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Abstract In this paper, a new multi-sensor calibration approach, called iterative
registration and fusion (IRF), is presented. The key idea of this approach is to use
surfaces reconstructed from multiple point clouds to enhance the registration accuracy
and robustness. It calibrates the relative position and orientation of the spatial coordinate
systems among multiple sensors by iteratively registering the discrete 3D sensor data
against an evolving reconstructed B-spline surface, which results from the Kalman filter-
based multi-sensor data fusion. Upon each registration, the sensor data gets closer to the
surface. Upon fusing the newly registered sensor data with the surface, the updated
surface represents the sensor data more accurately. We prove that such an iterative
registration and fusion process is guaranteed to converge. We further demonstrate in
experiments that the IRF can result in more accurate and more stable calibration than
many classical point cloud registration methods.

Keywords: B-spline surface reconstruction, registration, Kalman filter, sensor
calibration, iterative closest point (ICP)

1 Introduction

Multiple sensors of various modalities and with different sensing resolutions,
measurement ranges and uncertainties are increasingly being integrated into one platform
to improve the overall sensing speed and coverage, and to reduce the uncertainty. Such
multi-sensor systems have found wide applications in terrain surveillance, military
reconnaissance, dimensional metrology and shape digitization in reverse engineering
[1,13, 23, 28].

In order to effectively integrate and fuse spatial data from different 3D sensors, it is
important to know the relative position and orientation of the spatial coordinate systems
among these sensors [2, 10]. The calibration of such spatial relationships among different
sensors can be decomposed into two tasks: intrinsic calibration where internal sensor
parameters are determined and extrinsic calibration where the position and the orientation
of a sensor relative to a given coordinate system are determined. In this paper, we assume
the intrinsic calibration has been properly conducted and we focus on the extrinsic
calibration. Among many methods for extrinsic calibration [3, 6, 11, 32, 48], sensor data
registration through the iterative closest point (ICP) method or its variants is a common
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choice [3, 4, 32] since it requires neither precise knowledge of the geometry of the
calibration artifacts nor explicit data correspondence from different sensor data.

However, the calibration result from such a point based registration method is affected by
the amount of sensor data and the level of data noise. This problem becomes especially
severe in a multi-sensor platform where data density and variance from different sensors
vary significantly.

In order to ensure accurate and robust calibration of multiple sensors, in this paper, we
present a new approach for multi-sensor calibration. The basis of our approach is two-
fold: a) a continuous surface reconstructed from the sensor data provides a more accurate
geometry for data registration than the discrete point cloud; b) the surface reconstructed
from multiple sensor data is more accurate than that from any single sensor data. We call
our approach iterative registration and fusion (IRF). The core idea of the IRF is to iterate
the following two steps:

1. Using the ICP algorithm [3] to register different sensor data against a reconstructed
surface to achieve accurate and robust alignment for the ensuing point-surface fusion.

2. Using the Kalman filter to fuse the newly aligned sensor data with the previously
reconstructed surface to obtain an updated, accurate surface for the subsequent point-
surface registration.

The main contribution of this paper is the following.

e We develop a new approach, IRF, for aligning point cloud data of different sensor
characteristics such as sampling density and uncertainty (variance). Compared with
the original ICP algorithm [3] and its variants such as point-plane registration [6], our
novelty lies in the use of an extra fusion process (the second step above) that
generates a smooth surface from the aligned multi-sensor data for subsequent point-
surface registration. Unlike typical point-surface registration [3, 29] where a surface,
often nominal, is given (e.g. measurement data points are to be aligned with the
nominal shape model to determine the part shape deviation in metrology applications),
the surface in IRF is reconstructed from the points and dynamically evolves as the
registration process proceeds. We demonstrate that a) point-surface registration based
on the surface reconstructed from point clouds leads to more accurate registration
than these ICP variants; b) the IRF results in an even more accurate and robust
registration.

e We extend the Kalman filter-based B-spline surface reconstruction [18, 19, 42] into
the IRF process. More specifically, we develop a formulation that enables B-spline
surface based data fusion, data withdrawal and data registration.

e We further prove and demonstrate that the IRF process is guaranteed to converge to a
minimum error. This convergence property facilitates the selection of the initial
surface model by checking the accuracy of the surface after the process is converged.

The remainder of this paper is organized as follows. Section 2 reviews prior work in
sensor calibration and 3D data registration. Section 3 presents the mathematical
formulations for surface-based data fusion, data withdrawal, and data registration. Section
4 describes the overall iterative registration and fusion method. Section 5 gives the



experimental results. Section 6 discusses the convergence theorem and how IRF performs
under different conditions. This paper concludes in Section 7.

2 Literature review

During the object digitization process, complex 3D objects often require sensing from
multiple views or several sensors [2, 35]. Multi-sensor calibration typically includes two
steps, intrinsic calibration to determine each individual sensor’s internal parameters [36,
37] and data bias [15,16] and extrinsic calibration to determine the relative position and
orientation between sensors [28]. In this paper, we concentrate on the extrinsic calibration
among sensors.

Multiple methods are available for registering multi-view or multi-sensor data into one
common coordinate system. Pair-wise data registration using point-to-point ICP has been
widely used [3, 4, 6, 11, 24, 25, 32, 33, 45, 48] and performs well under an appropriate
initial orientation and with sufficient data density and low data noise. The algorithmic
convergence of these variants is analyzed in [29]. Even though point-surface registration
has been discussed in many of these approaches, they assume the surface is given.

Besides the pair-wise correspondence method based on closest points between two data
sets, shape features such as spin images (oriented point-normal distribution) [20], linear
features [39], integral volume descriptors [12], and invariant features (curvature, moment
invariants, spherical harmonics invariants) [34] have also been extracted and used to
build the optimal correspondence between a set of point clouds, and followed by the
point-to-point ICP to obtain optimal registration.

Since the pair-wise registration for multi-view or multi-sensor data may result in the
accumulation of registration error [2, 10], methods have been proposed to improve the
overall registration accuracy through a registration network of multi-view data error
distribution [2,10], pair-wise alignment constraints [30], optimally distributing the error
along the registration cycles [35], force-based optimization [9], and manifold
optimization [22].

