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Abstract

This paper presents an accurate method for computing point-set

surfaces from input data that can suppress the noise effect in the re-

sulting point-set surface. This is accomplished by controlling spatial

variation of residual errors between the input data and the resulting

point-set surface and offsetting any systematic bias. More specifically,

this method first reduces random noise of input data based on spatial

autocorrelation statistics: the statistics Z via Moran’s I. The band-

width of the surface is adjusted until the surface reaches desired value

of the statistics Z corresponding to a given significance level. The

method then compensates for potential systematic bias of the resultant

surface by offsetting along computed normal vectors. Computational

experiments on various point sets demonstrate that the method leads

to an accurate surface with controlled spatial variation of residuals and

reduced systematic bias.

∗All correspondence should be addressed to qian@iit.edu.
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1 INTRODUCTION

This paper presents an accurate method for computing point-set surfaces

from input data that can suppress the noise effect in the resulting point-set

surfaces. Point-set surfaces (PSSs) are continuous surfaces defined directly

from point sets. Since its original inception [1, 2, 3], the PSS and its many

variants have been widely used in various graphics, visualization, geometric

modeling and engineering applications. For example, we have applied the

PSS in the context of computer-aided design and manufacturing and devel-

oped a new approach termed direct digital design and manufacturing [4]. This

approach can enable direct digital design and manufacturing from massive

scanned data, by passing the usual CAD model reconstruction. This includes

the use of PSSs for direct rapid prototyping [5], NC machining [6], and direct

Boolean intersection between CAD geometry and acquired geometry[7]. The

projection operation in defining PSSs can also be applied for drawing curves

onto digital surfaces in points based modeling [8, 9, 10].

However, despite the broad usage of PSSs and its wide variants (for ex-

ample, ψ-type M-Estimators [11] and the forward search algorithm [12] have

been used to improve the shape quality of the resulting PSSs.), thus far there

have been limited work on examining the spatial distribution of residual er-

rors of the resulting PSSs.

Our work in this paper assume that the input points are points sampled

from object surfaces contaminated with random noise. The premise of this

work is the observation that, when the residual errors of input points with

respect to the reconstructed PSS approach spatially random, the correspond-

ing PSS approaches the true surface. Our approach is based on Levin’s PSS

[1]. We obtain the resulting PSS in a two-phase approach. We first vary

the bandwidth of the PSS until the statistics Z and Moran’s I (measures

used for characterizing the spatial randomness of residual errors between the

input data and the resultant PSS, which are introduced in Section 3) reach

a specified random level. We then compensate for potential systematic bias

by offsetting the points in the amount of mean error along the computed
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corresponding normal vectors.

Moran’s I and corresponding statistics Z have been used in three dimen-

sional coordinate metrology to examine randomness of geometric errors of

B-spline surfaces [13]. However, in this paper, we reveal that controlling the

randomness alone does not preclude the systematic bias (as shown in Section

4.3). This observation has led to the second phase (the offsetting operation)

in our method.

Various computational experiments demonstrate that, through controlled

spatial variation of residual errors and the offset of systematic bias of the

mean error, accurate PSSs can be obtained for input points sampled from

various freeform shapes.

The remainder of the paper is organized as follows. Section 2 reviews

related work on PSSs. Section 3 introduces Moran’s I and corresponding

statistics Z to measure the randomness of spatial patterns. Section 4 presents

a method to compute the randomness of residuals in the reconstructed PSS

and describes how to offset the potential bias in the surface. Section 5 details

the proposed point-set surface reconstruction method. Experimental results

are given in Section 6. Finally, conclusions are given in Section 7.

2 RELATED WORK

A point-set surface is a continuous surface defined directly from a point set.

Given a point set P = {p i, i = 1, . . . , n}, the original PSS is defined in two

steps [1]: an MLS (moving least-squares) projection procedure and a poly-

nomial fitting procedure. First a local plane H = {x |n · x −D = 0, x ∈ R3}

is found by minimizing the weighted sum of squared distances

n∑

i=1

(p i · n −D)2 θ (q ,p i) ,

where q is the projection of x onto H, θ (q ,p i) is usually a Gaussian weight

function with bandwidth h:
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θ (x ,p i) = e−
||x−pi||2

h2 . (1)

After H is found, the second step finds a local polynomial by taking the H

as the reference plane and using a similar weighted least squares method.

Amenta and Kil [3] generalized the MLS projection procedure via the

concept of extremal surfaces. The resultant surface of the MLS projection is

represented by an implicit function which is the product of a vector field n

and the gradient of an energy function

e (x ,n (x )) =
n∑

i=1

(
(x − p i)

T
n (x )

)2

θ (x ,p i) .

Such a surface definition for the MLS surface is conducive to calculate surface

characteristics such as curvatures [14].

Since the original definitions, many variants of PSSs have been developed.

They differ, for example, in the strategies used to specify bandwidths (sample

density [15], local feature size [16], curvatures [17]), in the surface models

used to fit (planes [3], spheres [18], polynomials [1]), in the weight functions

(isotropic and anisotropic weight functions [19], singular weight functions

[20]), and in fitting criterion (least squares criterion, ψ-type M-Estimators

[11], the maximum residual criterion [12]), and so on.

Using singular weight functions and a proper centroid function, PSSs

can interpolate locations and derivatives at these locations [20]. The inter-

polatory PSS is suitable for noiseless data. Algebraic PSSs [18] avoid the

polynomial fitting procedure by fitting spheres in the projection procedure.

