q(v)Nk,p(u)Nl,q−1(v),

leads to
∑

s

ΓsNs,2p−1(u)
∑

t

ΓtNt,2q−1(v). By rearranging all the coefficients for Ns,2p−1(u)Nt,2q−1(v),

Eq. (8) becomes

J(u, v) =
2m−1∑

s=0

2n−1∑

t=0

Ns,2p−1(u)Nt,2q−1(v)Jst (10)

where Jst is the control point of the B-spline representation of the Jacobian of the original surface
S(u, v) (7).

Eq. (10) thus shows that the Jacobian of a B-spline surface is itself a B-spline surface.

3.2 Jacobian of a Bézier patch

Since Bézier patches, when converted from a B-spline surface, have tighter convex hulls than that
of the original B-spline surface, we do not directly compute Jst of a B-spline surface. Rather, we
obtain the Jacobian surface via the Bézier patches. The Bézier patches are obtained by inserting the
knots until the continuity at internal knots becomes C0. Note, we can easily recompose the Jacobian
B-spline surface from the Jacaobian of Bézier surfaces [23] since we know the knot multiciplity in
u and v directions based on (9).

If we denote a Bézier surface patch S(u, v) as

S(u, v) =

p∑

i=0

q∑

j=0

Bi,p(u)Bj,q(v)Pij

The Jacobian is
J(u, v) = det

[
Su Sv

]

Su(u, v) =

p−1∑

i=0

q∑

j=0

Bi,p−1(u)Bj,n(v)p(P(i+1)j − Pij)

Sv(u, v) =

p∑

k=0

q−1∑

l=0

Bk,p(u)Bl,q−1(v)q(Pk(l+1) − Pkl)

If we denote ∆Pij,u = P(i+1)j − Pij and ∆Pkl,v = Pk(l+1) − Pkl, we have

J(u, v) =

p−1∑

i=0

q∑

j=0

p∑

k=0

q−1∑

l=0

Bi,p−1(u)Bj,q(v)Bk,p(u)Bl,q−1(v)pq det
[
∆Pij,u ∆Pkl,v

]
(11)

Note, the product of Bernstein polynomials is a higher-degree Bernstein polynomial [24]

Bi,p(t)Bj,q(t) =

(
p
i

)(
q
j

)
(
p+q
i+j

) Bi+j,p+q(t)
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Eq. (11) then becomes

J(u, v) =

p−1∑

i=0

q∑

j=0

p∑

k=0

q−1∑

l=0

(
p−1

i

)(
p
k

)
(
2p−1
i+k

) Bi+k,2p−1(u)

(
q
j

)(
q−1

l

)
(
2q−1
j+l

) Bj+l,2q−1(v)

pq det
[
∆Pij,u ∆Pkl,v

]

=

2p−1∑

s=0

2q−1∑

t=0

Bs,2p−1(u)Bt,2q−1(v)Jst

(12)

where

Jst =
∑

i + k = s,
i ∈ [0, p − 1],

k ∈ [0, p]

∑

j + l = t,
j ∈ [0, q],

l ∈ [0, q − 1]

pq

(
p−1

i

)(
p
k

)
(
2p−1
i+k

)
(
q
j

)(
q−1

l

)
(
2q−1
j+l

) det
[
∆Pij,u ∆Pkl,v

]
(13)

It is thus clear from Eq. (12) that the Jacobian of a Bézier surface patch is a higher-degree Bézier
surface.

3.3 Recomposing the Jacobian of a B-spline surface

After each Bézier patch’s Jacobian is computed into a Bézier form (13), they can be recomposed
into a B-spline form. This is needed since otherwise overlapping Bézier patches would lead to
redundant constraints (i.e. Jacobian control points) for optimization. Here we retain the C0 form
of the Jacobian B-spline in order to keep the bound tight.

For a B-spline surface S of degree p× q that is at least C1 continuous, we first subdivide it a× b
times in order to obtain a tighter convex hull bound. If we assume there are neu Bézier segments
in the u direction and nev Bézier segments in the v direction after a × b times of refinement of
the surface S, the Jacobian of the original B-spline surface S(u, v) is a B-spline surface of degree
(2p − 1) × (2q − 1), consisting of neu × nev Bézier segments of degree (2p − 1) × (2q − 1), totaling
(neu(2p− 1) + 1)× (nev(2q − 1) + 1) control points. We refer to these control points as the control
points of the Jacobian B-spline surface.

