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Abstract In this paper, a new multi-sensor calibration approach, called iterative 
registration and fusion (IRF), is presented. The key idea of this approach is to use 
surfaces reconstructed from multiple point clouds to enhance the registration accuracy 
and robustness. It calibrates the relative position and orientation of the spatial coordinate 
systems among multiple sensors by iteratively registering the discrete 3D sensor data 
against an evolving reconstructed B-spline surface, which results from the Kalman filter-
based multi-sensor data fusion. Upon each registration, the sensor data gets closer to the 
surface. Upon fusing the newly registered sensor data with the surface, the updated 
surface represents the sensor data more accurately. We prove that such an iterative 
registration and fusion process is guaranteed to converge. We further demonstrate in 
experiments that the IRF can result in more accurate and more stable calibration than 
many classical point cloud registration methods.   
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1 Introduction 
Multiple sensors of various modalities and with different sensing resolutions, 
measurement ranges and uncertainties are increasingly being integrated into one platform 
to improve the overall sensing speed and coverage, and to reduce the uncertainty. Such 
multi-sensor systems have found wide applications in terrain surveillance, military 
reconnaissance, dimensional metrology and shape digitization in reverse engineering 
[1,13, 23, 28]. 

In order to effectively integrate and fuse spatial data from different 3D sensors, it is 
important to know the relative position and orientation of the spatial coordinate systems 
among these sensors [2, 10]. The calibration of such spatial relationships among different 
sensors can be decomposed into two tasks: intrinsic calibration where internal sensor 
parameters are determined and extrinsic calibration where the position and the orientation 
of a sensor relative to a given coordinate system are determined. In this paper, we assume 
the intrinsic calibration has been properly conducted and we focus on the extrinsic 
calibration. Among many methods for extrinsic calibration [3, 6, 11, 32, 48], sensor data 
registration through the iterative closest point (ICP) method or its variants is a common 
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choice [3, 4, 32] since it requires neither precise knowledge of the geometry of the 
calibration artifacts nor explicit data correspondence from different sensor data. 

However, the calibration result from such a point based registration method is affected by 
the amount of sensor data and the level of data noise. This problem becomes especially 
severe in a multi-sensor platform where data density and variance from different sensors 
vary significantly.  

In order to ensure accurate and robust calibration of multiple sensors, in this paper, we 
present a new approach for multi-sensor calibration. The basis of our approach is two-
fold: a) a continuous surface reconstructed from the sensor data provides a more accurate 
geometry for data registration than the discrete point cloud; b) the surface reconstructed 
from multiple sensor data is more accurate than that from any single sensor data.  We call 
our approach iterative registration and fusion (IRF). The core idea of the IRF is to iterate 
the following two steps:  

1. Using the ICP algorithm [3] to register different sensor data against a reconstructed 
surface to achieve accurate and robust alignment for the ensuing point-surface fusion. 

2. Using the Kalman filter to fuse the newly aligned sensor data with the previously 
reconstructed surface to obtain an updated, accurate surface for the subsequent point-
surface registration. 

The main contribution of this paper is the following.  

• We develop a new approach, IRF, for aligning point cloud data of different sensor 
characteristics such as sampling density and uncertainty (variance). Compared with 
the original ICP algorithm [3] and its variants such as point-plane registration [6], our 
novelty lies in the use of an extra fusion process (the second step above) that 
generates a smooth surface from the aligned multi-sensor data for subsequent point-
surface registration. Unlike typical point-surface registration [3, 29] where a surface, 
often nominal, is given (e.g. measurement data points are to be aligned with the 
nominal shape model to determine the part shape deviation in metrology applications), 
the surface in IRF is reconstructed from the points and dynamically evolves as the 
registration process proceeds. We demonstrate that a) point-surface registration based 
on the surface reconstructed from point clouds leads to more accurate registration 
than these ICP variants; b) the IRF results in an even more accurate and robust 
registration.  

• We extend the Kalman filter-based B-spline surface reconstruction [18, 19, 42] into 
the IRF process. More specifically, we develop a formulation that enables B-spline 
surface based data fusion, data withdrawal and data registration. 

• We further prove and demonstrate that the IRF process is guaranteed to converge to a 
minimum error. This convergence property facilitates the selection of the initial 
surface model by checking the accuracy of the surface after the process is converged.  

The remainder of this paper is organized as follows. Section 2 reviews prior work in 
sensor calibration and 3D data registration. Section 3 presents the mathematical 
formulations for surface-based data fusion, data withdrawal, and data registration. Section 
4 describes the overall iterative registration and fusion method. Section 5 gives the 
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experimental results. Section 6 discusses the convergence theorem and how IRF performs 
under different conditions. This paper concludes in Section 7. 

2 Literature review 
During the object digitization process, complex 3D objects often require sensing from 
multiple views or several sensors [2, 35]. Multi-sensor calibration typically includes two 
steps, intrinsic calibration to determine each individual sensor’s internal parameters [36, 
37] and data bias [15,16] and extrinsic calibration to determine the relative position and 
orientation between sensors [28]. In this paper, we concentrate on the extrinsic calibration 
among sensors. 

Multiple methods are available for registering multi-view or multi-sensor data into one 
common coordinate system. Pair-wise data registration using point-to-point ICP has been 
widely used [3, 4, 6, 11, 24, 25, 32, 33, 45, 48] and performs well under an appropriate 
initial orientation and with sufficient data density and low data noise. The algorithmic 
convergence of these variants is analyzed in [29]. Even though point-surface registration 
has been discussed in many of these approaches, they assume the surface is given. 

Besides the pair-wise correspondence method based on closest points between two data 
sets, shape features such as spin images (oriented point-normal distribution) [20], linear 
features [39], integral volume descriptors [12], and invariant features (curvature, moment 
invariants, spherical harmonics invariants) [34] have also been extracted and used to 
build the optimal correspondence between a set of point clouds, and followed by the 
point-to-point ICP to obtain optimal registration.  