They use spheres instead of general polynomials because spheres are easy to

be fitted and there is a close form of closest points on spheres. However, not

all surfaces can be accurately approximated locally by a sphere.

The bandwidth h in weight functions is an important parameter for PSSs

because a PSS with bigger bandwidth is more smooth but may smooth out

small or sharp features, while a PSS surface with smaller bandwidth is more

faithful to the input data but may be rough. The bandwidth h is typically
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selected according to sample density of points, local feature size, curvatures,

and so on.

Pauly [15] defined a bandwidth by the function hx = c/ρ (x ), where c

is a fixed scale factor, ρ (x ) : R3 → R+ is a continuous, smooth function

approximating the local sampling density. The ρ is computed by first es-

timating the local sample density for each point p i ∈ P by ρi = k/r2
i and

then interpolating by standard scattered data approximation techniques, e.g.

radial basis functions, where ri is the minimum radius of the sphere centered

at p i and containing k nearest neighbors to p i.

Dey and Sun [16] take the bandwidth to be a fraction of the local feature

size and define their PSS by the weight function

θ (x ,p) = e
−
√

2‖x−p‖2
ρ2lfs(x̂)lfs(p̂) ,

where x̂ and p̂ are closest points on the sampled surface S from points x and

p respectively, and |ρ| < 1 is a scale factor. The local feature size lfs (x ) at

a point x ∈ S is defined as the distance from the point to the nearest point

of the medial axis of S.

Wang et al. [17] used an optimal bandwidth in the second step of the

definition of Levin’s PSSs. They formulated the weighted least squares poly-

nomial fitting by the kernel regression and found the optimal bandwidth by

minimizing an approximated error evaluating the kernel regression perfor-

mance. In their formula, the bandwidth is selected by combining noise level,

sample density, and curvatures.

In addition to the the isotropic weight function given in Eq. (1), an

individual ellipsoidal weight function to each sample point is used to define

PSS in [19], which is given by

ωi (x ) = θ
(∥∥H−1

i (x − p i)
∥∥) .

where θ is a smooth monotonically decreasing function, Hi is an ellipsoid

oriented so that one of its axes points into the normal direction and the
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other two align with the principal curvature directions. There also is the

bandwidth selection problem for the anisotropic weight function.

In order to preserve small features and be less influenced by outliers,

robust implicit PSSs are defined by combining implicit PSSs with robust

local kernel regression [11]. Instead of the ordinary least squares criterion,

ψ-type M-Estimators are used to assign outliers less weight, i.e. additional

weight functions are used in the objective function. Besides the bandwidth

used in the spatial weight function, two additional bandwidths σr and σn

are introduced in the other two new weight functions. The σn is used in

the weight function of differences between predicted gradients and sample

normals. The σr is used in the weight function of residuals of values of

implicit surface function. Smaller values of the σn lead to sharper results.

Based on the fact that sharp features are formed by multiple surfaces,

a forward search method is introduced in [12] to find points of a smooth

region by a maximum residual criterion. Sharp features are identified by

intersections of surfaces. Final results are robust to outliers since the forward

search method gets rid of outliers from the fitting procedure.

Moving least squares interpolation scheme is analyzed in [21], where a

surface is reconstructed from point cloud data with normal vectors. The

surface is defined by implicit function

F (x ) =

∑n

i=1 θi (x )
(
(x − p i)

T
n i

)

∑n

i=1 θi (x )

where θi (x ) is a weight function and n i is the normal vector at point p i.

Under some assumptions about sample densities, local feature size, and the

bandwidth of the weight function, the surface F (x ) = 0 will lie in neigh-

borhoods of underlying surfaces. The size of the neighborhoods are bounded

by a value comparable with the point space of input point cloud. It can be

proved that the projection procedure converges and the resultant surface is

isotopic to the underlying surfaces [22].

In this paper, we follow the original definition of point-set surface [1],
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but with the explicit goal of ensuring the residual errors between the input

points and the resulting surface to be spatially independent and free from

systematic bias. Although other filters such as bilateral filters on meshes [23]

and feature sensitive filtering [24, 25] exist, our approach differs in several

aspects, 1) input model, our approach works directly on discrete unorganized

points versus polygonal mesh; 2) output model, our approach generates a

continuous, implicitly defined MLS surface, rather than another polygonal

mesh; 3) noise characteristic, our approach explicitly quantifies the spatial

correation of the error distribution through Moran’s I and statistics Z.

3 INTRODUCTION TO SPATIAL AUTO-

CORRELATION MEASURE

Randomness is used in this paper to characterize spatial autocorrelation of

some distributions. Fig. 1 shows a spatially independent pattern and a spa-

tially dependent pattern of height distributions, where different colors denote

different values of height. Randomness can be measured by Moran’s I, a

classic spatial autocorrelation statistic developed by Moran [26]. Spatial au-

tocorrelation means that adjacent observations of the same phenomenon are

correlated. Lower spatial autocorrelation corresponds to higher randomness.

Moran’s I is defined as

I =
n∑

i

∑
j ωij

∑
i

∑
j ωij

(
Xi −X

) (
Xj −X

)

∑
i

(
Xi −X

)2 , (2)

where n is the number of spatial units indexed by i and j; X is the variable

of interest; X is the mean of X; and ωij is a matrix of spatial weights. The

value of I ranges from -1 to 1. A value of I close to -1 indicates that the

variables X are negative relevant. A value of I close to 1 indicates that the

variables X are positive relevant. A value of I close to zero indicates that

the variables X are independent.