To get higher registration accuracy, a method combining surface reconstruction and
registration is recently proposed in [50]. However, different noise levels are not
considered in the surface reconstruction. In our approach, surface reconstruction is
formulated as a multi-sensor data fusion process, and different noise levels are considered
to obtain a more accurate fusion surface. In addition, our iterative process of multi-sensor
data fusion and registration is guaranteed to converge to a minimum error.

3 Mathematical formulation for surface-based data fusion, and
data withdrawal and data registration

The mathematical formulations for surface-based data fusion, data withdrawal and data
registration are the key to our IRF method and are described in this section. They include:
1) B-spline surface representation, 2) Kalman filter based data fusion, 3) data withdrawal,
and 4) data registration. Although Kalman filter-based surface fusion has been introduced
in [18, 21, 42, 43], Kalman filter-based data withdrawal is novel and is used in our IRF
process.



3.1 B-spline surface representation

In the IRF method, the underlying surface for data fusion and registration can be of
planar, cylindrical or free-form B-spline surfaces. Without loss of generality, we use the
B-spline as the basic surface representation for our introduction of the IRF method since
the B-spline surface can represent free-form surfaces and has been widely used in product
design and manufacturing. A brief discussion on other types of surfaces is also provided
in Section 3.5.

A bi-cubic B-spline surface has the form:
Suv)=Y Y BWB WP, (1)
i=1 j=I
where B is the B-spline shape function and P, is the ij -th control point (number of

control points is n=n, xn, ). The equation can also be expressed in a matrix form:
S(u,v)=A-P, (2)

where A is the B-spline shape function vector (of dimension n), and P represents the
collection of control points (of dimensionn). See [27] for details on the B-spline surface
representation.

3.2 Datafusion

In order to fuse multi-sensor data which has different sensor noise (we assume that the
noise is independent, white and Gaussian) into a B-spline surface, we choose the Kalman
filter (a recursive least-squares method) [44] to produce the optimal estimate of the
surface in a least-squares sense.
Given a sensor measurement z on the surface S(u,v) with parameters (u,,v,), Eq.2 tells us
its position is

z=A, P+e¢, 3)
where A, is the B-spline shape function matrix, and ¢ is the measurement noise.
In the terminology of the Kalman filter, the above B-spline surface equation represents a
linear system between the internal surface state and external observations z [42, 43].
That is, the collection of control points P constitutes the internal state of the object shape,

the measurement z with its covariance forms the external observations of the B-spline
surface, and A, corresponds to the measurement matrix. Then the Kalman gain [18 ]:

K, =A, Al(A,A, AT+A,), (4)
where K, is the | -th step Kalman gain, A, is the covariance of state P, at the (I-1)-th
step, and A, is the variance of measurement z.

The surface state and covariance updating equation are:
P =P +K (z-A®U,.Vv,)P ), Q)
and (a): A, =(I-KA(U,V,))A, or(b) (A, )" =(A, J'+AT(U.v,)A,) " AlU,.v,). (6)

Egs. 5 and 6 allow incremental surface update with one measurement z from a surface
S_, which is defined by control points P,_, through Eq.2. We denote such an incremental

fusion for surface updating as



§.©z-8, (7)
where § is the updated surface defined by the state P,.

Given a point cloud Q={z,--,z,} and the initial surface estimate S,, we can obtain the
final updated surface S, with Eq.7 by

(§92)92)-)8z,-5S,. (8)
The Eq.8 can be denoted as S, @Q— S, . 9)

From Egs. 5 and 6, we can obtain the fusion result efficiently in a batch processing mode
[18] from Q and S by

Pm{(A,,O PeSar (AL)IAZJ"((AP” Fe e SAT (AL)I;} (10)

e
[

[, TIAJI. (1

where m is the number of measurements, S is the initial surface which is defined by P,
and its covariance A, . The resulting surface S, is represented by P, and its

covariance A, ,z is thei—th measurement, A, is the B-spline shape function matrix

.
relating to the measurementz, and A, is the variance of z . Note that the fusion process

is order independent: each term in the summation depends only the (u,v) parameters and
measurement z.

3.3 Data withdrawal

During the IRF process, the sensor points fused into the surface model need to be
replaced with the updated coordinates after each new registration. Such replacement will
involve a data withdrawal process that withdraws the old data coordinates from the
surface model and a data fusion process that adds the new data coordinates into the
surface model. Data fusion can be conducted as described above. The data withdrawal
process for removing the fused data from the fused surface is described below.

Assuming the fused surface S at step k is defined with the state P, and its
covariance A, , we can withdraw a measured point z with parameter (u,,v,) from the

fused surface through the following equations (Lemma 1 in the Appendix contains the
detailed proof).

P, =P +K((z-AP)and A, =(I-K/A)A, , (12)
where K, =A, AT-(-A, +A,A, AL
Here we denote the data withdrawal operation for the updated surface S, from the fused
surface S, as

S©z=s,. (13)
Given a point cloud Q={z,z -z} and its fused surface S,, we can withdraw Q from S,
and obtain the surface S, ,after withdrawal through Eq.13 by

(($,©2))0 2, > S (14)



Eq.14 can be denoted as §,©Q—S,,,, - (15)
Eq. 12 and Egs. 5 and 6 are structurally similar (and only differ in A, - -A,). Similar to

the batch mode of data fusion (Eqgs. 10 and 11), we can obtain the withdrawn surface S,
in an efficient batch method for the withdrawal of point cloud Q from the fused surface

S, by
o= (0 ) ST, ) (6 r- St 2. (16

Ay =((Apm)“ —iZmI:A; (a, )‘Azjl. (17)

where P, and its covariance A, represents the surface S, after withdrawal, P, and

\m+m
its covariance A, represents the fused surface S,, z is thei-th measurement zeQ,
A, is the B-spline shape function matrix at the measurement z, and A, is the variance

of z. As with fusion, withdrawal is order-independent.