Since the pair-wise registration for multi-view or multi-sensor data may result in the 
accumulation of registration error [2, 10], methods have been proposed to improve the 
overall registration accuracy through a registration network of multi-view data error 
distribution [2,10], pair-wise alignment constraints [30], optimally distributing the error 
along the registration cycles [35], force-based optimization [9], and manifold 
optimization [22].  

To get higher registration accuracy, a method combining surface reconstruction and 
registration is recently proposed in [50]. However, different noise levels are not 
considered in the surface reconstruction. In our approach, surface reconstruction is 
formulated as a multi-sensor data fusion process, and different noise levels are considered 
to obtain a more accurate fusion surface. In addition, our iterative process of multi-sensor 
data fusion and registration is guaranteed to converge to a minimum error. 

3 Mathematical formulation for surface-based data fusion, and 
data withdrawal and data registration  

The mathematical formulations for surface-based data fusion, data withdrawal and data 
registration are the key to our IRF method and are described in this section. They include: 
1) B-spline surface representation, 2) Kalman filter based data fusion, 3) data withdrawal, 
and 4) data registration. Although Kalman filter-based surface fusion has been introduced 
in [18, 21, 42, 43], Kalman filter-based data withdrawal is novel and is used in our IRF 
process.  
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3.1 B-spline surface representation 

In the IRF method, the underlying surface for data fusion and registration can be of 
planar, cylindrical or free-form B-spline surfaces. Without loss of generality, we use the 
B-spline as the basic surface representation for our introduction of the IRF method since 
the B-spline surface can represent free-form surfaces and has been widely used in product 
design and manufacturing. A brief discussion on other types of surfaces is also provided 
in Section 3.5. 

A bi-cubic B-spline surface has the form: 
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where B  is the B-spline shape function and ijP is the ij -th control point (number of 
control points is vu nnn ×= ). The equation can also be expressed in a matrix form: 

PA ⋅=),( vuS ,                                                        (2) 
where A  is the B-spline shape function vector (of dimension n ), and P  represents the 
collection of control points (of dimension n ). See [27] for details on the B-spline surface 
representation. 

3.2 Data fusion 

In order to fuse multi-sensor data which has different sensor noise (we assume that the 
noise is independent, white and Gaussian) into a B-spline surface, we choose the Kalman 
filter (a recursive least-squares method) [44] to produce the optimal estimate of the 
surface in a least-squares sense.  
Given a sensor measurement z on the surface ),( vuS  with parameters ),( zz vu , Eq.2 tells us 
its position is  

ε+⋅= PA zz ,                                                      (3) 
where zA  is the B-spline shape function matrix, and ε  is the measurement noise. 
In the terminology of the Kalman filter, the above B-spline surface equation represents a 
linear system between the internal surface state and external observations z  [42, 43]. 
That is, the collection of control points P  constitutes the internal state of the object shape, 
the measurement z  with its covariance forms the external observations of the B-spline 
surface, and zA  corresponds to the measurement matrix. Then the Kalman gain [18 ]:  
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where lK is the l -th step Kalman gain, 
1−lPΛ  is the covariance of state 1−lP  at the ( 1−l )-th 

step, and zΛ is the variance of measurement z.  
The surface state and covariance updating equation are: 
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Eqs. 5 and 6 allow incremental surface update with one measurement z  from a surface 
1−lS  which is defined by control points 1−lP through Eq.2. We denote such an incremental 

fusion for surface updating as  
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ll SzS →⊕−1 ,                                                         (7) 
where lS  is the updated surface defined by the state lP . 
Given a point cloud },,{ 1 mzzQ L=  and the initial surface estimate 0S , we can obtain the 
final updated surface mS  with Eq.7 by 

mm SzzzS →⊕⊕⊕ )))((( 210 L .                                              (8) 
The Eq.8 can be denoted as mSQS →⊕0 .                                                                          (9) 
From Eqs. 5 and 6, we can obtain the fusion result efficiently in a batch processing mode 
[18] from Q  and 0S  by 
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where m  is the number of measurements, 0S  is the initial surface which is defined by 0P  
and its covariance

0PΛ . The resulting surface mS  is represented by mP  and its 
covariance

mPΛ , iz  is the th−i  measurement,  
izA  is the B-spline shape function matrix 

relating to the measurement iz , and 
izΛ  is the variance of iz . Note that the fusion process 

is order independent: each term in the summation depends only the (u,v) parameters and 
measurement iz .  

3.3 Data withdrawal 

During the IRF process, the sensor points fused into the surface model need to be 
replaced with the updated coordinates after each new registration. Such replacement will 
involve a data withdrawal process that withdraws the old data coordinates from the 
surface model and a data fusion process that adds the new data coordinates into the 
surface model. Data fusion can be conducted as described above. The data withdrawal 
process for removing the fused data from the fused surface is described below.  
Assuming the fused surface kS  at step k  is defined with the state kP  and its 
covariance

kPΛ ,  we can withdraw a measured point z  with parameter ),( zz vu  from the 
fused surface through the following equations (Lemma 1 in the Appendix contains the 
detailed proof). 

( )kzkkk z PAKPP −′+=+1  and  ( )
kk zk PP ΛAKIΛ ′−=

+1
 ,                         (12) 

where ( ) 1−+Λ−⋅=′ T
zzz

T
zk kk

AΛAAΛK PP .  

Here we denote the data withdrawal operation for the updated surface 1+kS  from the fused 
surface kS  as 

kS Θ 1+= kSz .                                                           (13) 
Given a point cloud { }mzzzQ L21,=  and its fused surface mS , we can withdraw Q  from mS  
and obtain the surface mmS + after withdrawal through Eq.13 by 

(( mS Θ L)1z )Θ mmm Sz +→ .                                                 (14) 
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Eq.14 can be denoted as mS Θ mmSQ +→ .                                                                          (15) 
Eq. 12 and Eqs. 5 and 6 are structurally similar (and only differ in zz Λ−→Λ ).  Similar to 
the batch mode of data fusion (Eqs. 10 and 11), we can obtain the withdrawn surface mmS +  
in an efficient batch method for the withdrawal of point cloud Q  from the fused surface 

mS  by 
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where mm+\P  and its covariance 
mm+PΛ  represents the surface mmS + after withdrawal, mP  and 

its covariance 
mPΛ  represents the fused surface mS , iz  is the th−i  measurement Qzi ∈ ,  

izA  is the B-spline shape function matrix at the measurement iz ,  and 
izΛ  is the variance 

of iz . As with fusion, withdrawal is order-independent. 