The statistics Z transformed from the Moran’s I is calculated by
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Figure 1: (a) Spatially independent pattern; (b) Spatially dependent pattern.

Z =
I − E (I)√
V ar (I)

, (3)

where E (I) and V ar (I) are the expected value and variance of Moran’s

I respectively under hypothesis of no spatial autocorrelation. The E (I) is

calculated by

E (I) =
−1

n− 1

The V ar (I) is calculated by

V ar (I) =
nS4 − S3S5

(n− 1) (n− 2) (n− 3)S2
0

,

where

S0 =
∑

i

∑

j

ωij, S1 =
1

2

∑

i

∑

j

(ωij + ωji)
2 , S2 =

∑

i

(
∑

i

ωij +
∑

j

ωji

)2

,

S3 =
n
∑

i

(
Xi −X

)4
(∑

i

(
Xi −X

)2)2 , S4 =
(
n2 − 3n+ 3

)
S1 − nS2 + 3S2

0 , S5 = 6S2
0 .

The following hypothesis is tested by the statistics Z:

• H0: Deviations are of spatially statistical independence.
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• Ha: Deviations are of spatially statistical dependence.

Following convention [13], a significance level of 0.02 is adopted which means

the probability of rejecting the hypothesis H0 is 0.02. The corresponding

critical value for the test statistics Z is Z0.02 = 2.33. Values of the statistics

Z greater than 2.33 or smaller than -2.33 indicate spatial autocorrelation

that is significant at the 2% level. if |Z| < Z0.02, the hypothesis H0 is

accepted. Otherwise, the hypothesis Ha is accepted. A higher significant

level corresponds to the smaller critical value of the statistics Z. For example,

values of the statistics Z greater than 1.96 or smaller than -1.96 indicate

spatial autocorrelation that is significant at the 5% level.

4 SPATIAL VARIATION OF RESIDUALS

IN RECONSTRUCTED PSSs

In this section, we briefly describe several concepts including residual errors

in surface reconstructions, the randomness measure for characterizing the

spatial autocorrelation of such residuals, and potential systematic bias in such

an error measure. These concepts form the basis for subsequent presentation

of our proposed method in reconstructing the PSS.

4.1 Residual errors in surface reconstruction

We first describe the PSS computing process and then the residual errors

of the input points with respect to both the resulting PSS surface and the

nominal surface.

Assume P = {p i, i = 1, . . . , n} is an input point set. We adopt the fol-

lowing two steps to define a PSS [1]:

1. MLS projection procedure: In the jth iteration, fit a plane to the

neighborhood of point p
j
i . Let p

j+1
i be the projection point of pj

i on the

plane. The iteration is ended when the Euclidean norm
∥∥pj

i − p
j+1
i

∥∥
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Figure 2: a) error between input points and the PSS; b) error between input

(sampled) points and the corresponding nominal surface.

is smaller than a given threshold. The termination produces p ′
i and

n (p ′
i), i = 1, . . . , n, where p ′

i is the projection point of p i, and n (p ′
i)

is the computed normal vector at point p ′
i.

2. Polynomial fitting procedure: Fit a polynomial surface to the neigh-

borhood of each point p ′
i and find the intersection point between the

surface and the line passing p ′
i and parallel with n (p ′

i). Then the

intersection point p̂ i is the point on the PSS.

Denote the point set on the PSS obtained by the above procedure as P̂ =

{p̂ i, i = 1, . . . , n}, where point p̂ i corresponds to point p i. Note, for nota-

tional convenience the PSS defined by the point set P̂ is sometimes simply

noted as P̂ . The signed error at point p i is given by

ê (p i) = 〈p i − p̂ i,n (p ′
i)〉 (4)

where 〈〉 denotes the inner product between two vectors. It is also shown in

Fig. 2.a. A consistent orientation of the normal vectors is necessary to define

errors over the input points, which can be obtained by a minimum spanning

tree [27] or some prior knowledge.

Similarly we can define the residuals of input (sampled) points with re-

spect to a nominal surface. Assume

p i = q i + εn (q i) (5)
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where q i is a point on the nominal surface corresponding to the input point

p i, n (q i) is the unit normal vector of the nominal surface at q i, and ε is a

random noise with zero mean. Similar to Eq. (4), the signed error at p i with

respect to the nominal surface is given by

e (p i) = 〈p i − q i,n (q i)〉 (6)

The error is also shown in Fig. 2.b. Under the assumption about the noise

ε, the mean of e (p i) should be zero and the statistics Z of e (p i) should be

|Z| < 2.33 for the significance level of 0.02.

One ideal way to measure the quality of a PSS is to compare it with nom-

inal surfaces. However, nominal surfaces are usually not known for an input

point set. An alternative to bypass the problem is to measure differences be-

tween input points and the constructed PSS. If the differences satisfy some

priori knowledge of noises of the input points, the PSS can be considered

as a proper approximate of the nominal surface. That is, when the PSS is

properly reconstructed, the e (p i) can be estimated by the ê (p i) given by

Eq. (4).

4.2 Computing Moran’s I and statistics Z of the resid-

uals

Based on the above definition of the residual errors, the Moran’s I of the

residual errors between input points and the resulting PSS can be described

as

I (ê) = nêTW ê , (7)

where ê = [(ê (p1) − µ̂) , . . . , (ê (pn) − µ̂)]T /
∥∥∥[(ê (p1) − µ̂) , . . . , (ê (pn) − µ̂)]T

∥∥∥,
µ̂ is the mean of the error ê (p i) , i = 1, . . . , n, W is the n× n weight matrix,

the ith row and jth column of W is ωij/
∑

k,l ωkl, and ωij is spatial weights.