3.4 Data registration

Given two sensor data clouds Q, and Q for data registration, we minimize the overall
distance between the two point clouds. Let q; be the j—th point of Q, T,(q;) be the
transformed point of q,, and §, be the point in Q, with the closest distance toT,(q,). The
overall squared error between the two point clouds is

2

; (18)

m M
ER.0 =3 d*@, T, (o) =3 D Ja, ~Roa,
i= =

where R is a rotation matrix, t is a translation vector, d(g,.T,(q;)) is the distance between
the transformed point T,(q;) and its closest point §; in Q,, and m is the number of data
points in Q, .
The above process of registering point cloud Q into Q,’s coordinate system can be
denoted as
Q®Q —~Q . (19)

where the Q after the transformation is noted as Q.
When data points are sparse or the sensor noise is large, the point-to-point registration
may not be accurate. Here we register one point cloud against a fused continuous surface.
In Eq.18, the objective function changes to

E(R.0= 33 d*(" T ) =3 2a*(S" Rla, )+ o). (20)

where S’ is an initial surface reconstructed from the point-cloud Q,, q; is the j—th point
in Q , ds,T.(q j )) is the closest distance between the transformed point T, (q J. ).q ;€Q and

the surface S°, which can be evaluated by
d(SO»Tr(qj))=mind(Tr(qj)»So(u»V))- (21)



We note the above total squared error as E(T.(Q),S’) and note the registration from point
cloud Q to the surface S’ as

Q®S'5Q. (22)
3.5 Data fusion, withdrawal and registration on other surfaces

Besides the B-spline representation for free-form surfaces, planes and cylinders are
common surfaces in various 3D objects. Typical calibration objects have planar and
cylindrical surfaces. The extended Kalman filter for the planar surface is available in [26],
and the extended Kalman filter for a cylindrical surface can also be deduced from [49].
Example 4 in Section 5.4 will demonstrate that a mechanical part with planar and
cylindrical surfaces can also be used for IRF based multi-sensor calibration.

4 lterative registration and fusion

Given multi-sensor point clouds (Q, , Q, ,...Q,) and their corresponding data variances,

and the error (the distance between all the point clouds to the fused surface) change
threshold p , the detailed procedure of sensor fusion and registration can be described as

= Fusion 0
e S—] ps Q >
Q, 0 S

Step 1. Initial surface fusion li=1

s 7

Registration Fusion
Q®s” s eq
o Si

follows (Figure 1).

~
Q
. J
Step 2. Coarse registration and fusion|S=5",i=1
s Y
Registration Fusion
| Q®S. seq
T
S o) ; s
= s=57Q=Q
i SeqQ
Q'Withdrawal S
No
i=1 No

J
Registered point clouds
and fused surfaces.

Step 3. Iterative registration and fusion

Figure 1 Procedure of the combined sensor fusion and registration



Step 1.Obtain an initial surface for registration

» Select the coordinate system of one point cloud (we assume that Q,is selected) as

the common coordinate system for data registration and fusion.
» Define the initial surface S™. (S™is defined by control points P, and A, ).

Fuse Q,to surface S with Eq. 9 and obtain the fused surface S°. That is,
s'eqQ, — S'. (23)
Step 2.Coarse registration and fusion for all the other point clouds Q,,i=1...r.
» Do the following for i =1to r
= Register Q to the fused surface S™', and obtain the registered point cloud Q' .
» Fuse Q to the surface S™' and obtain the updated surface S'.

The pseudo code can be described as follows

Fori =1tor
Q ® S7" -»Q  ; Regigtration
Q®S"'—»S ;Fuson
End for

Step 3.Iterative registration and fusion
» Set S=S'.
» Do the following for i =1to r

= Register Q to Sand obtain the registered point cloud Q.
» Withdraw Q from Sand obtain the withdrawn surface S'.
» Fuse Q" to S’ and obtain the fused surface S”.
= Set S=S",and Q = Q.
» Repeat the above process until the change of mean squared error Ae after fusing
all the point clouds is below a preset threshold p .

The pseudo code of the IRF can be described as follows
Do {
Fori =1tor
Q®S—Q" ;Registration
SOQ - S ; Withdrawal
S®Q"— S ; Fusion
$=5.,Q'=Q’
End for
Compute Ae
} While(Ae> p).
When the above procedure terminates, we can obtain one fused surface S and the
transformation for registering Q,,---Q, into the coordinate system of Q,. Note, surface S’
after the withdrawal of Q' is independent from Q and it is the same surface as that
reconstructed from all other point clouds without Q’.(Lemma 2 in the Appendix contains




detailed proof ). This ensures the final surface after the IRF process is identical as that
reconstructed with all the transformed point clouds without the iterative fusion and
withdrawal.

In the above procedure, 1) the initial surface S can be interactively defined and then
fused with point cloud Q,. Its covariance can be specified by the user. Alternatively,

S'can be skipped and S’ can be directly reconstructed from Q, through Egs.10 and 11
by setting P, =0 and its information matrix = 0, 2) the mean squared error is obtained as
follows. We assume that all point clouds Q/,---Q/ are in the coordinate system of Q,.
From Eq.9, the fused surface S" from Q;, Q/,---Q/ (here Q) =Q,) and an initial surface
estimate S™ defined by P, and A, can be obtained by

(s'eq)eq) @) -5 (24)

The Kalman filter-based fusion finds the surface estimate S’ by minimizing the squared
error E between S" and S , and points in Q/, Q/,---Q’ [38]. We have E as

E(s"Qn Q@) 8) = S (0 - ) (A, ) (B -P)+

r

L ]
2 & ;(aj ~AP ) AL (z - AP,)

r
=E(S',5)+ Y EQ,S). (25)
i=0
where P, is the control points defining the surface S', z; is the j-th measurement in the
i — th point cloud Q/, (i =0,---r) with variance A, and B-spline shape function matrix

A, , ES'.S) is the squared error between S' and S evaluated as

0.5x (P, —P,) (Ap_. J'(p, -P,), and E(Q,S') is the squared error between the point cloud Q'

1< e
and S' evaluated as EZ(Zj —AjPr) A (Zj —AjPr).

j=1

We define the mean squared error (S, Q) , Q/---Q/),S") as

S Q. Q- QS)=E/¥m =(E(SI,SF>+2E(Q(,S’)] Sm. (26)

r

Since the total number of points > m of Q) ,Q/---Q is independent of the optimal

i=0
estimate P, , minimizing E is equivalent to minimizinge(S™, Q, , Q/--- Q/),S").
In Step 3 of the IRF, when all the point clouds are registered and fused, we can obtain the
fused surface S and compute the mean squared error e((S“,Qg,Q{ Q! ) S) with Eq.26.
Then, ¢((S",Q..Q/,-~-Q/)S) can be obtained after the first iteration, e,((S*,Q.,Q/,--Q/).9)
for the second iteration, and ek((S‘l,Qg,Ql’ Q! ) S) for the k-th iteration. The error change
Ae between k -th iteration and (k +1) -th iteration can be obtained by

re=¢g,((S.Q0.Q Q) S)-6..(S".Q0.Q-Q/) S). 27)



If Ae <p , we terminate the iteration. We show with proof in Section 6.1 that the IRF
process monotonically converges.