3.4 Data registration 

Given two sensor data clouds 0Q  and iQ  for data registration, we minimize the overall 
distance between the two point clouds. Let jq  be the th−j  point of iQ , ( )jqTr  be the 
transformed point of jq , and jq~  be the point in 0Q  with the closest distance to ( )jqTr . The 
overall squared error between the two point clouds is  
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where R  is a rotation matrix, t  is a translation vector, ( )( )jjd qTq r,~  is the distance between 
the transformed point ( )jqTr  and its closest point jq~  in 0Q , and im  is the number of data 
points in iQ .  
The above process of registering point cloud iQ  into 0Q ’s coordinate system can be 
denoted as  

ii QQQ ′→⊗ 0 .                                                        (19) 
where the iQ  after the transformation is noted as 'iQ . 
When data points are sparse or the sensor noise is large, the point-to-point registration 
may not be accurate. Here we register one point cloud against a fused continuous surface. 
In Eq.18, the objective function changes to  
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where 0S  is an initial surface reconstructed from the point-cloud 0Q , jq  is the th−j  point 
in iQ  , ( )( )jSd qTr,0  is the closest distance between the transformed point ( ) ijj Q∈qqTr  ,  and  
the surface 0S , which can be evaluated by  

( ) ( ) ( )( )vuSdSd jvuj ,,min),( 0

,

0 qTqT rr = .                                  (21)  
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We note the above total squared error as )),(( 0SQE irT  and note the registration from point 
cloud iQ  to the surface 0S  as  

iQ ⊗ i
i QS ′→−1 .                                                                (22) 

3.5 Data fusion, withdrawal and registration on other surfaces 

Besides the B-spline representation for free-form surfaces, planes and cylinders are 
common surfaces in various 3D objects. Typical calibration objects have planar and 
cylindrical surfaces. The extended Kalman filter for the planar surface is available in [26], 
and the extended Kalman filter for a cylindrical surface can also be deduced from [49]. 
Example 4 in Section 5.4 will demonstrate that a mechanical part with planar and 
cylindrical surfaces can also be used for IRF based multi-sensor calibration. 

4 Iterative registration and fusion 
Given multi-sensor point clouds ( 0Q  , 1Q  ,… rQ ) and their corresponding data variances, 
and the error (the distance between all the point clouds to the fused surface) change 
threshold ρ , the detailed procedure of sensor fusion and registration can be described as 
follows (Figure 1). 

0Q 0S

1−iS
iS

S iQ ′′

S′

ii QQSS ′′=′′′= ,

S ′′

1, == iSS r

iQ
?ri >

1+= ii

1=i

1+= ii

SQi ⊗′

i
i QS ′− ,1

1−⊗ i
i SQ

0
1 QS ⊕−

?ri >

iQS ′′⊕′

?ρ≤Δe

i
i QS ′⊕−1

iQS ′
iQ′

 
Figure 1 Procedure of the combined sensor fusion and registration 
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Step 1. Obtain an initial surface for registration  

 Select the coordinate system of one point cloud (we assume that 0Q is selected) as 
the common coordinate system for data registration and fusion.  

 Define the initial surface 1−S . ( 1−S is defined by control points 1−P  and 
1−PΛ ).  

Fuse 0Q to surface 1−S  with Eq. 9 and obtain the fused surface 0S . That is,  
0

0
1 SQS →⊕− .                                                                             (23) 

Step 2. Coarse registration and fusion for all the other point clouds riQi K1, = . 
 Do the following for  i  = 1 to r  

 Register iQ  to the fused surface 1−iS , and obtain the registered point cloud iQ′ . 
 Fuse iQ′  to the surface 1−iS  and obtain the updated surface iS . 

The pseudo code can be described as follows 
For i  = 1 to r    

iQ ⊗ i
i QS ′→−1    ; Registration 

ii
i SSQ →⊕′ −1       ; Fusion 

End for 

Step 3. Iterative registration and fusion 

 Set rSS = . 

 Do the following for i  = 1 to r  

 Register iQ′  to S and obtain the registered point cloud iQ ′′ . 
 Withdraw iQ′  from S and obtain the withdrawn surface S ′ . 
 Fuse iQ ′′  to S ′  and obtain the fused surface S ′′ .  
 Set  S = S ′′ , and  iQ′  = iQ ′′ . 

 Repeat the above process until the change of mean squared error eΔ  after fusing 
all the point clouds is below a preset threshold ρ .  

The pseudo code of the IRF can be described as follows 
 Do {       

For i  = 1 to r    
ii QSQ ′′→⊗′   ;Registration 

S Θ SQi ′→′   ; Withdrawal 
SQS ′′→′′⊕′  ; Fusion 

, i iS S Q Q′′ ′ ′′= =   
End for 

Compute eΔ  
 } While( ρ>Δe ). 

When the above procedure terminates, we can obtain one fused surface S  and the 
transformation for registering rQQ L,1 into the coordinate system of 0Q . Note, surface S ′  
after the withdrawal of iQ′  is independent from iQ′  and it is the same surface as that 
reconstructed from all other point clouds without iQ′ .(Lemma 2 in the Appendix contains 
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detailed proof ). This ensures the final surface after the IRF process is identical as that 
reconstructed with all the transformed point clouds without the iterative fusion and 
withdrawal.  