The spatial weights ωij same as those in [13] are used in this paper, i.e.

ωij =

{
d−4

ij /Li, i 6= j

0, i = j
(8)
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where Li =
∑n

j=1,j 6=i d
−4
ij and dij is the distance between point p̂i and point

p̂j.

The error ê (p i) is defined by Eq. (4) and is calculated in each iteration

that adjusts the bandwidth in our method. Assume p̂
(k)
i is the corresponding

point on PSS of point p i at the kth iteration. Then the error ê (p i) at the

kth iteration is calculated by

ê(k) (p i) =
〈
p i − p̂

(k)
i ,n (p ′

i)
〉

(9)

Note, the I in Eq. (7) has been transformed into a matrix form. The

advantage of the matrix form (7) over the original form (2) is that it is

efficient to calculate the Moran’s I by the matrix form Eq. ((7)) through

vectorized computation. Further, it is clear from the matrix form that the

relationship between the Moran’s I and the error ê is determined by the

weight matrix W .

4.3 Systematic bias effect in randomness measure

The randomness measure presented above does not characterize any potential

systematic bias in the residuals. Assume ê (p i) = êsi
+ êri

, where êsi
and

êri
denote systematic and random errors respectively. If all the systematic

deviations are equal to the same constant c, i.e. êsi
= c, then the µ̂ in Eq.

(7) is given by

µ̂ =
1

n

n∑

i=1

êri
+ c = µ̂r + c.

where µ̂r is the mean of the error êri
. From above equations, we have

ê (p i) − µ̂ = êri
− µ̂r. (10)

Substituting Eq. (10) into Eq. (7), we have

I (ê) = I (êr) (11)

where êr = [(êr1 − µ̂r) , . . . , (êrn
− µ̂r)]

T /
∥∥∥[(êr1 − µ̂r) , . . . , (êrn

− µ̂r)]
T
∥∥∥. Sim-

ilarly, we have

Z (ê) = Z (êr) . (12)
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It is clear from Eqs. (11) and (12) the Moran’s I and statistics Z of residual

errors with respect to a surface are the same as those with respect to its offset

surfaces. This observation forms the basis for our subsequent bias offsetting

operation in the proposed PSS reconstruction method in order to eliminate

the systematic error.

5 Computing PSS with controlled spatial vari-

ation of residuals

Based on the above residual analysis of a PSS, a method is presented below to

compute a PSS from input points with controlled spatial variation of residual

errors and reduced systematic bias.

Assume P = {p i, i = 1, . . . , n} is input point set and let P̃ = {p̃ i, i = 1, . . . , n}

as the final output point set with bias corrected, where point p i corresponds

to point p̃ i. The error at point p i with respect to the resulting surface can

be measured by

ẽ (p i) = 〈p i − p̃ i,n (p ′
i)〉 (13)

where p ′
i is the MLS projection point of p i, n (p ′

i) is the unit normal vector

computed during the MLS projection procedure.

The resulting point set P̃ should be on a smooth surface and satisfy the

following conditions:

1. the mean of ẽ is equal to zero, and

2. |Z (ẽ)| < 2.33 for the significance level 0.02.

where ẽ = [(ẽ (p1) − µ̃) , . . . , (ẽ (pn) − µ̃)]T /
∥∥∥[(ẽ (p1) − µ̃) , . . . , (ẽ (pn) − µ̃)]T

∥∥∥
and µ̃ is the mean of the error ẽ (p i).

The point set P̃ is obtained in a two-phase process: 1) by defining a PSS

from P̂ satisfying |Z (ê)| < 2.33 , and 2) eliminating the systematic error

µ̂ =
∑n

i=1 ê (p i) /n from P̂ to obtain P̃ , where ê is the error vector in Eq.

(7).
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For the first condition, the random spatial variation of residuals can be

achieved by making I = 0. The vector ê in Eq. (7) making I = 0 should be

a vector in the null space of W . However the null space of W may be empty

or consist of infinite number of points including ones that may not represent

errors of smooth surfaces. Moreover, it is difficult to compute the null space

due to a big dimension n of the matrix W and the O (n2) complexity of the

computation. We bypass the problem by using the corresponding statistics Z

which has an explicit threshold for a given significance level. The significance

level of 0.02 is adopted and it results in |Z| < 2.33.

Since different bandwidths produce different PSSs and thus result in dif-

ferent errors ê in Eq. (7) and statistics Z of the error. We can view statistics

Z as a function of the bandwidth used in the polynomial fitting procedure.

(Note, the initial bandwidth used in the MLS projection has little influence

on the final result as later shown in Section 6.1.) If |Z (ê)| ≥ 2.33 for current

bandwidth, the bandwidth is adjusted by minimizing Z2 until |Z| < 2.33.

The increment of the bandwidth is obtained according to the Gauss-Newton

algorithm and given by

∆h = −
Z

dZ/dh
, (14)

where dZ/dh is estimated by (Z (h+ δh) − Z (h− δh)) / (2δh) and δh is a

small increment of the bandwidth.

The overall PSS reconstruction process is as follows:

1. Input point set P = {p i, i = 1, . . . , n} and set initial bandwidth h(0).

2. Obtain projection point set P ′ = {p ′
i, i = 1, . . . , n} and estimated nor-

mal vector n (p ′
i) at point p ′

i by the MLS projection procedure.

3. Obtain point set P̂ (k) =
{
p̂

(k)
i , i = 1, . . . , n

}
on PSS by the polynomial

fitting procedure, where k counts the iteration of the following process

that adjusts the bandwidth h(k).