However, if the B-spline surface S is C0, we need to first decompose it into a collection of
surfaces Si that are at least C1 continuous. The Jacobian is then computed separately for each Si.
This is more advantageous than adding a layer of phantom zone [20] or repeating control vertices
[22] since it does not involve any computing other than separating S into surfaces Si that are at
least C1.

3.4 Maximizing the minimal Jacobian

If all the control points of the Jacobian B-spline surface are larger than 0, the B-spline surface S

is invertible, i.e. we have successfully rectified the B-spline mesh. This leads to an optimization
based formulation for obtaining an invertible B-spline surface.

The overall approach for rectifying a bad B-spline mesh with negative Jacobian is shown in Fig.
8. It can be summarized as follows
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Figure 8: Procedure for rectifying a bad B-spline mesh by varying internal control points (red
points). It only took one iteration.
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• Separate B-spline surface S into a collection of B-spline surfaces each of which is at least C1

continuous Si

• Subdivide each Si a × b times and obtain S̃i

• Knot insertion to extract all Bézier patches S̃i from each subdivided surface S̃i

• Compute Jacobian for each Bézier patch

• Recompose Jacobian for Bézier patches into C0 Jacobian B-splines for each Si.

• Maximize the minimum Jacobian of all B-spline surfaces Si until it is larger than zero.

To simplify the notation in optimization, we reformulate the double index of control points in
B-spline surfaces into a single index. For example, we note the collection of internal control points’
physical coordinates Pij =

[
x1

ij x2
ij

]
as γ and the corresponding parameters in the parameter

space of the Coons surface as γu.
Equation (12) can now be rewritten as

detSi =
∑

k

NkJ̃ i
k(γ)

The convex hull property of the B-spline representation leads to

min
k

J̃ i
k ≤ min

u,v
detSi(u, v)

Therefore, when

min
i,k

J̃ i
k(γ) > 0 (14)

we have a valid mesh.
Remark 1. The criterion (14) for determining if a mesh is valid is a sufficient (i.e. conservative)
condition.
Remark 2. Both Bézier conversion and subdivision make the sufficient condition less conservative.
Remark 3. As the number of the subdivision increases and each Bézier patch becomes smaller,
the sufficient condition (minimal control point of the Jacobian B-spline be positive) approaches the
necessary condition, (i.e. minimal Jacobian of the surface be positive).
Remark 4. The criterion is applicable to C0 B-spline surfaces.

Based on above, we can develop the following optimization formulation, i.e. maximize the
minimal Jacobian control point:

max
γ

min
i,k

J̃ i
k(γ)

where

i = 1 to the total number of C0 patches in S;
k = 1 to the total number of control points of the Jacobian B-spline surface J

S̃i
of the B-spline

patch S̃i;
γ represents all the internal control points in the surface S.
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The original min-max problem is hard to solve directly, it is thus reformulated as a bound formu-
lation [25]

max
γ,β

β

s.t. β − J̃ i
k(γ) ≤ 0

(15)

Its formulation in the parameter space of the Coons surface (1) can be noted as

max
γu,β

β

s.t. β − J̃ i
k(γ

u) ≤ 0

γu
j ∈ [0, 1]

(16)

The optimization terminates as soon as the objective function is larger than zero, i.e. a valid mesh
is obtained. Our experience suggests that further iteration for an even larger minimal Jacobian
does not necessarily lead to a better-quality mesh. Further, isogeometric analysis has been found
to be robust against mesh distortion [26].

A gradient based optimizer (Method of Moving Asymptotes (MMA)) [27] is used to solve the

above problem. Thus the gradient of the Jacobian control point J̃ i
k(γ) over the design variables γ

or J̃ i
k(γ

u) over the design variables γu are needed. From Eq. (13), we can see that

J ′

st =
∑

i + k = s,
i ∈ [0, m − 1],

k ∈ [0, m]

∑

j + l = t,
j ∈ [0, n],

l ∈ [0, n − 1]

mn

(
m−1

i

)(
m
k

)
(
2m−1
i+k

)
(
n
j

)(
n−1

l

)
(
2n−1
j+l

)