In the above procedure, 1) the initial surface 1−S  can be interactively defined and then 
fused with point cloud 0Q . Its covariance can be specified by the user. Alternatively, 

1−S can be skipped and 0S  can be directly reconstructed from 0Q  through Eqs.10 and 11 
by setting 0P =0  and its information matrix = 0, 2) the mean squared error is obtained as 
follows. We assume that all point clouds rQQ ′′ L,1  are in the coordinate system of 0Q . 
From Eq.9, the fused surface rS  from 0Q′ , rQQ ′′ L,1   (here 00 QQ =′ ) and an initial surface 
estimate 1−S  defined by 1−P  and 

1−PΛ  can be obtained by  

( )( )( ) r
r SQQQS →′⊕′⊕′⊕− L10

1 .                                        (24) 

The Kalman filter-based fusion finds the surface estimate rS  by minimizing the squared 
error E between rS  and 1−S  , and  points in 0Q′ , rQQ ′′ L,1  [38]. We have E as  
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where rP  is the control points defining the surface rS , ijz  is the th−j  measurement in the 
th−i  point cloud ( )riQi L,0, =′  with variance 

ijzΛ  and B-spline shape function matrix 

ijA , ),( 1 rSSE −  is the squared error between 1−S  and rS  evaluated as 
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Since the total number of points ∑
=

r
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im
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 of rQQQ ′′′ L10 ,  is independent of the optimal 

estimate rP , minimizing E  is equivalent to minimizing )),,,(( 10
1 r

r SQQQSe ′′′− L . 

In Step 3 of the IRF, when all the point clouds are registered and fused, we can obtain the 
fused surface S  and compute the mean squared error ( )( )SQQQSe r ,,,, 10

1 ′′′− L  with Eq.26. 
Then, ( )( )SQQQSe r ,,,, 10

1
1 ′′′− L  can be obtained after the first iteration, ( )( )SQQQSe r ,,,, 10

1
2 ′′′− L  

for the second iteration, and ( )( )SQQQSe rk ,,,, 10
1 ′′′− L  for the k -th iteration.   The error change 

eΔ  between k -th iteration and )1( +k -th iteration can be obtained by 
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If eΔ  < ρ , we terminate the iteration.  We show with proof in Section 6.1 that the IRF 
process monotonically converges.  

5 Experimental validation 
Experiments on two sets of simulated data and two sets of actual sensor data are 
presented below and are analyzed to show how IRF improves the calibration accuracy 
and stability. We compare the root-mean-squared (RMS) error of the registration result 
between three ICP variants, including the original point-to-point ICP [3], the iterative 
point-to-point ICP for multi-view registration [2, 40], point-to-plane ICP [6], and our 
approach including a naïve point-surface registration where the surface is simply 
reconstructed from one point cloud 0Q  (without data fusion from other sensor data) and 
the IRF approach. In our implementation, the distance between a point and a B-spline 
surface is computed through the subdivision and convex-hull properties of B-splines. We 
used a commercial geometry modeling kernel, ACIS, to compute it.  

5.1 Example 1: simulated surface 

 
Figure 2 Sampled point clouds from a B-spline surface 

In Figure 2, three point clouds 0Q , 1Q and 2Q  are uniformly sampled on the parametric 
domain from a nominal bi-cubic B-spline surface (Figure 2.a) with the number of control 
points as 28×12, added Gaussian noise, and transformed θ  along z axis ( 0Q : 784 points, 

0.001x y zσ σ σ= = = , °= 0θ , 1Q :3136 points, 01.0=== zyx σσσ , °+= 36θ and 2Q :12544 points, 
1.0=== zyx σσσ , °−= 36θ ). The error change threshold in the IRF is 001.0=ρ . The results 

of various approaches are shown in Table 1 and Figure 3.  
Table 1 RMS error comparison for the registered point clouds 

Point- 
cloud 

Before 
transform. ICP Iterative 

ICP  
ICP to 
plane 

ICP to 
surface IRF 

1Q  0.0227 0.1685 0.1256 0.2976 0.0231 0.0227 

2Q  0.2252 0.2541 0.2463 0.2285 0.2272 0.2251 

In Table 1, “Before transform.” means the RMS errors of sampled point clouds 1Q  and 
2Q  before the transformation along z axis.  
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Figure 3 Comparing the registration error between the registered point cloud ( 1Q ′ , 2Q ′ ) 

and the nominal surface nS for two approaches 

In Figure 3, 1Q′  is the transformed point cloud of 1Q , 2Q′  is the transformed point cloud of 
2Q , ( )nSQd ,1′  is evaluated with the closest distance between its point 1Qqi ′∈  and the 

nominal surface nS  by ( )),(.min),(
,

vuSqdSqd nivuni = . Figure 3.a shows that the registered 

point clouds 1Q′  and 2Q′  through the ICP registration approach, and Figure 3.b gives their 
registration error map on the parametric domain. Figure 3.c shows the registered point 
clouds of 1Q′ , 2Q′  and the fused surface through the IRF approach, and Figure 3.d gives 
their registration error map. 

5.2 Example2: human face  

A measured example (human face) (125mm×176mm×54mm) is selected to show that the 
IRF approach can achieve accurate registration for complex surfaces. 

 
Figure 4 The surface of human face and sampled point clouds 

As shown in Figure 4, three point clouds are generated from the nominal surface to 
simulate the measurements from multiple sensors with different noise characteristics. The 
data parameters described in Figure 4 are similar to Example 1. 

With the simulated point-clouds 0Q , 1Q  and 2Q , their variances, the initial transformation 
estimate, the convergence threshold 001.0=ρ , the interactively defined initial surface 
shown in Figure 5 and its covariance 0.01× I  ( I is a unit-matrix, dimension: 1200×1200), 
we can obtain the registration result through the IRF approach and other ICP approaches. 
The quantitative comparison of the accuracy for five approaches is shown in Table 2. The 
registration error distribution from IRF and ICP approaches is shown in Figure 6.  
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Figure 5 Initial surface 1−S  

Table 2 RMS errors comparison for the registered point clouds (unit:mm) 

Point- 
cloud 

Before 
transform.