5 Experimental validation

Experiments on two sets of simulated data and two sets of actual sensor data are
presented below and are analyzed to show how IRF improves the calibration accuracy
and stability. We compare the root-mean-squared (RMS) error of the registration result
between three ICP variants, including the original point-to-point ICP [3], the iterative
point-to-point ICP for multi-view registration [2, 40], point-to-plane ICP [6], and our
approach including a naive point-surface registration where the surface is simply
reconstructed from one point cloud Q, (without data fusion from other sensor data) and

the IRF approach. In our implementation, the distance between a point and a B-spline
surface is computed through the subdivision and convex-hull properties of B-splines. We
used a commercial geometry modeling kernel, ACIS, to compute it.

5.1 Example 1: simulated surface

' f25.5, i
N
. Qn Q| Q2
(a) Nominal surface (b) Sampled point-cloud (c) Sampled point-cloud (d) Sampled point-cloud
B-spline surface (784 pts) (8=0°) (3136 pts) (B:SG"& (12544 pts) (6=-36")
(28x12) o.=c,=0.=000 o,=0 =0 =0 o =0,=0,=0.1

Figure 2 Sampled point clouds from a B-spline surface

In Figure 2, three point clouds Q,, Q and Q, are uniformly sampled on the parametric

domain from a nominal bi-cubic B-spline surface (Figure 2.a) with the number of control
points as 28x12, added Gaussian noise, and transformed @ along z axis (Q,: 784 points,

0,=0,=0,=0.001, §=0°, Q :3136 points, o, =c,=0,=0.01,0=+36°and Q, : 12544 points,
o,=0,=0,=0.1, §=-36). The error change threshold in the IRF is p =0.001. The results
of various approaches are shown in Table 1 and Figure 3.

Table 1 RMS error comparison for the registered point clouds

Point- | Before Iterative | ICP to ICP to

cloud | transform. ICP ICP plane surface IRF
Ql 0.0227 0.1685 0.1256 0.2976 0.0231 0.0227
QZ 0.2252 0.2541 0.2463 0.2285 0.2272 0.2251

In Table 1, “Before transform.” means the RMS errors of sampled point clouds Q, and
Q, before the transformation along z axis.
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(a) Regi d(Q,.5,) d(Q:.58,)

result tr:rough ICP (b) Error map of registered point cloud @Q, and Q, with ICP

0.87

0.0 0.0

N Q.5 ) d(Q7.S,)

(c]
result through IRF (d) Error map of registered point cloud Q, and Q, with IRF

Figure 3 Comparing the registration error between the registered point cloud (Q/, Q;)
and the nominal surface S, for two approaches

In Figure 3, Q is the transformed point cloud of Q,, Q; is the transformed point cloud of
Q,, d(Q/,S,) is evaluated with the closest distance between its point g eQ and the
nominal surface S, by d(g;.S,)=min d(q,.S,(u,v)). Figure 3.a shows that the registered

point clouds Q' and Q, through the ICP registration approach, and Figure 3.b gives their

registration error map on the parametric domain. Figure 3.c shows the registered point
clouds of Q/, Q; and the fused surface through the IRF approach, and Figure 3.d gives

their registration error map.
5.2 Example2: human face

A measured example (human face) (125mmx176mmx54mm) is selected to show that the
IRF approach can achieve accurate registration for complex surfaces.

4

o - s
(a) One face (b) Sampled point-  (c) Sampled point-cloud (d) pled point-cloud
B-spline surface cloud (1098 pts) (8 =0°) (4452 pts) (8 =+36°) (10046 pts) (8 =-36°

(40x30)) o,=0,=0.=0001 o,=0,=0.=001 0,=0,=0_= 0?1
Figure 4 The surface of human face and sampled point clouds
As shown in Figure 4, three point clouds are generated from the nominal surface to
simulate the measurements from multiple sensors with different noise characteristics. The
data parameters described in Figure 4 are similar to Example 1.
With the simulated point-clouds Q,, Q, and Q,, their variances, the initial transformation
estimate, the convergence threshold p=0.001, the interactively defined initial surface

shown in Figure 5 and its covariance 0.01x 1 (Iis a unit-matrix, dimension: 1200x1200),
we can obtain the registration result through the IRF approach and other ICP approaches.
The quantitative comparison of the accuracy for five approaches is shown in Table 2. The
registration error distribution from IRF and ICP approaches is shown in Figure 6.
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Figure 5 Initial surface S™

Table 2 RMS errors comparison for the registered point clouds (unit:mm)

Point- Before Single Iterative ICP to ICP to IRE
cloud | transform. ICP ICP plane surface
Q1 0.0222 0.2279 0.1784 0.2913 0.0224 0.0223
Q2 0.2235 0.3217 0.2540 0.2833 0.2236 0.2234

23

(a) Registration d (Q; .S,) - “d(Q: s S.. )

0.0

result through ICP___ (b) Error map of registered point cloud Q, and Q, with ICP
0.53 s o AP
: ool BT = =
d(Q/.S,) d(Q;.5,)

(c) Registration
result through IRF  (d) Error map of registered point cloud Q; and Q, with IRF

Figure 6 Comparing registration errors for two approaches
5.3 Example3: the sine wave part

A multi-sensor system has been built in the Computational Design and Manufacturing
Laboratory at the Illinois Institute of Technology for shape digitization as shown in
Figure 7.

Optimet |
Conoprobe!

/‘ '.

.

