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Abstract

Non-uniform rational B-spline (NURBS) has been widely used as an
effective shape parameterization technique for structural optimization due
to its compact and powerful shape representation capability and its pop-
ularity among CAD systems. The advent of NURBS based isogeometric
analysis has made it even more advantageous to use NURBS in shape
optimization since it can potentially avoid the inaccuracy and labor-
tediousness in geometric model conversion from the design model to the
analysis model.

Although both positions and weights of NURBS control points affect
the shape, until very recently, usually only control point positions are
used as design variables in shape optimization, thus restricting the design
space and limiting the shape representation flexibility.

This paper presents an approach for analytically computing the full
sensitivities of both the positions and weights of NURBS control points in
structural shape optimization. Such analytical formulation allows accu-
rate calculation of sensitivity and has been successfully used in gradient-
based shape optimization.

The analytical sensitivity for both positions and weights of NURBS
control points is especially beneficial for recovering optimal shapes that are
conical e.g. ellipses and circles in 2D, cylinders, ellipsoids and spheres in
3D that are otherwise not possible without the weights as design variables.

Keywords: Shape optimal design, NURBS, Isogeometric analysis

1 Introduction

This paper presents an approach for analytically computing the full sensitivities
of both the positions and weights of NURBS (non-uniform rational B-spline)
control points in structural shape optimization.

∗Email address: qian@iit.edu.
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Even since the work of Braibant and Fleury [1], B-spline and its generalized
representation, NURBS, have been widely used in shape parameterization in
structural optimization. It has become the method of choice for parameterizing
freeform shape in structural optimization [2] for two important reasons: 1)
With a few control points, NURBS can represent complex freeform shape. The
alternative representation, the use of finite element nodes as design variables,
would often lead to wiggly, irregular shape. Figure 1 gives one such example.
2) The output of NURBS-based shape optimization can be directly linked to
a computer-aided design (CAD) system since NURBS is the standard shape
representation underlying all major CAD software.

(a) Initial design (b) Optimized design

Figure 1: Optimized shape of a hole in a plate where elements nodes are used
as design variables. Figures are taken from [1].

The recent advent of NURBS based isogeometric analysis [3] has made it
even more advantageous to use NURBS in shape parameterization for design
optimization since NURBS can not only be used to represent the geometry, it
can also be used as a basis for approximating the physical fields. The use of the
NURBS basis in finite element analysis has exhibited superior numerical prop-
erties, e.g. in terms of per-degree-of-freedom accuracy, over traditional finite
element analysis [3]. Further, the tri-variate B-spline representation has been
extended to represent both geometry and material composition in functionally
gradient materials (FGM) parts [4] and used in the B-spline basis based graded
finite element analysis of FGM objects [5]. It thus allows closer integration with
CAD since the exact geometry and even material composition can be used in
both design and analysis through the NURBS representation.

NURBS represented shape is affected by both the positions and weights of
its control points. Figure 2 presents a 4 × 3 control net for a NURBS surface
consisting of 2 × 2 knot spans with degree 2 in ξ1 direction and degree 1 in
ξ2 direction. Figure 2.b shows when a control point changes its position from
Qa to Qb, the underlying surface and knot spans change. Figure 2.c shows the
surface change and the knot span change when the weight of control point Q
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changes from 1 to 0.5.

(a) Initial NURBS surface

Qa

Qb

(b) Modified NURBS surface

Q

wa = 1

wb = 0.5

(c) Modified NURBS surface

Figure 2: Both position and weight of a control point can change the NURBS
surface. a) The initial NURBS surface; b) Modified NURBS surface after the
position of control point Q is changed from Qa to Qb, c) Modified NURBS
surface after the weight of the control point Q is changed from wa = 1 and
wb = 0.5.

Although both positions and weights of control points affect the NURBS
geometry, as demonstrated in Fig. 2, until very recently, usually only posi-
tions of control points are used as design variables [1, 6, 7, 8, 9, 10]. In these
work, analytical sensitivities when used are only given for positions of control
points, thus they are referred to as partial sensitivity in this paper. Isogeometric
analysis has recently been successfully applied in structural shape optimization
[11, 12] where, again, only analytical sensitivities for positions of control points
are given.

Thus far, the use of both weights and positions of control points as design
variables has only occasionally been explored, e.g. in [13]. In particular, there
has been a lack of analytical formula for sensitivity calculation for shape opti-
mization with both positions and weights of control points as design variables.
A notable exception is very recent work in [14] where both control points and
weights are used to optimize one-dimensional beam structures with sensitivities
analytically evaluated.