Single 
ICP 

Iterative 
ICP 

ICP to 
plane 

ICP to 
surface IRF 

1Q  0.0222 0.2279 0.1784 0.2913 0.0224 0.0223 

2Q  0.2235 0.3217 0.2540 0.2833 0.2236 0.2234 

 
Figure 6 Comparing registration errors for two approaches 

5.3 Example3: the sine wave part 

A multi-sensor system has been built in the Computational Design and Manufacturing 
Laboratory at the Illinois Institute of Technology for shape digitization as shown in 
Figure 7. 

 
 Figure 7  The multi-sensor shape digitization system at IIT 

In the multi-sensor system, four stages (translation stages along x, y, z and rotary stage θ),  
one area scanning sensor (Minolta VIVID910), one point laser probe (Optimet 
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Conoprobe) and one line-laser scanning sensor (Optimet Conoline) are integrated to 
measure the shape of mechanical parts. 

To align the area and line sensors into the coordinate system of Conoprobe point sensor 
and to validate the registration accuracy of the proposed method, an accurately fabricated 
sine wave part (203.2mm×203.2mm×60.325mm) was selected and is shown in Figure 8. 
The sine-wave part consisting of three surfaces was scanned with these three sensors, and 
the three sets of sensor data defined in their respective coordinate systems were obtained. 
Each of the three sets of sensor data need to be separated first (as shown in Figure 8.a) so 
that data from the same physical surface can be registered and fused into the same surface 
representation. The sensor noise characterized by measuring a sphere is shown in Table 3. 

 
Figure 8 Scanned point clouds of three sensors from sine-wave part 

Table 3 Standard deviation of a measured ball for three sensors (unit: mm) 

Sensor Radius Radius std. X-coordinate 
std. of center

Y-coordinate 
std. of center 

Z-coordinate 
std. of center 

point 11.9188 0.0045 0.0055 0.0047 0.0111 
Line 11.9259 0.0054 0.0200 0.0058 0.0099 
Area 12.010 0.0163 0.0163 0.0163 0.0163 

For three sets of sensor data defined in different coordinate systems, we manually 
obtained the coarse transformation as the initial estimate of registration. With these 
measurements, their measurement noise, and threshold 001.0=ρ mm, we employed the 
IRF approach to register the Conoline sensor data  1Q  and Minolta VIVID910 sensor data 

2Q  into the coordinate system of the Conoprobe sensor through its sensor data 0Q . To 
validate the registration accuracy, we acquired additional dense measurements with the 
Conoprobe and compared the RMS error between the registered point clouds and the 
dense point set from the Conoprobe. The registration error distribution from IRF and ICP 
approaches is shown in Figure 9. The quantitative comparison of the accuracy for five 
approaches is shown in Table 4. 

Table 4 Registration RMS error of different approaches (unit: mm) 

Point 
cloud 

Single 
ICP 

Iterative 
ICP 

ICP to 
plane 

ICP to 
surface IRF 

1Q  0.1114 0.1012 0.1398 0.0992 0.0985 

2Q  0.09241 0.1193 0.1072 0.0515 0.0469 
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Figure 9 Dense measurements for validation and registration error map   

5.4 Example4: mechanical part 

A mechanical part including planar and cylindrical surfaces is also selected to calibrate 
the actual multi-sensor system shown in Figure 10. 

 
Figure 10 Scanned point clouds with different sensors  

For three sets sensor data defined in different coordinate systems, we manually obtained 
the coarse transformation as the initial estimate of registration. With three sets of sensor 
measurements, their measurement noise, initial estimate, and threshold 001.0=ρ mm, we 
can independently employ the IRF and the point-to-point ICP approach to register the 
point clouds 1Q  and 2Q  to the coordinate system of the point cloud of 0Q . To validate the 
registration accuracy, we employed Optimet Conoprobe to sense additional dense 
measurements on the same part (Figure 11.a). The registration error distribution from IRF 
and ICP approaches is shown in Figure 11. The quantitative comparison of the accuracy 
for five approaches is shown in Table 5. 

Table 5 Registration RMS error of different approaches (unit: mm) 

Point 
cloud 

Single ICP to 
point 

Iterative ICP 
to point 

ICP to 
plane 

ICP to 
surface IRF 

1Q  0.0706 0.0709 0.0911 0.0906 0.0680 

2Q  2.5274 2.5439 1.4936 0.0655 0.0618 
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Figure 11  Dense measurements for validation and registration error map 

5.5 Analysis of experimental results  

In the above four examples as illustrated in Figure 3, Figure 6, Figure 9, and Figure 11, 
ICP has significant bias on the error distribution, and the IRF obtains more uniform 
distribution of the registration error. 

From the quantitative analysis of results of the IRF, our point-surface registration and 
three ICP variants as shown in Table 1, Table 2, Table 4, and Table 5, we can see that the 
registration error in the IRF and the point-surface registration is significantly smaller than 
all three other ICP variants. The registration error in the IRF is comparable to the original 
RMS error between the initial sampled points and the nominal surface when the nominal 
model is available (in Example 1 and 2). It suggests our IRF approach can lead to very 
accurate calibration. 

In the above examples, the IRF leads to slightly better results than our simple point-
surface registration. This is not surprising since the surface in the point-surface 
registration is deliberately reconstructed from the most accurate sensor data (the smallest 
variance). Further, the IRF results are consistently better than the point-surface 
registration; this suggests that a surface reconstructed through data fusion from multiple 
point clouds is beneficial for enhancing the registration accuracy.  

Table 6 Running time of different registration methods (unit: sec.) 

Method 
Example  

Point-to-
point ICP 

Point-to- 

plane ICP 

Point-to- 

surface ICP 
IRF 

Simulated surface 42.687 33.14 144.74 219.73 

Human face 33.75 32.86 513.47 948.67 

Sine-wave 331.53 4450.93 1455.42 2890.94 

Mechanical part 75.83 82.38 69.03 129.56 

The running time for the four examples is given in Table 6. It shows 1) more time is 
required for the IRF and point-to-surface registration than simple ICPs. This is primarily 
due to the expensive computation of the closest distance from a point to a B-spline 
surface. Dense surface sampling and K-d tree can be used to compute an initial closest 
point on the surface during the first few rounds of iterations to enhance the running speed. 
2) The IRF takes about twice the time of simple point-to-surface registration even though 
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the IRF involves multiple times of point-to-surface registration. This is because, after the 
first point-to-surface registration, the subsequent iteration converges much faster. Since 
the IRF leads to more accurate but slower registration, it is useful for multi-sensor 
calibration where the computation is typically done off-line. 