(a) Designed CAD model (b) Hardware system

Figure 7 The multi-sensor shape digitization system at IIT

In the multi-sensor system, four stages (translation stages along x, y, z and rotary stage 0),
one area scanning sensor (Minolta VIVID910), one point laser probe (Optimet

12



Conoprobe) and one line-laser scanning sensor (Optimet Conoline) are integrated to
measure the shape of mechanical parts.

To align the area and line sensors into the coordinate system of Conoprobe point sensor
and to validate the registration accuracy of the proposed method, an accurately fabricated
sine wave part (203.2mmx203.2mmx60.325mm) was selected and is shown in Figure 8.
The sine-wave part consisting of three surfaces was scanned with these three sensors, and
the three sets of sensor data defined in their respective coordinate systems were obtained.
Each of the three sets of sensor data need to be separated first (as shown in Figure 8.a) so
that data from the same physical surface can be registered and fused into the same surface
representation. The sensor noise characterized by measuring a sphere is shown in Table 3.

‘i N L 0,

(a) Partial surface of (b) Points from Optimet (c) Points from Optimet (d) Points from Minolta
sine wave part conoprobe (5778 pts)  conoline (39177 pts)  VIVID910 (48844 pts)

Figure 8 Scanned point clouds of three sensors from sine-wave part

Table 3 Standard deviation of a measured ball for three sensors (unit: mm)

Sensor

Radius

Radius std.

X-coordinate
std. of center

Y-coordinate
std. of center

Z-coordinate
std. of center

point

11.9188

0.0045

0.0055

0.0047

0.0111

Line

11.9259

0.0054

0.0200

0.0058

0.0099

Area

12.010

0.0163

0.0163

0.0163

0.0163

For three sets of sensor data defined in different coordinate systems, we manually
obtained the coarse transformation as the initial estimate of registration. With these
measurements, their measurement noise, and threshold p =0.001 mm, we employed the

IRF approach to register the Conoline sensor data Q and Minolta VIVID910 sensor data
Q, into the coordinate system of the Conoprobe sensor through its sensor data Q,. To

validate the registration accuracy, we acquired additional dense measurements with the
Conoprobe and compared the RMS error between the registered point clouds and the
dense point set from the Conoprobe. The registration error distribution from IRF and ICP
approaches is shown in Figure 9. The quantitative comparison of the accuracy for five
approaches is shown in Table 4.

Table 4 Registration RMS error of different approaches (unit: mm)

Point Single Iterative ICP to ICP to IRE
cloud ICP ICP plane surface
Ql 0.1114 0.1012 0.1398 0.0992 0.0985
Q2 0.09241 0.1193 0.1072 0.0515 0.0469
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(b) Error map of registered data through point-to-point ICP
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(c) Error map of registered data through IRF

(a) Dense points for
validation (Q,+additional
scanned data with
Conoprobe, 34720 pts)

Figure 9 Dense measurements for validation and registration error map
5.4 Exampled: mechanical part

A mechanical part including planar and cylindrical surfaces is also selected to calibrate
the actual multi-sensor system shown in Figure 10.

0,

(d) Points from Minolta
VIVID210 (6008 pts)

(a) Mechanical part for (b) Points from Optimet (c) Points from Optimet

multisensor calibration Conoprobe (6134 pts) ConolLine (4635 pts)

Figure 10 Scanned point clouds with different sensors

For three sets sensor data defined in different coordinate systems, we manually obtained
the coarse transformation as the initial estimate of registration. With three sets of sensor
measurements, their measurement noise, initial estimate, and threshold p=0.001 mm, we
can independently employ the IRF and the point-to-point ICP approach to register the
point clouds Q, and Q, to the coordinate system of the point cloud of Q,. To validate the
registration accuracy, we employed Optimet Conoprobe to sense additional dense
measurements on the same part (Figure 11.a). The registration error distribution from IRF
and ICP approaches is shown in Figure 11. The quantitative comparison of the accuracy
for five approaches is shown in Table 5.

Table 5 Registration RMS error of different approaches (unit: mm)

Point Single ICP to | Iterative ICP ICP to ICP to IRE
cloud point to point plane surface
Q] 0.0706 0.0709 0.0911 0.0906 0.0680
Q2 2.5274 2.5439 1.4936 0.0655 0.0618
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Figure 11 Dense measurements for validation and registration error map
5.5 Analysis of experimental results

In the above four examples as illustrated in Figure 3, Figure 6, Figure 9, and Figure 11,
ICP has significant bias on the error distribution, and the IRF obtains more uniform
distribution of the registration error.

From the quantitative analysis of results of the IRF, our point-surface registration and
three ICP variants as shown in Table 1, Table 2, Table 4, and Table 5, we can see that the
registration error in the IRF and the point-surface registration is significantly smaller than
all three other ICP variants. The registration error in the IRF is comparable to the original
RMS error between the initial sampled points and the nominal surface when the nominal
model is available (in Example 1 and 2). It suggests our IRF approach can lead to very
accurate calibration.

In the above examples, the IRF leads to slightly better results than our simple point-
surface registration. This is not surprising since the surface in the point-surface
registration is deliberately reconstructed from the most accurate sensor data (the smallest
variance). Further, the IRF results are consistently better than the point-surface
registration; this suggests that a surface reconstructed through data fusion from multiple
point clouds is beneficial for enhancing the registration accuracy.

Table 6 Running time of different registration methods (unit: sec.)

Method Pqint—to— Point-to- Point-to- RE
Example pointICP | hianeicP | surface ICP
Simulated surface 42.687 33.14 144.74 219.73
Human face 33.75 32.86 513.47 948.67
Sine-wave 331.53 4450.93 1455.42 2890.94
Mechanical part 75.83 82.38 69.03 129.56

The running time for the four examples is given in Table 6. It shows 1) more time is
required for the IRF and point-to-surface registration than simple ICPs. This is primarily
due to the expensive computation of the closest distance from a point to a B-spline
surface. Dense surface sampling and K-d tree can be used to compute an initial closest
point on the surface during the first few rounds of iterations to enhance the running speed.
2) The IRF takes about twice the time of simple point-to-surface registration even though
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the IRF involves multiple times of point-to-surface registration. This is because, after the
first point-to-surface registration, the subsequent iteration converges much faster. Since
the IRF leads to more accurate but slower registration, it is useful for multi-sensor
calibration where the computation is typically done off-line.