4. Compute signed error ê(k) (p i) by Eq. (9). Calculate Moran’s I and

statistics Z according to p̂
(k)
i and ê(k) (p i).
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5. If |Z| < 2.33 or k = Nmax, go to step 6, where Nmax is the allowed

maximum number of iterations. Otherwise h(k+1) = h(k) + ∆h and

then k = k + 1, go to step 3, where ∆h is calculated by Eq. (14).

6. Assume µ̂ =
∑n

i=1 ê
(k) (p i) /n. Define the point set P̃ = {p̃ i, i = 1, . . . , n}

by p̃ i = p̂
(k)
i − µ̂n (p ′

i). Then P̃ is the resulting point set with residuals

spatially random and bias corrected.

7. (Optional) Define a PSS from the point set P̃ and normal vectors n (p ′
i).

In the Step 2 of the method, the bandwidth used in the projection is

h(0). The point set P ′ remains unchanged in the rest of the process. The h(0)

will be used as the initial value of the bandwidth of the polynomial fitting

procedure.

In the Step 3 of the method, the polynomial surface is fitted in the local

coordinate system whose z axis is parallel with n (p ′
i). The polynomial used

is quadratic. There are two reasons for using quadratic polynomials. First,

any free form surfaces can be approximated locally by quadratic polynomi-

als; second, higher degree polynomials are more sensitive to noises. In our

experiments, quadratic polynomials show better results than cubic or quar-

tic polynomials. The bandwidth used in the fitting procedure is h(k) and the

neighborhood consists of points in point set P whose distances to p
′
i is no

greater than 3h(k).

The formula of the fitted polynomial is given by z = f (x, y) in local

coordinate systems. Then there should be at most one intersection point

between the underlying surface and each line parallel to the z axis. Note

that the normal vector of the underlying surface is estimated by n (p ′
i). If

the included angle between n (p ′
i) and the normal vector at a point near p ′

i

is greater than 90 degrees, the z = f (x, y) is most likely not monotone in the

neighborhood of p ′
i. Then the range of the neighborhood of p ′

i is restricted

in the fitting process by not using the point at which the normal vector has

an included angle greater than 90 degrees from n (p ′
i).
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In the Step 4 of the method, signed distances are defined according to the

computed normal vector n (p ′
i). Consistent directions of these normal vectors

are obtained by a minimum spanning tree [27] or some prior knowledge.

In the optional Step 7 of the method, a PSS can be defined from the

noise-filtered point set P̃ . An interpolatory PSS can be defined for example

by [20]:

f (x ) = n (x )T (x − c (x )) = 0, (15)

where

n (x ) =

∑
i θ (‖x − p̃ i‖)n i∑

i θ (‖x − p̃ i‖)
, c (x ) =

∑
i θ (‖x − p̃ i‖) q̃ i∑

i θ (‖x − p̃ i‖)
,

q̃ i = x −
(
nT

i (x − p̃ i)
)
n i, n i = n (p ′

i) , θ (‖x − p̃ i‖) = ‖x − p̃ i‖
−2 .

6 EXPERIMENTS

In this section, we present results from our approach and compare them with

those from another adaptive MLS projection by Pauly [15]. We first describe

how we choose the initial bandwidth. We then present the results on both

synthetic data where the nominal surface is available and real scanned data.

We discuss how this method works with different noises and sampling den-

sities. The effect of sharp features is also briefly discussed with an example.

Our method is implemented on Matlab 7.6. All the experiments are carried

out on a computer with Intel Pentium 3GHz CPU and 2 GB of RAM. The

computational cost of our method increases with the number of input data,

the number of neighboring points used in MLS projection and polynomial

fitting, and the degree of the polynomial during the fitting. In our experi-

ments, around 100 MLS projections per second or 50 quadric polynomial fit

per second can be achieved when the bandwidth h is specified to be at 2 to

3 times of average point separation in the data cloud and the radius of the

neighborhood equals to 3h.
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Pauly’s adaptive MLS projection [15] is compared in our experiments. Ac-

cording to the suggestion in [28], the number of neighbors used to estimate

local sample density is specified at k = 15, which is then used to obtain the

adaptive Gaussian kernel width h in Pauly’s MLS projection. The Pauly’s

MLS projection is done through Pointshop3D which is an interactive sys-

tem for point-based surface editing [28, 29]. The Pauly’s MLS projection is

followed by a quadric polynomial fitting in Pointshop3D.

6.1 Initial bandwidth

The bandwidth in the MLS surface depends on both point density and the

feature size. More specifically, it should be smaller than the local feature size

and be larger than the average point separation sd. The LFS (Local Feature

Size) [21] at a point p ∈ S is defined as the distance from p to the nearest

point of the medial axis of S. The medial axis of S consists of points from

which there are two or more closest points in S. Assume the LFS at at a

point p is denoted by lfs (p). Then the bandwidth at p should not be greater

than ε1lfs (p), where ε1 is a given constant usually smaller than 1. Note, in

practice, we do not compute the local feature size. However, the concept of

local feature size provides users a sense how large the initial h can be. The

initial bandwidth is also related to the sample density of the input points.

Assume the distance from p ∈ P to its nearest neighbor in P is sd (p). The

bandwidth at p should be greater than ε2sd (p), where ε2 is a given constant

usually greater than 0.5. That is, the initial bandwidth should be chosen

within the ranges [ε2sd (p) , ε1lfs (p)].