·(∆X ′

ij,u∆Ykl,v + ∆Xij,u∆Y ′

kl,v − ∆Y ′

ij,u∆Xkl,V − ∆Yij,u∆X ′

kl,v)

Here J̃ ′

st refers to the Jacobian B-spline surface’s control points’ sensitivities with respect to B-
spline internal control points γj , i.e.()′ = ()/∂γj where the B-spline internal control points can
be constrained to, for example, stay within the bounding box of the original design domain. The
sensitivities with respect to the transformed design variables γu becomes

∂J̃k

∂γu
j

=
∂J̃k

∂γj

∂γj

∂γu
j

The latter part represents the Jacobian of the Coons surface and can be derived from (1).
Although both formulations (15) and (16) are valid for ensuring that the B-spline mesh is valid,

the formulation (16) is used in this paper in order to ensure that control points’ sensitivity over the
design variables can be analytically calculated. Note that the control points are embedded in the
parametric domain of the Coons patches (Eq. (5)). The initial positions for the internal control
points during the optimization are from Eq. (5). The optimized positions (ũ∗

i , ṽ
∗

j ) are fed into Eq.
(4) for sensitivity calculation in the shape optimization.

3.5 Results of mesh rectification

Three representative B-spline meshes with initially negative Jacobians and their respective corrected
meshes are shown in Fig. 9, 10 and 11. All these meshes are quadratic B-spline meshes. The internal
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control points are shown in red. The process statistics in maximizing the minimal Jacobian for
these three meshes is presented in Table 1, where Ndes represents the number of design variables
in the optimization, Ncstr represents the number of constraints, and NI represents the number of
optimization iterations. The subdivision time is a×b = 1×1. Among many examples that have been
run, including these three meshes, the process converges usually within a few iterations, where the
minimal Jacobian has changed from negative to positive. If the algorithm fails to converge within
10 iterations, the boundary has been found to be the cause of the problem, i.e. there is fold-over at
the boundary itself where we intentionally create Coons patches with fold-over to test how well the
approach works. Although not a theoretical proof, this suggests that the proposed mesh correction
method is very effective and efficient in practice.

Table 1: Process statistics in maximizing Jacobian for B-spline meshes shown in figures 9, 10, and
11

Mesh Ndes Ncstr NI Jmin (before) Jmin (after)

1 21 403 6 -0.006338 0.000144
2 21 403 3 -0.003968 0.000510
3 9 169 3 -0.002296 0.000018

4 Shape optimization examples

We apply the above developed B-spline mesh construction and nodal sensitivity computing approach
in shape optimization of photonic crystals for maximizing band gaps. Shape optimization is in
general used as a post-processing tool after topology optimization and we are likely to have very
good starting guesses. A recent overview of topology optimization for nano-photonics is available
in [28]. In this paper, the initial geometry of the shape optimization is modeled based on the
geometric properties of optimal photonic crystals [29].

For lossless electromagnetic waves propagating in the xy plane, Transverse Magnetic (TM) (E
field in the z direction) and Transverse electric (TE) (H field in the z direction) polarized waves
can be described by two decoupled wave equations

∇2Ez(x) +
ω2εr(x)

c2
Ez(x) = 0, TM,

∇ ·

(
1

εr(x)
∇Hs(x)

)
+

ω2

c2
Hz(x) = 0, TE.

The distribution of dielectric is assumed periodic in the xy plane and constant in the z direction,
i.e. εr(x + Rj) = εr(x), where Rj are primitive lattice vectors with zero z component [29, 30].
The scalar fields satisfy the Floquet-Bloch wave conditions, Ez = eik·xEk and Hz = eik·xHk,
respectively, where Ek and Hk are cell periodic fields.

Combining either of the above TM and TE wave equations with the aforementioned periodic
boundary conditions then leads to the following Hermitian eigenvalue problem

(Kk − ω2M)h = 0 (17)
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(a) Original B-spline mesh (b) Rectified B-spline mesh

(c) Original Beźier mesh (d) Rectified Beźier mesh

(e) Original Jacobian
18

(f) Rectified Jacobian

Figure 9: Mesh correction example 1. The bi-quadratic B-spline model consists of 7 × 4 control
points.
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(a) Original B-spline mesh (b) Rectified B-spline mesh

(c) Original Beźier mesh (d) Rectified Beźier mesh (e) Original Jacobian (f) Rectified Jacobian