6 Discussion

In this section, the properties of the proposed IRF approach are discussed, including: 1)
its convergence property; 2) its robustness under different number of data points; 3) its
robustness under different noise levels (here the noise level refers to the standard
deviation of the sensor data); and 4) how it performs with different underlying surface
models.

6.1 Convergence property

Convergence Theorem Given a set of point clouds Q,,Q,---Q, and an initial surface
estimate S, the squared distance error between the fused surface and the registered
point clouds and the initial surface through the IRF approach is guaranteed to converge
to a minimal value (greatest lower bound).

The basis of this theorem is that both the registration and the fusion minimize the squared
distance error. The proof of this theorem is available in the Appendix.
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Figure 12 Mean squared errors for four examples showed in Section 5

Figure 12 show the overall mean squared error (computed based on Eq. 26) as the IRF
process iterates for the four examples shown in Section 5. In this figure, each highlighted
dot represents the overall mean squared error after a point cloud Q has been registered
and fused into the surface. The highlighted dots with marks e represent the overall mean
squared errors after the k-th IRF iteration. Note, each IRF iteration involves the
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registration and fusion of r point clouds. From Figure 12, we can see that the overall
mean squared errors e in all four examples monotonically converge to minimal values.

6.2 Robustness under different numbers of sensor data

In order to examine the robustness of these registration approaches, we changed the
number of data points for the first two examples since the synthetic surfaces in the two
examples can be used easily for re-sampling. We then computed the RMS error between
the registered point cloud and the nominal surface under different sampling conditions.
The results are shown in Figure 13.

From Figure 13, we can see that 1) the registration error of the point-to-point ICP
increases significantly with the decrease of the number of measurements (from the right
to the left of the figure) and the registration error of point-to-surface ICP and IRF remain
relatively the same as the number of measurements decreases. As the number of
measurements becomes smaller, the accuracy advantage of IRF over ICP becomes more
pronounced. 2) The registration accuracy of the IRF is also identical to the RMS error
between the original point cloud before transformation and the nominal surface. This
suggests the IRF results in very stable registration. Therefore, we can conclude that the
IRF approach obtains more accurate and robust registration even with fewer data points.
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Figure 13 RMS errors of registered point clouds with different numbers of measurements
6.3 Robustness under different measurement noise levels

For the same two synthetic examples, we changed the noise level of simulated point
clouds to examine the robustness of the registration approaches under different noise
levels.

From Figure 14, we can see that the IRF results in consistently more accurate registration
(smaller RMS error values) than ICP or simple point-surface registration. Therefore, the
IRF achieves more stable registration even for data with larger noise.
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Figure 14 RMS errors of registered points with different noise levels

6.4 Model selection on the IRF

A potential drawback of the IRF approach is that it requires an initial estimate of the
underlying surface. For example, a surface model (control points number, degree, and
knot vectors of the B-spline surface) needs to be selected so that the fused surface can
represent the object accurately. The inappropriate selection of surface model may lead to
incorrect point-to-surface correspondence and introduce bias to the fused surface and
registration. We show below a practical method for selecting the surface model with the
IRF. The basic idea is to gradually increase the number of control points until the
registration error reaches the minimal.

For the point cloud from the nominal surface with 28x12 control points in the example 1,
we select different surface models and examine how the mean squared error varies.
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Figure 15 Mean squared errors with different surface models
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Figure 16 Converged mean squared errors for different surface models

From Figure 15, we can see that the IRF still monotonically converges as we proved in
the theorem even when the surface model under-fits or over-fits the data. As shown in
Figure 16, on the one hand, the model with fewer control points has larger mean squared
error because of under-fit. On the other hand, the surface with more control points has
smaller fitting error but may introduce larger registration error. The appropriate mode
(28x12) has the smaller fitting error and registration error, therefore has the smallest
converged mean sgquared error. Thus, the convergence property gives us a practical
method to select the surface model by gradually increasing the number of control points
until we obtain a model with the lowest squared error.

6.5 Dependency on the initial positions

The registration process in IRF is an ICP process, therefore the result of IRF depends on
the initial positions as in the ICP process [3]. Since IRF starts with an ICP and is
guaranteed to converge, any initial conditions that work for ICP would also work for IRF.
Table 7 shows the ICP and IRF results for Example 1. As the point clouds Q1 and Q2 are
further rotated by 90, 60, 30 degrees, the errors converge to the minimum.

For the calibration purpose, a good initial condition can be obtained in many ways:
through interactive specification, setting multiple initial conditions to obtain a global
optimal registration, or from global registration method such as [12].

Table 7 Registration RMS errors under different initial positions

) RMS error after registration
Rotation 22?;8 along Z Quaternion representation
Point-to-point ICP IRF
Q 1.946593 1.945569
90° R:(0,0,0,1),T:(0,0,0)
Q2 0.229517 0.227347
Q] 7.772473 7.770891
60° R:(0.866,0,0,0.5), T:(0,0,0)
Q, 0.229517 0.227348
Q] 0.297582 0.022712
300 R:(0.966,0,0,0.259),
T:(0,0,0)
Q, 0.228498 0.225134

19



7 Conclusion

In this paper, a new multi-sensor calibration approach, called iterative registration and
fusion, is presented. The core idea of this approach is to use surfaces reconstructed from
multiple point clouds to enhance the registration accuracy and robustness, i.e. to
iteratively register the point clouds against a continuous surface and then fuse the
registered multi-sensor data to update the surface. Such iteration is guaranteed to
converge to a minimum error.

Experiments demonstrate that the IRF leads to a more accurate and stable registration of
multi-sensor data even under fewer measurements or larger noise conditions.

The foundation of our IRF approach is that both the registration and the fusion minimize
the squared distance error, i.e. both the registration between points and surfaces and the
surface fitting from point-cloud are realized through the least-squares. It forms the core of
the IRF and is the basis for the process to converge monotonically. In this paper, we have
implemented our approach in B-spline surfaces, planes and cylindrical surfaces. We
believe our approach based on the combination of Kalman filter and parametric surface
representation can be further extended to a Gaussian process formulation through a
flexible non-parametric Bayesian model [31] and other surface representations. In the
future, we plan to extend IRF to other surface models, such as point-sampled surfaces,
that are approximated based on least-squares.