An example on torus is given below. For a point p on the torus shown

in Fig. 3, lfs (p) = r2 if r1 ≥ 2r2. A point set consisting of 6227 points is

sampled from a torus with r1 = 15 and r2 = 5. The average point space of

the point set is about 0.60. Then the point set is contaminated by noise with

zero mean (µ0 = 0) and 0.06 standard deviation (σ0 = 0.06). Table 1 gives

results of our method applied on the torus using different initial bandwidths,

where Z, µ, σ, and µmse denote statistics Z, mean, standard deviation, and
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Figure 3: The torus used in experiments.

mean squared error of differences between the input data P and resultant

data P̃ respectively. These initial bandwidths range from one to six times

of the average point space. As the table shows, under these different initial

bandwidths,

• the condition |Z| ≤ 2.33 is satisfied for all initial bandwidths.

• µ and σ are identical to µ0 and σ0 to the fourth digit in all cases.

This example demonstrates that, due to the built-in iterative search for

the optimized bandwidth, there is a wide range of initial widths that all lead

to accurate PSS surfaces with random deviations.

Table 1: Results of the torus with different initial bandwidths

Initial bandwidth Z µ σ µmse

0.6 0.59 0 0.0601 0.0036

1.2 1.98 0 0.0604 0.0037

1.8 0.73 0 0.0602 0.0036

2.4 1.19 0 0.0603 0.0036

3 -1.14 0 0.0600 0.0036

3.6 0.75 0 0.0602 0.0036
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6.2 Experimental results on synthetic data

Experimental results for a set of synthetic shapes including a sphere, a cylin-

der, a hyperboloid, a torus and a freeform wavy surface are shown in Fig. 4

- Fig. 8. In the remainder of this paper, we adopt the following notation:

the input data P , the resultant point set P ′ from Pauly’s method, the re-

sultant point set of our method P̃ , and the nominal surfaces S respectively.

Differences between P and S, P ′ and S, P̃ and S are also shown in Fig. 4 -

Fig. 8. Table 2 shows characteristics of the input data, initial and resultant

bandwidths, where n, sd, µ0, and σ0 denote number of input points, average

point space, mean and standard deviation of added noises with respect to

the respective nominal surfaces.

Table 2: Input data, initial bandwidths and resultant bandwidths

Examples n sd µ0 σ0 Initial h Resultant h

Sphere 2,606 0.59 0 0.1 1.5 7.34

Cylinder 5,166 0.50 0 0.1 1.5 3.04

Hyperboloid 10,032 0.44 0 0.1 1.5 3.85

Torus 6,227 0.60 0 0.06 1.0 3.17

Wavy surface 40,000 0.08 0 0.02 0.5 0.5

The statistics of the results, including statistics Z, mean error µ, standard

deviation σ, and mean squared error (denoted by µmse) of the differences

between P and S, P and P̃ , are given in Table 3. As the results show,

• The differences between the input data P and the noise-filtered result-

ing data P̃ have become random at the significance level 0.02 (that is,

all Zs are smaller than 2.33). This means that random noises have

been removed in P̃ .

• The mean and standard deviation of the input data with respect to

the resultant data P̃ are similar to those with respect to the nominal

surfaces S. The differences of the mean and standard deviation of the
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and S

Figure 4: Results obtained from a sphere.
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(c) Output data P̃ of our method and differences between P̃

and S

Figure 5: Results obtained from a cylinder.
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and S

Figure 6: Results obtained from a hyperboloid.
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and S

Figure 7: Results obtained from a torus.
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(c) Output data P̃ of our method and differences between P̃

and S

Figure 8: Results obtained from a wavy surface.
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input data with respect to nominal surfaces versus with respect to the

reconstructed P̃ are smaller than 5 percents. This further confirms

that the resulting point set surfaces P̃ approximates true surfaces as

the residuals become random.

Table 3: Differences between input point set P and nominal surface S, P

and estimated point set P̃ on S

P and S P and P̃

Examples Z µ0 σ0 µmse0 Z µ σ µmse

Sphere -1.15 0 0.1 0.01 -0.15 0 0.1006 0.010

Cylinder 2.48 0 0.1 0.01 -1.06 0 0.0985 0.0097

Hyperboloid -0.44 0 0.1 0.01 -1.04 0 0.0997 0.0099

Torus -0.52 0 0.06 0.0036 1.81 0 0.0604 0.0036

Wavy surface -0.58 0 0.02 0.0004 -2.07 0 0.0200 0.0004

Table 4: Deviations between nominal surface S and point set P̂ (before

compensation) and between nominal surface S and point set P̃ (after com-

pensation)

S and P̂ S and P̃

Examples µ σ µmse µ σ µmse

Sphere -0.477 0.018 0.23 -0.000008 0.018 0.00032

Cylinder -0.0070 0.012 0.00019 0.000020 0.012 0.00014

Hyperboloid -0.017 0.012 0.00043 0.000024 0.012 0.00015

Torus -0.059 0.016 0.0037 0.000001 0.016 0.00026

Wavy surface 0.000043 0.0043 0.000018 -0.000005 0.0043 0.00002

Table 4 further compares the effect of correcting systematic bias (Step 6

of the method described in Section 5). It shows that

• The point set with controlled spatial distribution of residuals without

systematic bias correction, P̂ , exhibited larger mean errors µ and larger
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Figure 10: The statistics Z and mean squared error of differences between

input point set P and point set P̂ before compensating for systematic errors.

mean squared error µmse to the nominal surface S than the point set P̃

with compensation to these nominal surfaces. Therefore, as the tables

shows, the compensation removes the systematic bias.