Analytical formula for computing the sensitivity of physical quantities over
both positions and weights is important for the following reasons:
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• Analytical formulas leads to more accurate and efficient calculation of
derivative information required in gradient-based optimization. The finite
difference based method for gradient calculation suffers from the “step-
size dilemma” due to the potential truncation error and round-off error
[15]. It is also inefficient. If we need to find the derivatives of the struc-
tural response with respect to n design variables, the forward-difference
approximation requires n analyses, while the central-difference approxi-
mation would require 2n analyses.

• The use of NURBS weights as design variables in structural optimization,
in addition to positions of control points, lends more flexibility in shape
representation and enlarges the design space, which can lead to better de-
sign. In particular, it makes it possible to recover a class of optimal shapes
such as conic curves, e.g. ellipses and circles, and surfaces, e.g. cylinders,
spheres and ellipsoids, which are otherwise not possible. Note, without
weights, NURBS shape degenerates into B-spline shape and B-spline rep-
resentation cannot exactly represent these conic curves and surfaces.

The absence of analytical sensitivities of physical quantities such as compli-
ance, displacement and stress over shape parameters, i.e. both positions and
weights, is due perhaps to the seeming complexity of such a derivation. A näıve
way of obtaining these sensitivities would be to expand the integrand involved
in calculating these physical quantities into explicit expressions of design vari-
ables, which would be of daunting complexity. In the context of isogeometric
shape optimization, the derivation could be more involving since the NURBS
basis function used in analysis also becomes affected by the design variables
(weights). For example, although the usefulness of weights as design variables
was recognized in recent work in [11], the derivation of analytical sensitivities
for weights was not available and was deemed “more complex”.

In this paper, we give a set of compact formulas for computing analytical
sensitivities for both control point positions and weights, thus referred to as full
sensitivity. Our approach follows that of [16, 17, 18], an isoparametric based
technique for differentiating stiffness matrix and force vectors with respect to
discrete design variables. We use the chain rule of differentiation and Jacobi’s
formula for the derivative of a determination to derive these compact formulas.
These formulas are applicable to both traditional finite element based NURBS
shape optimization and isogeometric shape optimization.

The calculation of these sensitivities involve two terms: analysis terms that
are encountered during the usual finite element analysis and isogeometric analy-
sis and geometric sensitivities that are represented as the derivatives of positions
and weights over design variables. Mesh refinement is often required for accu-
rate finite element analysis. This is especially true in isogeometric shape opti-
mization since the weights are now design variables which can induce distorted
distribution of isoparametric curves (element boundaries). Thus, an analytical
method is also given for propagating geometric sensitivities of the control points
in the design model to those of the control points in the refined analysis model.
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Our numerical implementation is based on the isogeometric analysis due to
its numerical advantages. Numerical examples demonstrate the availability of
such analytical formulas has both theoretical implication and practical signifi-
cance. Theoretically, they can be used in interpreting the optimality conditions
and understanding behaviors of physical systems which may not been seen di-
rectly from the problem. For example, they can be used in determining whether
an exact circle is the optimal shape for a hole in a plate under bi-axial load. In
practice, they enlarge the design space, allow flexibility in shape representation
and lead to better designs.

In the remainder of this paper, Section 2 gives a brief introduction on the
NURBS basis and NURBS geometry and introduces some key notations used
in sensitivity derivation. Section 3 gives a general formulation of shape opti-
mization and the role of sensitivity in shape optimization. Section 4 gives the
analytical formulas for sensitivities over positions and weights of NURBS con-
trol points. Section 5 discusses how the geometric sensitivity of a design model
can be analytically propagated to that in the refined analysis model. Section
6 discusses the result of our numerical implementation on some common shape
optimization problems. This paper concludes in Section 7. The derivation of
the analytical formulas is given in the Appendix.

2 Introduction to NURBS

This section gives a brief introduction on NURBS basis functions and NURBS
geometry. It introduces some notations that will be used in deriving the ana-
lytical sensitivity in following sections. For details on NURBS, refer to [19].

A NURBS curve of degree p is defined as follows

x(ξ) =
∑n
i=0Bi,p(ξ)wiPi∑n
j=0Bj,p(ξ)wj

, 0 ≤ ξ ≤ 1, (1)

where {Pi} = (xi1 , xi2) represents the coordinate positions of a set of i = 0, . . . , n
control points, {wi} is the corresponding weight, and {Bi,p} is the degree p B-
spline basis function defined on the knot vector

Ξ = {ξ0, ξ1, . . . , ξn+p+1}.

The i-th (i = 0, . . . , n) B-spline basis function can be defined recursively as

Bi,p(ξ) =
(ξ − ξi)Bi,p−1(ξ)

ξi+p − ξi
+

(ξi+p+1 − ξ)Bi+1,p−1(ξ)
ξi+p+1 − ξi+1

Bi,0(ξ) =

{
1 ξi ≤ ξ ≤ ξi+1

0 Otherwise

.