Further, we believe that the IRF approach is also applicable to multi-view registration
where the data acquired from different view orientations can be considered as multiple
sensor data with identical variance.
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Appendix
LEMMA 1 (Data Withdrawal). Assuming a fused surface S at step | is defined with
state P, and its covariance A, and it is updated from P, and A, with the new
measured point z and variance A, . Then we can withdraw z from the fused surface §
by

Ay, =(I-K/A,)A, and P_ =P +K|(z-A,P),
where K| =A, AL (- A, + A, A, ATJ".
Proof: From Eq.6 (b), we can obtain

(A )" =(A, ) ~AI(A,)"A (29)

z*

Computing the inverse of both sides of Eq.29, we can obtain the withdrawn surface
covariance A, by

Ay, =(an) -aT(a) A"
Reference [41] gives a generalized form of the analogous matrix inversion lemma as
(C-uBV)'=C'+C'UB'-vC'U)'VC.
When C= (A,,I J', U=AT, B=(A,)",V=A,, we can obtain C' = A, and A, as
Ap = Ay A, AT(A, - A A, AT AA, = A, —A, AT(A,+A,A, AT)'A LA,
(i-A, ATA, +A,A, AT A LA, '

Let K{=A,A] (AZAE Al - Az)f1 , the above equation can be written as
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Ay =(I-K/A A, . (30)

From Eq.5, we obtain the state P, at the | -th step from the previous state P, and
measurement Z by

P, =(1-K,A,)P_, +K,z. (31)
By multiplying (A, J'to Eq.6.a, we obtain
Ay (A, ' =(1-KA,).
Substituting (1-K,A,) in Eq.31 with A, (A, )", we obtain
P=A, (A, V'R +Kz=A, (A, )P +A, (A, 'Kz =A, (A, )P +(A,)'K 2 (32)

With (A,,I J' in Eq.6.b and K, in Eq.4, (An J'K, in Eq.32 can be calculated by
(An ) = (A, ) +ATATA A, AT(A, 4,4, AT)
= (AT +ATATAA, AT)A,+AA, AT) (33)
=ATA} (A, +A A, ATA, +A A, AT) =ATA]
Substituting Eq.33 into Eq.32, we can obtain
P=A, (A, J'P +ATAZ)=A, (A, )P +A, ATA}Z=P +A, ATA]Z.
Multiplying A, (AE fl to both sides of the above equation, we can obtain

A, (A )R =0y (A, ) A (A )P+ ATAYZ)= A, (A, )R+ ATA2)

(34)
=P_ +A, ATA}Z.
In Eq.34, P,_, can be computed with
P =Ap (A )P -A, ATAZ. (35)
In Eq.35, — Al A7 can be obtained by
AN = AT A A A ATIA, A A AT
=(AT-ATAJA A ATJ- A, +A A AT (36)
(a0 ) - ATNA A ATE AL+ A AT =8, ) K
Substituting Eq.36 into Eq.35, we can obtain
Po=A, (A, )P +(A, J'KZ)=A, (A, )'P+K[z. (37)
Multiplying both sides of Eq.34 with (An )’1 , we can obtain
Ay, Ay )" =(-KIA,). (38)
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Substituting Eq.38 into Eq.37, we can compute P, | as
P, =(I-K/A,)P +K/z=P +K|(z-A,P,).

LEMMA 2. Let a set of point clouds Q,.Q,,---Q,, aninitial surface estimate S™' defined by
P and A, , and their fusion surface S' defined by P, and A, through Eq.10 and 11.
Then the withdrawn surface " = S'©Q, isindependent of Q, .

Proof: Assume the fused surface from Q,,Q,,---,Q,_,,Q.,,,.Q, and S is S, we can get S
by (it can be inferred from Eq.10 and 11)

S=5'@Q,-®Q,®Q,®Q, (39)
and S’ by
S=5"®Q,-®Q ,®Q®Q,,®Q,. (40)
Eq.40 can be written as
S =5'0Q,®Q,®Q, ®Q ®Q =S®Q
Due to 1)S"= S ©Q,, and 2) the proof in Lemma 2, we can get S" = S. From Eq.39, we can see

S is independent of Q,. Since S" =S, we can know that the withdrawn surface S" = S'©Q, is
independent of Q Q.E.D.

LEMMA 3. Let S’ be a surface defined by control points P, and its covariancea, , and
Q ={z.z,,--,z,}with variance{A, A, .-, A, | be one point cloud, the fused surface s
defined by control pointsp, and variance A, can be obtained by s’®Q, —» S', and the
withdrawn surface s* defined by control points P; and covariance A, can be obtained
by S©Q —S”,then S” equals S’ i.e. P; = P, and A, = A, .

Proof: As shown in Eq.10 and 11, the fused surface S' from S’ and Q can be obtained
by

m -1 m
i :((A"o 3 +ZA2A‘2AJ ((Am ), +> A A‘éj,
=1 i=1

4 (41)
Ay = ((Apﬂ J'+ > ATALA, j .
i=1
From Eq.16 and 17, we can obtain the withdrawn surface S, from S by
m -l m
’ -1 - -1 -
P, :((AP]) —ZA;A;AJ ((A,,l) P —ZA;AZ}j,
i=1 i=1 ) (42)

m -1
Ay = [(A,,l J' =S ATAA, j .
i=1

Substituting Eq.41 into Eq.42, we can obtain
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m m -l m
P = ((A,,o J'+> ATATA, - AT A‘;A;j ((A,,l J'P - Al A;j
i=1 i=1 i=1
TS5 SIS SN S

i=1 i=1
L NO AT A AT Al B
Ap = (A, '+ ATATA, - ATAJA, | =A,.
i=1 i=1

Since P; =P, and A, = A, , hence the surface S” equals S’.

Theorem (Convergence of IRF) Let an initial surface approximation s and a set of
point clouds Q,,Q,-Q, for this surface be given. Then the sequence of means squared

errors {e,,...,e }between the fused surface and registered point clouds in the IRF, and
theinitial surface, decreases monotonically.