Figure 10: Mesh correction example 2. The bi-quadratic B-spline model consists of 4 × 7 control
points.
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(a) Original B-spline mesh (b) Rectified B-spline mesh

(c) Original mesh (magnified) (d) Rectified mesh (magnified)

Figure 11: Mesh correction example 3. The bi-quadratic B-spline model consists of 4 × 4 control
points.
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(a) Original Beźier mesh (b) Rectified Beźier mesh

(c) Original Jacobian (d) Rectified Jacobian

Figure 12: Mesh correction example 3. The bi-quadratic B-spline model consists of 4 × 4 control
points.
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where Kk is the stiffness matrix for the wave vector k and M is the mass matrix. Solving (17)
for wave numbers k belonging to the boundaries of the irreducible Brillouin zone we get a band
diagram as shown in Fig. 15. We measure the relative band gap between bands n and n + 1 as

∆wn

ωcn

= 2
mink wn+1(k) − maxk ωn(k)

mink wn+1(k) + maxk ωn(k)
(18)

where k are all wave vectors on the boundaries of the irreducible Brillouin zone.
Our goal here in shape optimization is to maximize the relative band gap ∆ω/ωc (18). We use

a gradient-based optimization. The sensitivities of a single modal eigenvalue are simply found as

∂λi

∂αs

= hT
i

[
∂K

∂αs

− λi
∂M

∂αs

]
hi. (19)

where λ = ω2 and the eigenvectors are normalized with respect to the kinetic energy, i.e. hT
i Mhi =

1. The sensitivity for eigen modes with multiplicity are found as [31, 32]. The sensitivities of the
stiffness matrices and mass matrices with respect to the design variables can be directly traced to
nodal (control point) sensitivities, as shown in [8]. Directly maximizing the relative band gap as
shown in (18) is difficult. Instead, the problem is reformulated via a two-variable bound formulation

max
α,β1,β2

2
β2 − β1

β1 + β2

s.t. ωn(ki) − β1 ≤ 0, i = 1, · · · , I

β2 − ωn+1(k
i) ≤ 0, i = 1, · · · , I

[K(ki) − ω2M]u = 0, i = 1, · · · , I

αmin
s ≤ α ≤ αmax

s , s = 1, · · · , Ndes

where β1 and β2 are, respectively, the upper bound on the nth band and the lower bound on the
(n+1)th band, α are design variables, ki represents the i-th wave vector in the irreducible Brillouin
zone. It is solved as an ordinary non-linear programming problem by MMA.

Fig. 13 gives the overall flow chart of isogeometric shape optimization via Coons patches. For
an input CAD geometry, Coons patches are first created. The internal control points for NURBS
are then generated based on Eq. (5). A mesh validity check is invoked. If the minimum control
point of the Jacobian of the NURBS patches is positive, a valid mesh is obtained. Otherwise, the
mesh rectification procedure is invoked where the internal control point’s parametric coordinates
are optimized, as shown in Eq. (16) until the mesh is valid. The valid NURBS patches are then
refined for isogeometric analysis. The sensitivity for the band gap and volume constraint over
design variable (boundary curve’s control points) α is then computed as shown in Eq. (19). The
design variables for the shape are then optimized. A convergence check is done. If not converged,
the Coons patches are then updated. The whole process repeats until a convergence criterion is
met.

In the section below, we present several shape optimization examples. In the photonic crystal
design (and in band gap design in general), it is accepted practice that optimization is done with
respect to a subset of wave vectors (in Fig. 15 from Γ to X to M to Γ). A precondition for such
practice is that the geometry has 45◦ symmetry. Since our goal here is to optimize the internal
profile, in all examples in this section, only 1/8 of profiles corresponding to 45◦ symmetry are rep-
resented as design variables. The relative permitivity of the dielectric is εr = 11.56, corresponding
to GaAs and that of air εr = 1.
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Coons patches update

NURBS patch refinement

Internal NURBS CP update

Isogeometric analysis

Sensitivity analysis

Optimization

Mesh rectification

End

CAD geometry
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Mesh valid? N
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Figure 13: The flow chart of isogeometric shape optimization via Coons patches.