Fig. 9 shows the convergence of our method in various examples. The

stop criterion of the iteration is given by |Z| < 2.33 for the significance level

0.02 and the two lines |Z| = 2.33 are plotted in the figure. As the figure

shows, only several number of iterations are needed for all the examples.

The initial and resulting h are the same for the wavy surface in Table 2.

It suggests that the initial h happens to produce a MLS surface satisfying

the randomness requirement. It also indicates that such bandwidth is not
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unique.

Table 5 details the parameters used in Pointshop3D for the synthetic

data. Compared with surfaces obtained by our method shown in Fig. 4.c -

Fig. 8.c, surfaces obtained by Pauly’s method shown in Fig. 4.b - Fig. 8.b

are less smooth. Color plots of Fig. 4.b - Fig. 8.b and Fig. 4.c - Fig. 8.c

visually indicate that results of our method are closer to nominal surfaces

than those from PointShop3D with Pauly’s method.

Quantitative results are in Table 6. Left column of Table 6 gives the

statistics Z, mean, standard deviation, mean square error of the differences

between the input data and the data obtained by Pauly’s method. Right

column of Table 6 gives the mean, standard deviation, mean square error of

the differences between nominal surfaces and the data obtained by Pauly’s

method. Compared with the right column of Table 3, the differences between

P and P ′ in Table 6 are not random, and mean and standard deviation of

the differences are rather different to those of added noises. Compared with

the right column of Table 4, the difference between S and P ′ in Table 6

are bigger. This indicates that results of our method are closer to nominal

surfaces than those from PointShop3D with Pauly’s method.

Table 5: Parameters of Pointshop3D for the synthetic data

Brent Minimization Options

Examples scale radius Max Iteration Tolerance Search Range

Sphere 20.0 10 1e-4 6

Cylinder 20.0 10 1e-4 6

Hyperboloid 20.0 10 1e-4 3

Torus 20.0 10 1e-4 3

Wavy surface 200.0 10 1e-4 1

The above experiments demonstrate that the proposed method based on

controlled spatial variation of residuals leads to accurate reconstruction of

point-set surfaces from input data. Fig. 10 illustrates how the statistics
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Table 6: Differences between input point set P and resultant point set P ′ of

Pauly’s method, nominal surface S and point set P ′.

P and P ′ S and P ′

Examples Z µ σ µmse µ0 σ0 µmse0

Sphere -15.29 0.00176 0.088 0.0077 0.00173 0.039 0.0015

Cylinder -19.36 -0.00045 0.089 0.0079 -0.00044 0.039 0.0015

Hyperboloid -28.76 0.00050 0.090 0.0081 0.00050 0.039 0.0015

Torus -23.43 -0.00051 0.053 0.0028 -0.00052 0.024 0.0006

Wavy surface -53.02 0.00001 0.018 0.0003 0.00001 0.0077 0.0001

Z and mean squared error vary over different bandwidths. These are the

errors between P and P̂ . It illustrates that directly minimizing mean squared

error cannot produce a proper value of the bandwidth, while minimizing the

squared Z can obtain one.

6.3 Experimental result on real scanned data

The application of this method on actual scanned data has also been con-

ducted. Fig. 11.a shows a sculptured face (P ) obtained with Minolta Viviv

9i where the actual noise is unknown. Fig. 11.b and Fig. 11.c show results

obtained by Pauly’s method and our method respectively. Parameters of

Pointshop3D for the scanned data are given in Table 8.

Fig. 11.d and Fig. 11.e show differences between the input data and

results of the face. Fig. 12.a shows the Stanford bunny [30]. Fig. 12.b

and Fig. 12.c show results obtained by Pauly’s method and our method

respectively. Fig. 12.d and Fig. 12.e show differences between the input

data and results of the bunny. As Fig. 11 and Fig. 12 graphically show that

noise in the measurement data has been suppressed by both methods.

Quantitative results of the face and the bunny are given in Table 7 and

Table 9. As indicated by these tables, differences between input data and

results of our method are more random and have lower means and standard
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deviations than those of Pauly’s method.

Table 7: Results on the sculpture and the bunny of our method

Examples n sdis Z µ σ µmse Resultant h

Sculpture 18,498 0.45 0.25 0 0.0304 0.0009 0.72

Stanford bunny 34,984 1.04 -0.58 0 0.0328 0.0011 1.57

Table 8: Parameters of Pointshop3D for the scanned data

Brent Minimization Options

Examples scale radius Max Iteration Tolerance Search Range

Face 10.0 10 1e-4 1

Stanford bunny 5.0 10 1e-4 1

Table 9: Results on the sculpture and the bunny of Pauly’s method

Examples Z µ σ µmse

Face 25.58 -0.00114 0.0414 0.0017

Stanford bunny 25.74 -0.00069 0.0454 0.0021

6.4 Influence of noise level and sample density

The influence of noise levels and sample densities over the resulting PSSs

are examined below. Specifically, we examine how the resulting h and the

deviations between the input point set P and the noise-filtered point set P̃

vary with respect to noise levels and sample densities.

Table 10 shows how sample densities of the torus affect the resulting point

sets. First, the noise level is kept the same (µ0 = 0, σ0 = 0.6). As the table

shows, denser points lead to smaller bandwidth, but the statistics of the

resulting point sets including Z, µ, and σ are still the same and consistent

with the added noise µ0 and σ0.
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Figure 11: Results on a measured sculpture. (a) input data; (b) resultant

PSS obtained by Pauly’s method; (c) resultant PSS obtained by our method;

(d) differences between (a) and (b); (e) differences between (a) and (c).