Proof: In the procedure described in Section 4, the IRF approach includes three main
steps, the first and second step are to construct an initial surface for the IRF and to
compute coarse registration and fusion of r sets of sensor data. The two steps do not

include iteration and always converge. The third step includes an iteration process to
obtain the fine registration by iteratively registering the point cloud Q' to S and obtain

registered point cloud Q’, withdrawing Q from S, and fusing Q" to S'. The following
will prove the convergence of this iteration process.
(1) Registration of Q to S.

The registration of Q' to S can be noted as Q ® S— Q’, and is obtained by minimizing
the squared error E(T,(Q),S)

EQ=T.Q %idz(z Sz, eq’,

j=

where T, is the transformation described in section 3.4, m is number of points in Q, z
is the i -th transformed point, and d(z,,S) is the minimal distance between the z, and the
fused surface S. Let P be the control points of S, and (u;,v,) be the parameter of the
closet point of z,on S, d(z,,S) is calculated by

d(zj,S):"zj -

where A; is the B-spline shape function matrix for z;. Since the registration is to find T,
by minimizing E(T,(Q/),S), Therefore
E(T,(Q)=Q", 8)=E(Q", S)<EWQ. 5). (43)

where E(Q/,S) is the squared error between Q and S, which can be evaluated with Eq.
26.

(2) Withdrawal of Q' from s.
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For the withdrawal of Q' from S, we can obtain surface S’ by SO Q — S'. It means that
S ®Q — S(Detailed proof can be seen Lemma 3 ). From Eq.24, the surface S can be
obtained by

s'eQ®--Q,0Q, @ -Q®Q —S.

The surface S is obtained through the Kalman filter, it can be also obtained by
minimizing the squared error from Eq.26,

E(s™Q Q. Q@ Q) S)= E(S™ S)+ZE(Q 9+ YEQ.9+EQ.S) . (44)

j=i+l

Substituting Eq.43 into Eq.44 , we can obtain

E(s".QQ,.Q Q. Q) )= E(S™, S)+ZE(Q 9+ Y EQ.9+EQ.S) us)
j=i+l
<E(S’, S)+ZE<Q 9+ YEQ,9+EQ,9=E(S"QQ Q. QQ)S)

j=i+l

Dividing both sides of Eq.45 with Zr:m , We can obtain
i=0

((S_ QO’ Q| 19Q|+17 Qr’Q)>S Zm e(S_ Q(): Q| 1:Q|+19 QraQ) )
(45)

<E(s"Q.Q,.Q.Q.Q) /Zm =e(s",Q,-Q,QL QL) S)

(3) Thefusionof Q" to S'.
For the fusion of Q" with S, the updated surface S” can be obtained by S®Q’— S”.
As described in Eq.24, S’can be obtained by

S_1®Q(; @Q,:l ®Qi,+1 @Qr, ®QI”_> S”'

As shown in Eq.26, the surface S” can be also obtained by minimizing

EQ.)+ YEQ.S)+EQ.S). (46)

E(S".Q Q@ QL Q) )= BS54 3
j=0 j=i+l
Since S is the solution with minimal value of Eq.46, we have
E((S_I,Q(;,~ : '7Qi,—1 ’Qi,ﬂ [ ‘aQr,aQi”)’ S”) < E((S_LQ(;" : '7Qi,—1 :Qi,+l [ '7Qr,5Qi”)> S) . (47)

where S is the fused surface from 'S, Q),Q---Q’ with the same surface model with
respect to the number of control points, degree, knot vector.

Dividing both sides of Eq.47 with Zr:m , We can obtain
i=0

E(S".Q) Q. Q QL QY S”/Zm —e(s.Q QL Q Q) S)
(48)
((S QO’ : QI I’QH-I’ : QI”QI /Zm e(s QO’ : QI I’QH-I’ ' Qr’QI) )

Combining Eq.45 and Eq.48, we can see that
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e((S*l’Q(;’. . '9Qi:1aQi,+1a' . '9Q:3Qi”)a S”)S e((S*l’Q(;’. . 'Qi:in’-Ha' : Qr’sQ:)a S) . (49)
Eq.49 means that: from input Q and the surface S, we can obtain the registered point
cloud Q" and the updated surface S” with a smaller mean squared error.

(4) The mean squared error from Q' to Q/

When the iteration is transferred from Q to Q/,,, we need to prove the right side of Eq.49
at step i+1 for Q/, equals to the left side of Eq.49 at step i for Q so that the mean
squared error monotonically decreases. The following gives the detailed proof.

For the registration and fusion with Q/, noting S =S, S'=S', and S"=S", we can express
Eq.49 atstep i for Q as

ells.Q Q. Q@ Q)" s es.Q @ Ql QLS ). (50)
and express Eq.49 at step i +1 for the point cloud Q/,, a
e((s sQos"'sQHaQiHs"'sQraQi )»S”Hl)— e((s sQo""Qil—l’Qi’H""Qr,sQi,i )»SM)' (51)

From Eq.48, we can know the left side of Eq.50 can be obtained by
ells.Qp . QL Qs QLS )= (E(S“,S”' J Y EQ.S")+ Y EQ) S EQS” )J 2m.(52)
j=0 j=i+l i=0
and the right side of Eq.51 can be computed by

os".Q. Q. QL QLS )= [ E(s'.s")+ ZE( Q.s")+ YEQ.S")+EQ, S'“)J Zm (53)

j=i+2

In the Step 3 of the IRF, we have S"=S", Q in Eq.53 equals Q" in Eq.52, then Eq.53
changes to

e((sil’Q(;"“’Qi’—l’Qi,H Q’ Qi’)ssm): e((sil Q(; Qi, 1aQ'” Qi’+2a"' Q, Qicr])vs”i)
= (E(S_I’S”i )+ ) (Q;’S,ll )+ E(QJ”’ ) Z E(Q] 98,” )+ E(QH—US”I )j Zr:m
j=i+2 i=
-[els s 1 Sl Sers)+elars) /S
j=iv+l i=0

—o(s,Q QL Q QLS

From Eq.50, 51 and 54, we can see that the mean squared error e is monotonically
reduced for any point cloud registration and fusion. Since the mean squared error e>0,
and e is nonincreasing, then the error change A¢ — 0, and the stated IRF approach must
monotonically converge to a local minimal solution. Q.E.D.

(54)
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