4.1 Bi-quadratic B-spline geometry for maximizing the first band gap for TE

polarized waves

The goal of this design problem is to maximize the first band gap for TE polarized waves. The
design is modeled with bi-quadratic B-spline geometries via Coons patches. It has 5 patches and
28 control points. The initial geometry is shown in Fig. 14.a. A 45-degree symmetry in geometry
is imposed by constraining the control points with respect to the symmetric axes (shown as dotted
lines in Fig. 14.a). The design boundary is the shape of the internal air inclusion and is defined
by 4 quadratic B-spline curves each with 4 control points, shown in red. There are 4 linked nodes
between the internal design boundary and the outer boundary, shown in magenta. (Note that linked
nodes are control points of the Coons boundary that link the designed and/or fixed nodes. Their
update during the optimization is based on their relative position with respect to their connected
designed/fixed nodes in the initial design.) The analysis is done on the refined mesh. Two refined
meshes have been used in the isogeometric analysis. The first one uses one refinement with 48
elements and 96 nodes. The second mesh uses refinement twice and has 192 elements 280 nodes.
During the optimization, there are 5 design variables (two for controlling P1, one for controlling
the diagonal movement of P2 and the other two for variable bounds β1 and β2 of the band gap)
and 60 constraints (upper and lower bands for 30 sampled wave vectors along the Brillouin zone).

The criteria for terminating the optimization procedure is that the ratio of the objective function
change per iteration over the initial objective function is smaller than 1.0e-7. The convergence
history for both meshes are shown in Fig. 16. It takes 19 iterations for mesh 1 with the resulting
relative band gap 29.34% and 18 iterations for mesh 2 with the relative band gap 29.07%.

The optimized geometry with one refinement and two refinements are, respectively, shown in
Figs. 14.b and . 14.c. In the optimized geometry, the middle two control points for controlling the
design boundary nearly overlap each other. The four corners in the optimized boundary are sharp.
The optimized geometry from mesh 1 and mesh 2 are nearly identical. Fig. 14.d. shows the the
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B-spline mesh and control points corresponding to the design in Fig. 14.c. Comparing Fig. 14.a
and Fig. 14.d shows that the proposed B-spline construction via Coons patches is effective since
it bypasses the specification of many interior B-spline control points. The profile of the optimized
band gap from the second mesh is shown in Fig. 15.

The optimized geometries from meshes of two different element densities are nearly identical.
It demonstrates, even with relatively fewer elements , isogeometric shape optimization still results
in reasonably accurate optimized geometry.

P1 P2

(a) Initial geometry (b) Optimized geometry with one-time re-
finement

(c) Optimized geometry with two-time re-
finement

(d) Full NURBS model for the design in c)

Figure 14: Initial and optimized bi-quadratic geometry for maximizing band gap 1 for TE polarized
light.
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Figure 15: The band diagram from the optimized geometry in Fig. 14.c.
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Figure 16: Convergence for the two optimizations in Fig. 14.
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4.2 Bi-cubic NURBS geometry for maximizing the first band gap for the TE

polarized light

The example above shows that the optimized geometry for maximizing the first band gap for TE
polarized light exhibits sharp corners. For manufacturing reasons one may want to exclude sharp
corners and small curvature radii. In order to allow curvature radii control to smooth out the
sharp corners and to examine the trade-off between potential band gap loss and the imposed radius
constraint, we use a bi-cubic NURBS geometry to model the design. Curvatures of the design
boundary are controlled by constraining curvatures at sampled points on the boundary curves.

The initial design is shown in Fig. 17.a. There are 5 Coons patches and 56 nodes in the design
model. The inner design boundary marked in red is defined by 4 cubic B-spline curves each with 7
control points (also in red). There are 8 linked nodes between the inner design boundary and the
outer fixed boundary. The analysis model is refined once from the design model and there are total
128 bi-cubic elements and 281 nodes. The 45 degree symmetry is imposed for the design. Thus
there are only 4 independent control points, P1, P2, P3 and P4. The corresponding allowed design
ranges for the 4 points are shown in black in Fig. 17.a where two linear spans (one vertical for the
middle point P1 and one along diagonal for the corner control point P4) and two box spans (for
control points P2 and P3) are involved. All other control points for describing the design boundary
are obtained through symmetry.