6 Discussion 
In this section, the properties of the proposed IRF approach are discussed, including: 1) 
its convergence property; 2) its robustness under different number of data points; 3) its 
robustness under different noise levels (here the noise level refers to the standard 
deviation of the sensor data); and 4) how it performs with different underlying surface 
models.   

6.1 Convergence property 

Convergence Theorem Given a set of point clouds rQQQ L,, 10  and an initial surface 
estimate 1−S , the squared distance error between the fused surface and the registered 
point clouds and the initial surface through the IRF approach is guaranteed to converge 
to a minimal value (greatest lower bound). 

The basis of this theorem is that both the registration and the fusion minimize the squared 
distance error. The proof of this theorem is available in the Appendix. 

 

Figure 12 Mean squared errors for four examples showed in Section 5 

Figure 12 show the overall mean squared error (computed based on Eq. 26) as the IRF 
process iterates for the four examples shown in Section 5. In this figure, each highlighted 
dot represents the overall mean squared error after a point cloud iQ has been registered 
and fused into the surface. The highlighted dots with marks ek represent the overall mean 
squared errors after the k-th IRF iteration. Note, each IRF iteration involves the 
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registration and fusion of r point clouds. From Figure 12, we can see that the overall 
mean squared errors e  in all four examples monotonically converge to minimal values. 

6.2 Robustness under different numbers of sensor data 

In order to examine the robustness of these registration approaches, we changed the 
number of data points for the first two examples since the synthetic surfaces in the two 
examples can be used easily for re-sampling. We then computed the RMS error between 
the registered point cloud and the nominal surface under different sampling conditions. 
The results are shown in Figure 13. 

From Figure 13, we can see that 1) the registration error of the point-to-point ICP 
increases significantly with the decrease of the number of measurements (from the right 
to the left of the figure) and the registration error of point-to-surface ICP and IRF remain 
relatively the same as the number of measurements decreases.  As the number of 
measurements becomes smaller, the accuracy advantage of IRF over ICP becomes more 
pronounced. 2) The registration accuracy of the IRF is also identical to the RMS error 
between the original point cloud before transformation and the nominal surface. This 
suggests the IRF results in very stable registration. Therefore, we can conclude that the 
IRF approach obtains more accurate and robust registration even with fewer data points. 

    
(a) Example in Figure 2                                                    (b) Example in Figure 4 

Figure 13  RMS errors of registered point clouds with different numbers of measurements 

6.3 Robustness under different measurement noise levels 

For the same two synthetic examples, we changed the noise level of simulated point 
clouds to examine the robustness of the registration approaches under different noise 
levels. 

From Figure 14, we can see that the IRF results in consistently more accurate registration 
(smaller RMS error values) than ICP or simple point-surface registration. Therefore, the 
IRF achieves more stable registration even for data with larger noise. 
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(a) Example in Figure 2                                                                 (b) Example in Figure 4 

Figure 14  RMS errors of registered points with different noise levels 

6.4 Model selection on the IRF 

A potential drawback of the IRF approach is that it requires an initial estimate of the 
underlying surface. For example, a surface model (control points number, degree, and 
knot vectors of the B-spline surface) needs to be selected so that the fused surface can 
represent the object accurately. The inappropriate selection of surface model may lead to 
incorrect point-to-surface correspondence and introduce bias to the fused surface and 
registration. We show below a practical method for selecting the surface model with the 
IRF. The basic idea is to gradually increase the number of control points until the 
registration error reaches the minimal. 

For the point cloud from the nominal surface with 28×12 control points in the example 1, 
we select different surface models and examine how the mean squared error varies. 

 
Figure 15  Mean squared errors with different surface models 
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Figure 16  Converged mean squared errors for different surface models 

From Figure 15, we can see that the IRF still monotonically converges as we proved in 
the theorem even when the surface model under-fits or over-fits the data. As shown in 
Figure 16, on the one hand, the model with fewer control points has larger mean squared 
error because of under-fit. On the other hand, the surface with more control points has 
smaller fitting error but may introduce larger registration error. The appropriate mode 
(28×12) has the smaller fitting error and registration error, therefore has the smallest 
converged mean squared error. Thus, the convergence property gives us a practical 
method to select the surface model by gradually increasing the number of control points 
until we obtain a model with the lowest squared error.  

6.5 Dependency on the initial positions 

The registration process in IRF is an ICP process, therefore the result of IRF depends on 
the initial positions as in the ICP process [3]. Since IRF starts with an ICP and is 
guaranteed to converge, any initial conditions that work for ICP would also work for IRF.  
Table 7 shows the ICP and IRF results for Example 1. As the point clouds Q1 and Q2 are 
further rotated by 90, 60, 30 degrees, the errors converge to the minimum. 

For the calibration purpose, a good initial condition can be obtained in many ways: 
through interactive specification, setting multiple initial conditions to obtain a global 
optimal registration, or from global registration method such as [12]. 

Table 7 Registration RMS errors under different initial positions 

RMS error after registration 
Rotation angle along Z 

axis Quaternion representation 
 Point-to-point ICP IRF 

1Q  1.946593 1.945569 
90º R:(0,0,0,1),T:(0,0,0) 

2Q  0.229517 0.227347 

1Q  7.772473 7.770891 
60º R:(0.866,0,0,0.5), T:(0,0,0) 

2Q  0.229517 0.227348 

1Q  0.297582 0.022712 
30º R:(0.966,0,0,0.259), 

T:(0,0,0) 
2Q  0.228498 0.225134 
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7 Conclusion 
In this paper, a new multi-sensor calibration approach, called iterative registration and 
fusion, is presented. The core idea of this approach is to use surfaces reconstructed from 
multiple point clouds to enhance the registration accuracy and robustness, i.e. to 
iteratively register the point clouds against a continuous surface and then fuse the 
registered multi-sensor data to update the surface. Such iteration is guaranteed to 
converge to a minimum error. 