30



(a) (b) (c)

0.80

0.60

0.40

0.20

0.00

-0.00

-0.10

-0.20

-0.30

-0.40

mm
-0.50

(d)

0.80

0.60

0.40

0.20

0.00

-0.00

-0.10

-0.20

-0.30

-0.40

mm
-0.50

(e)

Figure 12: Results on the Stanford bunny. (a) input data; (b) resultant PSS

obtained by Pauly’s method; (c) resultant PSS obtained by our method; (d)

differences between (a) and (b); (e) differences between (a) and (c).
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Figure 13: The statistics Z with respect to the bandwidth for: (a) the sculp-

ture; (b) the Stanford bunny.

Table 10: Results of the torus with different sample densities

n sdis Z µ σ µmse Resultant h

6,227 0.60 1.78 0 0.060 0.0036 3.17

10,988 0.45 1.82 0 0.060 0.0036 3.02

24,581 0.31 1.50 0 0.060 0.0036 2.90

Table 11 shows the influence of the various noise levels in the torus sam-

pled with total 6, 227 points. As the table shows, as the noise level decreases,

the resulting h decreases. However, the means and standard deviations , µ

and σ, between the input and resulting point sets are consistent with the

corresponding noise levels µ0 and σ0.

Experiments on more complex examples are also conducted. Fig 14 and

Table 12 show results obtained from the Venus model when the input data

has different sample densities and the same noise level (µ0 = 0, σ0 = 0.2 of

the noise). As the results show, higher sample density produces a little bit

smaller bandwidth. Noises have been effectively removed in all cases in spite

of different sample densities, i.e. µ ≈ µ0, σ ≈ σ0 and |Z| ≤ 2.33. As Fig 14

shows, more detailed features can be captured in the resulting set when the

input data is denser.
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Figure 14: Results of the Venus model with different sample densities. Aver-

age point space: left: 1.74; middle: 1.13; right: 0.61. First row: input data;

second row: resultant data; third row: differences between input data and

resultant data.
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Table 11: Results of the torus at different noise levels

µ0 of noise σ0 of noise Z µ σ µmse Resultant h

0 0.06 1.78 0 0.060 0.0036 3.17

0 0.04 0.48 0 0.040 0.0016 2.87

0 0.02 0.93 0 0.020 0.0004 2.59

Table 12: Results of the Venus when the input data has different sample

densities

n sd Z µ σ σmse Resultant h

23,076 1.74 0.10 0 0.210 0.0440 4.22

63,827 1.13 1.10 0 0.204 0.0415 3.43

255,176 0.61 1.15 0 0.199 0.0398 2.70

6.5 Experimental results on sharp features

Our proposed method of controlling spatial variation of residuals and offset-

ting the bias has been found very effective on a variety of freeform shapes.

We now extend this method to point cloud with sharp features.

Fig. 15 shows an example with sharp features, where the input data with

different sample densities and noise levels are used. As the figure shows,

sharp features are smoothed out when the points are not dense enough and

the noise is high (Fig. 15.a). On the other hand, sharp features are preserved

when the points are dense and the noise is low (Fig. 15.b).

Fig. 16 shows the results obtained from the Fandisk model, where two

examples have different average point spaces and the same noise level. The

model is obtained from [31]. Noises are added to the Fandisk model after

upsampling. As Fig. 16 shows, sharp features are preserved when sample

densities are increased. Fig 17 shows how the statistics Z vary with respect

to the bandwidth for examples shown in Fig. 15.a and Fig. 16.a.. In both

cases, the bandwidths can be automatically found by our method that ensure

the resulting PSS surfaces with random error distribution, i.e. statistics |Z|
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Figure 15: Results of the object consisting of box and cylinder. Left: input

data; middle: approximated nominal surfaces; right: differences between

input data and approximated nominal surfaces. Average point space: (a)

0.35, (b) 0.09; standard deviation of noise: (a) 0.05, (b) 0.01.
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Figure 16: Results of the Fandisk model. Left: input data; middle: approx-

imated nominal surfaces; right: differences between input data and approx-

imated nominal surfaces. Average point space: (a) 8.56, (b) 4.39; standard

deviation of noise is 1.0 for both (a) and (b).

smaller than 2.33 under the significance level of 0.02.

Therefore, to directly use our method in processing sharp features, denser

data at the sharp corners is needed. In order to more effectively deal with

sharp features, future work would look into how methods such as robust

statistics [12], feature aware [32], and sparse reconstruction [33] can be ap-

plied in combination with our proposed method.
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Figure 17: The statistics Z with respect to the bandwidth for: (a) the object

shown in Fig. 15.a; (b) the Fandisk model shown in Fig. 16.a.

7 CONCLUSION

This paper presents a novel method for defining a continuous point-set surface

from input points through controlled spatial variation of residual errors and

offset of systematic bias of the mean error. The random variation of residuals

between input points and the resulting point sets is obtained through varying

the bandwidth so that the statistics Z corresponding to Moran’s I reaches the

specified random level. Potential bias is corrected by offsetting the resulting

points along the computed normal.

A set of computational experiments demonstrate the method is effective in

removing random noise in the input data and leads to accurate reconstruction

of point-set surfaces for freeform shapes. The resultant PSSs exhibit similar

residual characteristics (randomness, mean, standard deviation) with respect

to the input sampled points as the nominal surfaces do.

Future work would look into how the method can be extended to handle

sharp features more effectively.
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