When no radius constraint is imposed, there are 8 independent design variables (6 for controlling
the movement of 4 control points and and the other two as variable bounds for the band gap) and 60
constraints (upper and lower bands for 30 sampled wave vectors along the Brillouin zone). For radii
constraints, an additional C1 constraint is imposed, this leads to elimination of the corner control
point P4 from being an independent variable. Thus, there are 7 independent design variables (5
for controlling control point movement and the other two as variable bounds for the band gap)
and 100 constraints (60 for controlling band gaps and 40 for controlling curvatures for 20 sampled
points on the 1/8 of the design boundary. Both positive and negative curvatures are constrained).

Fig. 17 shows the optimized shape under various radius constraints, including no radius con-
straint, and minimal radii ranging from 0.02, 0.05, 0.1, 0.25, to 0.4. When no radius constraint
is imposed, the optimized shape has sharp corners, as shown in Fig. 17.b. When the minimal
radius constraint is imposed, the corner becomes smoother. An example of the optimized shape
with minimal radius 0.05 is shown in Fig. 17.c. (Note that in Figs. 17.b and 17.c., the 6 corner
control points in the lower part of the design boundary are hidden for better display of the opti-
mized boundary.) As the minimal radii increase further, the optimized shape approaches a circle,
as shown in Fig. 17.d where the minimal radius is 0.4. Table 2 gives the relative band gap for the
three designs.

Table 2: Relative band gap for three optimized designs

Minimum radii r0 r0.05 r0.4

∆ω/ωc(%) 29.2039 29.1144 10.7297

As the minimum radii are increased to obtain a smoother corner to ensure the photonic crystal’s
manufacturability, the optimized band gap is reduced. The trade-off between the relative band gap
and minimum radius constraint is plotted in Fig. 18 where more data pairs between the band gap
and minimal radii are shown.
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The maximum number of allowed iterations is 60. The number of iterations during the opti-
mization with radius constraint 0, 0.02, 0.05, 0.1, 0.25, and 0.4 are respectively 60, 60, 40, 47, 34,
and 28. Fig. 19 gives a representative example of convergence history where both the relative band
gap and the radius over the iteration are plotted for optimization with the constraint of minimum
radius 0.05. It shows that the radius constraint is active.

Fig. 20 shows the full NURBS model, including all control points and the isoparametric knot
curves used in obtaining the optimized design with minimal radius 0.05.

This example demonstrates that the NURBS based shape parameterization allows fine control
of the desired optimal shape. It also shows that the proposed NURBS construction via Coons
patches is effective since it bypasses the specification of many interior NURBS control points.

4.3 Bi-quadratic NURBS geometry for maximizing the 8th band gap for TM

polarized light

The goal of this design problem is to maximize the eighth band gap for TM polarized light. The
design model is made of 24 Coons patches, consisting of 52 elements and 165 control points. With
refinement once respectively in u and v direction, it leads to an analysis model consisting of 208
elements and 523 nodes. With two-time refinement, the analysis model consists of 832 elements
and 1391 nodes. Fig. 22 shows the full NURBS analysis model (with two-time refinement) for the
initial design A.

It has 18 design variables for controlling points from P1 until P10 and 65 constraints (60 for the
upper and lower bands for 30 sampled wave vectors along the Brillouin zone and 5 for the convex
constraints at P1, P3, P5, P7, and P9). Note that the points P1 and P5 are limited to horizontal
movements and P6 and P10 are limited to diagonal movements. All other points are allowed to
move in both x and y directions.

Fig. 21 shows the two initial designs and the optimized designs with one-time mesh refinement
and two-time mesh refinement. The allowable design variable ranges are shown in Figs. 21.a and
21.b. Figs. 21.c and 21.d show the design from mesh with one-time refinement after 50 iterations.
Figs. 21.e and 21.f show the nearly identical optimized design from a mesh with two-time refinement
with the initial designs respectively from Figs. 21.c and 21.d. It shows how initial designs from
two different geometry converge to nearly identical optimized shapes.