Experiments demonstrate that the IRF leads to a more accurate and stable registration of 
multi-sensor data even under fewer measurements or larger noise conditions.   

The foundation of our IRF approach is that both the registration and the fusion minimize 
the squared distance error, i.e. both the registration between points and surfaces and the 
surface fitting from point-cloud are realized through the least-squares. It forms the core of 
the IRF and is the basis for the process to converge monotonically. In this paper, we have 
implemented our approach in B-spline surfaces, planes and cylindrical surfaces. We 
believe our approach based on the combination of Kalman filter and parametric surface 
representation can be further extended to a Gaussian process formulation through a 
flexible non-parametric Bayesian model [31] and other surface representations. In the 
future, we plan to extend IRF to other surface models, such as point-sampled surfaces, 
that are approximated based on least-squares. 

Further, we believe that the IRF approach is also applicable to multi-view registration 
where the data acquired from different view orientations can be considered as multiple 
sensor data with identical variance. 
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Appendix 
LEMMA 1 (Data Withdrawal). Assuming a fused surface lS at step l  is defined with 
state lP  and its covariance 

lPΛ  and it is updated from 1−lP  and 
1−lPΛ  with the new 

measured point z  and variance zΛ . Then we can withdraw z  from the fused surface lS  
by  

( )
ll zl PP ΛΑKIΛ ′−=

−1
 and  ( )lzlll z PAKPP −′+=−1 ,                                          
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zzz

T
zl ll
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Proof:  From Eq.6 (b), we can obtain  
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Computing the inverse of both sides of Eq.29, we can obtain the withdrawn surface 
covariance 

1−lPΛ  by 
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T
zll

AAΛΛ PP  .                                              

Reference [41] gives a generalized form of the analogous matrix inversion lemma as 
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AΛAAΛK PP , the above equation can be written as 
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( )
ll zl PP ΛAKIΛ ′−=

−1
.                                                              (30) 

From Eq.5, we obtain the state lP  at the th−l step from the previous state 1−lP  and 
measurement z  by 

 ( ) zllzll KPAKIP +−= −1 .                                                            (31) 

By multiplying ( ) 1
1

−
−lPΛ to  Eq.6.a,  we obtain  
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Substituting  ( )zl AKI −  in Eq.31 with ( ) 1
1

−
−ll PP ΛΛ , we obtain  
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With ( ) 1−
lPΛ  in Eq.6.b and lK  in Eq.4, ( ) ll

KΛP
1−  in Eq.32 can be calculated by 
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Substituting Eq.33 into Eq.32, we can obtain 
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Multiplying ( ) 1
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− ll PP ΛΛ  to both sides of the above equation, we can obtain  
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In Eq.34, 1−lP  can be computed with 
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In Eq.35, 1−Λ− z
T
zA  can be obtained by 
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                                   (36) 

Substituting Eq.36 into Eq.35, we can obtain 

( ) ( )( ) ( ) zz lllll lllll
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Multiplying both sides of Eq.34 with ( ) 1−
lPΛ  ,  we can obtain  
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.                                                            (38) 
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Substituting Eq.38 into Eq.37, we can compute 1−lP  as  

( ) ( )lzllllzll zz PAKPKPAKIP −′+=′+′−=−1 .                                             

LEMMA 2. Let a set of point clouds rQQQ L,, 10 , an initial surface estimate 1−S defined by 
1−P and 

1−PΛ , and their fusion surface rS  defined by rP  and 
rPΛ through Eq.10 and 11. 

Then the withdrawn surface =′iS rS Θ iQ  is independent of iQ . 

Proof:  Assume the fused surface from rii QQQQQ ,,,,,, 1110 LL +−  and 1−S  is S , we can get S  
by (it can be inferred from Eq.10 and 11) 

rii QQQQSS ⊕⊕⊕⊕= +−
− LL 110

1 ,                                            (39) 

and rS  by  

riii
r QQQQQSS ⊕⊕⊕⊕⊕= +−

− LL 110
1 .                                  (40) 

Eq.40 can be written as 

iirii
r QSQQQQQSS ⊕=⊕⊕⊕⊕⊕= +−

− LL 110
1                                       

Due to 1) =′iS rS Θ iQ , and  2) the proof in Lemma 2, we can get SS i =′ . From Eq.39, we can see 
S  is independent of iQ .  Since SS i =′ , we can know that the withdrawn surface =′iS rS Θ iQ  is 
independent of iQ  Q.E.D. 

LEMMA 3. Let 0S  be a surface defined by control points 0P  and its covariance
0PΛ , and 

{ }mzzzQ ,,. 211 L= with variance { }
mzzz ΛΛΛ ,,.

21
L  be one point cloud, the fused surface 1S   

defined by control points 1P  and variance 
1PΛ  can be obtained by 1

1
0 SQS →⊕ , and the 

withdrawn surface 0S ′  defined by control points 0P′  and covariance 
0PΛ ′  can be obtained 

by 1S Θ 0
1 SQ ′→ , then 0S ′  equals 0S  i.e.  0P′  = 0P  and 

0PΛ ′  = 
0PΛ .  

Proof:  As shown in Eq.10 and 11, the fused surface 1S  from 0S  and 1Q  can be obtained 
by  
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From Eq.16 and 17, we can obtain the withdrawn surface 0S ′  from 1S  by 
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Substituting Eq.41 into Eq.42, we can obtain  
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Since 00 PP =′  and 
00 PP ΛΛ =′ , hence the surface 0S ′  equals 0S .  

Theorem (Convergence of IRF) Let an initial surface approximation 1−S  and a set of 
point clouds rQQQ L,, 10  for this surface be given. Then the sequence of means squared 
errors { }ree ,,0 K between the fused surface and registered point clouds in the IRF, and 
the initial surface, decreases monotonically.  