The optimization converges smoothly. An example of the convergence history for design A in
Fig. 21, is shown in Fig. 24. The initial design for mesh 2 starts from the optimized geometry of
mesh 1. The figure demonstrates that the optimized design (after 50 iterations) from the coarse
mesh provides a good initial design for optimization with the refined mesh since there is no major
change in the objective function during the optimization iteration for the mesh 2. Note that the
denser mesh for the same geometry leads to slightly lower numerical values of the band gap. The
relative band gap from Mesh 1, after 50 iterations is 43.26% and 43.00% from Mesh 2. Fig. 23
shows a mesh that does not have 45 degree symmetry, although the geometry does, the resulting
band profiles remain nearly periodic where the considered wave vectors traverse the full quadrant
of the Brillouin zone, from Γ, X1, M , Γ, X2, M , and to Γ. Fig. 25 shows that the initial NURBS
mesh generated automatically from the initial design (Fig. 21.a) was invalid. Note that the control
point P2 lies to the left of line L, thus leading to self-intersection. A magnified wireframe view of
the invalid patch (containing points P1 and P2) in Fig. 21.a is shown in Fig. 21.c where the internal
control points of the patch are shown in red. The wireframe view of the rectified mesh is shown in
Fig. 21.d where the internal control points are varied to correct the mesh. The mesh correction only
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P1 P2P3
P4�

(a) Initial geometry (b) Optimized shape with no radius con-
straint

(c) Optimized shape with minimum radius
0.05

(d) Optimized shape with minimum radius
0.4

(e) Initial and optimized shapes for minimal
r0, r0.02, r0.05, r0.1, r0.25, r0.4

(f) Magnified view of (e)

Figure 17: Initial and optimized bi-cubic geometry under various minimal radii constraint. The
objective is to maximize the 1st relative band gap for TE polarized light.
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Figure 18: Trade off between relative band gap and minimum radius constraint.
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Figure 19: Convergence of band gap and radius constraint in optimization with minimal radius
r0.005
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Figure 20: The full NURBS model of the optimized design under minimal radius 0.05.

takes 2 iterations. The mesh rectification is only invoked once during the optimization iteration.

5 Conclusions

This paper presents an approach that allows isogeometric optimization of topologically complex
geometries. The approach is based on using multiple Coons patches to model design geometry,
and using exact boundary conversion of Coons patches to NURBS patches to obtain the analysis
model, and augmenting it with a built-in mesh rectifier to ensure mesh injectivity.

We have successfully applied this approach in designing photonic crystals to maximize different
band gaps. It demonstrates that the use of NURBS in shape parameterization allows fine control
of desired shapes. The use of multiple compatible Coons patches has been found to be an effective
way for optimizing topologically-complex geometries. More specifically,

• the use of Coons patches allows users to design boundary shapes without specifying internal
control points of NURBS surfaces,

• the use of multiple patches allows topologically complex geometries to be represented as a
collection of rectangular-like NURBS patches, and

• the embedding of NURBS internal control points in the parametric domain of the Coon
patches allows the computing of analytical nodal sensitivities in gradient-based shape opti-
mization.

In particular, the method of maximizing minimal control points of the Jacobian B-spline surfaces
has been found to be very useful in ensuring that the B-spline meshes generated from the Coons
patches are valid.
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(a) Initial design A (b) Initial design B

(c) Optimized design A with one mesh re-
finement

(d) Optimized design B with one mesh re-
finement

(e) Optimized design A with two mesh re-
finement

(f) Optimized design B with two mesh re-
finements

Figure 21: Two initial designs and the optimized designs for maximizing band gap 8 for TM
polarized light.
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Figure 22: The full NURBS analysis model of the initial design A: red points are control points
and blue curves are isoparametric knot curves.
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(b) Band gap profile

Figure 23: Band gap profiles for the 45 degree symmetric geometry where the mesh does not have
such a symmetry. The band gap is obtained by considering wave vectors of a quadrant of the zone,
traversing from point Γ, X1, M , Γ, X2, M , and to Γ.

32



0 10 20 30 40 50
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

Iteration

∆ 
ω

/ω
c

 

 

Mesh 1
Mesh 2

Figure 24: Convergence in optimization with mesh 1 and mesh 2 for maximizing the 8th band gap
for the TM polarized light.
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Figure 25: B-spline mesh rectification by moving internal control points.
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Our future work would extend this approach to 3D structures. One of the advantages of our
approach to isogeometric shape optimization is that it can bypass the specification of internal
control points. Of course, when 3D shell structures are concerned, the internal points are part of
independent design variables, thus this advantage does not apply. However, our approach might
still be useful in that the Coons patch might provide a base for generating good initial internal
control points for shape optimization. Further, our approach is naturally applicable to 3D solid
structures where each Coons patch can be represented by 6 surfaces which provides a base for
generating internal control points for B-spline solid.
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