Proof: In the procedure described in Section 4, the IRF approach includes three main 
steps, the first and second step are to construct an initial surface for the IRF and to 
compute coarse registration and fusion of r  sets of sensor data. The two steps do not 
include iteration and always converge. The third step includes an iteration process to 
obtain the fine registration by iteratively registering the point cloud iQ′  to S  and obtain 
registered point cloud iQ ′′ , withdrawing iQ′  from S ,  and fusing iQ ′′  to S′ . The following 
will prove the convergence of this iteration process.  

(1) Registration of  iQ′  to S . 

The registration of iQ′  to S  can be noted as ii QSQ ′′→⊗′ , and is obtained by minimizing 
the squared error ( )( )SQE i ,′rT  

( )( ) ( ) i

m

j
jjii QzSzdSQQE

i

′′∈=′=′′ ∑
=1

2 ,,
2
1,rT ,                                             

where rT  is the transformation described in section 3.4, im  is number of points in iQ′ , jz  
is the th−i transformed point, and ( )Szd j ,  is the minimal distance between the jz  and the 
fused surface S . Let P  be the control points of S , and ),( jj vu  be the parameter of the 
closet point of jz on S , ( )Szd j ,  is calculated by 

( ) PA jjj zSzd −=, ,                                                               

where jA  is the B-spline shape function matrix for jz . Since the registration is to find rT  
by minimizing ( )( )SQE i ,′rT , Therefore  

( )( ) ( ) ( )SQESQESQQE iiii ,,, ′≤′′=′′=′rT .                                           (43) 

where ( )SQE i ,′  is the squared error between iQ′  and S , which can be evaluated with Eq. 
26. 

(2) Withdrawal of iQ′  from S . 
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For the withdrawal of iQ′  from S , we can obtain surface S ′  by S Θ SQi ′→′ . It means that 
SQS i →′⊕′ (Detailed proof can be seen Lemma 3 ). From Eq.24, the surface S  can be 

obtained by   

 SQQQQQS irii →′⊕′⊕′⊕′⊕′⊕ +−
− LL 110

1 .                                             

The surface S  is obtained through the Kalman filter, it can be also obtained by 
minimizing the squared error from Eq.26,  

( )( )  ),( ),( ),(),( ,,,,,,
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−
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− LL .    (44) 

Substituting Eq.43 into Eq.44 , we can obtain 
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            (45) 

Dividing both sides of Eq.45 with ∑
=

r

i
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0

, we can obtain  

( )( ) ( )( )

( )( ) ( )( )SQQQQQSemSQQQQQSE

SQQQQQSemSQQQQQSE

irii

r

i
iirii

irii

r

i
iirii

,,,,,,,,,,,,            

,,,,,,,,,,,,

110
1

0
110

1

110
1

0
110

1

′′′′′=′′′′′≤

′′′′′′=′′′′′′

+−
−

=
+−

−

+−
−

=
+−

−

∑

∑

LLLL

LLLL

          (45) 

(3) The fusion of iQ ′′  to S ′ .  
For the fusion of  iQ ′′  with S ′ , the updated surface S ′′  can be obtained by SQS i ′′→′′⊕′ . 

As described in Eq.24, S ′′ can be obtained by  

SQQQQQS irii ′′→′′⊕′⊕′⊕′⊕′⊕ +−
− LL 110

1 .                                                 
As shown in Eq.26, the surface S ′′  can be also obtained by minimizing  
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Since S ′′  is the solution with minimal value of Eq.46, we have 

( )( ) ( )( )SQQQQQSESQQQQQSE iriiirii ,,,,,,,,,,,,,,,, 110
1

110
1 ′′′′′′≤′′′′′′′′ +−

−
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− LLLL .               (47) 

where S  is the fused surface from S1− , rQQQ ′′′ L10 ,  with the same surface model with 
respect to the number of control points, degree, knot vector. 

Dividing both sides of Eq.47 with ∑
=
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, we can obtain 
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Combining Eq.45 and Eq.48, we can see that 



 28

( )( ) ( )( )SQQQQQSeSQQQQQSe iriiirii ,,,,,,,,,,,,,, 110
1

110
1 ′′′′′≤′′′′′′′′ +−

−
+−

− LLLL .              (49) 
Eq.49 means that: from input iQ′ and the surface S , we can obtain the registered point 
cloud iQ ′′   and the updated surface S ′′  with a smaller mean squared error.  

(4) The mean squared error from iQ′  to 1+′iQ . 
When the iteration is transferred from iQ′  to 1+′iQ , we need to prove the right side of Eq.49 
at step 1+i  for  1+′iQ  equals to the left side of Eq.49 at step i  for iQ′  so that the mean 
squared error monotonically decreases. The following gives the detailed proof. 
For the registration and fusion with iQ′ , noting SSi = , SS i ′=′ , and SS i ′′=′′ ,  we can express 
Eq.49 at step i  for iQ′  as 
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and express Eq.49 at step 1+i  for the point cloud 1+′iQ  as 
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From Eq.48, we can know the left side of Eq.50 can be obtained by  
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and the right side of Eq.51  can be computed by  

( )( ) ( ) ( ) ( ) ( ) ∑∑∑
=+=

+
+

+

=

++−+
+−

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′+′+′+=′′′′′

r

i
i

r

ij

i
i

i
j

i

j

i
j

ii
irii mSQESQESQESSESQQQQQSe

02

1
1

1

0

1111
110

1 ,,,,,,,,,, LL . (53) 

In the Step 3 of the IRF, we have 1+=′′ ii SS , iQ′  in Eq.53 equals iQ ′′  in Eq.52, then Eq.53 
changes to  
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From Eq.50, 51 and 54, we can see that the mean squared error e  is monotonically 
reduced for any point cloud registration and fusion. Since the mean squared error 0≥e , 
and e  is nonincreasing, then the error change 0→Δε , and the stated IRF approach must 
monotonically converge to a local minimal solution. Q.E.D. 

  