The derivative of the i-th B-spline basis function can be computed as follows

dBi,p(ξ)
dξ

=
p

ξi+p − ξi
Bi,p−1(ξ)− p

ξi+p+1 − ξi+1
Bi+1,p−1(ξ).
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A NURBS surface of degree p in ξ1 direction and degree q in ξ2 direction is
a bivariate vector-valued piecewise rational function of the form

x(ξ1, ξ2) =
∑n
k=0

∑m
l=0Bk,p(ξ1)Bl,q(ξ2)wk,lPk,l∑n

s=0

∑m
t=0Bs,p(ξ1)Bt,q(ξ2)ws,t

, 0 ≤ ξ1, ξ2 ≤ 1 (2)

The {Pk,l} form a (n + 1) × (m + 1) bidirectional control net, {wk,l} are the
weights, and the {Bk,p} and {Bl,q} are the B-spline basis functions defined on
the knot vectors Ξ1 and Ξ2.

Without loss of generality, we here consider a NURBS surface on a knot-
span basis, defined by an array of nen = (p+ 1)× (q + 1) control points. Note,
the NURBS basis function has local influence property, i.e. within a given knot
span, only (p + 1) × (q + 1) number of non-zero basis functions. So the total
number of nodes per element (knot span) is nen = (p+ 1)× (q + 1).

The NURBS basis function Nk,l for the control point Pk,l (k = 0, . . . , n and
l = 0, . . . ,m) can be written as

Nk,l(ξ1, ξ2) =
Bk,p(ξ1)Bl,q(ξ2)wk,l∑n

s=0

∑m
t=0Bs,p(ξ1)Bt,q(ξ2)ws,t

(3)

where p and q are degrees of the non-rational B-spline basis functions Bk,p and
Bl,q.

For notational convenience, we change the matrix form of the NURBS basis
function into the column form by converting the matrix index (k, l) into a column
index i = k ∗ (q+1)+ l. We further note the NURBS basis in the following form

Ri(ξ1, ξ2) = Bk,p(ξ1)Bl,q(ξ2),

Ni(ξ1, ξ2) =
Riwi
RTW

,

where R and W represents the column collection of Ri and wi for i = 1 to nen.
We thus can rewrite Eq. (2) as

x(ξ1, ξ2) = NTP =
nen∑
i=1

NiPi. (4)

The derivative of Ri over its parametric coordinates can then be computed
as

∂Ri
∂ξ1

=
dBk,p(ξ1)

dξ1
Bl,q(ξ2),

∂Ri
∂ξ2

= Bk,p(ξ1)
dBl,q(ξ2)
dξ2

(5)

3 Shape optimization

We use a 2D elasticity problem as an example for shape optimization and give
its weak form equilibirum equations. The terms in the weak form such as
stiffness matrix and force vectors will be used in composing objective functions
and constraints for structural shape optimization.
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3.1 Linear elasticity analysis

We here consider a 2D linear elasticity problem. The strong form for linear
elasticity [20] is as follows

∇ · σx + bx = 0 and ∇ · σy + by = 0 on Ω
σ = D∇su
σx · n = tx and σy · n = ty on Γt,
u = ū on Γu.

where Γt is portion of the boundary where traction is specified and Γu is portion
of the boundary where displacement is specified.

The underlying discrete equilibrium equation is

Ku = f .

where K is the stiffness matrix, u is the displacement vector and f is the external
force vector. The stiffness matrix K can be assembled from the element stiffness
matrix Ke. Likewise, the force vector f can be assembled from the element force
vector fe.

The element stiffness matrix is computed as follows.

Ke = te

∫
Ω̂e

BTDB|J|dΩ̂ (6)

where te is the plate element thickness and Ω̂ is the parametric domain of the
structure in the ξ1ξ2 space.

The integral is integrated numerically by determining the value of the inte-
grand at Gauss points in the element. The strain-displacement matrix B is

B =



∂N1

∂x1
0 ...

∂Nnen

∂x1
0

0
∂N1

∂x2
... 0

∂Nnen

∂x2

∂N1

∂x2

∂N1

∂x1
...

∂Nnen

∂x2

∂Nnen

∂x1

 (7)

where Ni is the basis function for finite element analysis and is the NURBS
basis function in isogeometric analysis.

For plane stress, the stress strain matrix D is written as

D =
E

1− v2

1 v 0
v 1 0
0 0 1−v

2

 .
where E is Young’s modulus and v is Poisson’s ratio.
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The Jacobian matrix is given by

J =


∂x1

∂ξ1

∂x2

∂ξ1
∂x1

∂ξ2

∂x2

∂ξ2

 (8)

which maps the points from the parametric coordinates to the world coordinates.
The force vector on element e may be written

fe =
∫

Ω̂e

NTb|J|tedΩ̂ +
∫

Γ̂te

NT t|J|dΓ̂ (9)

where b is the body force (force per unit area), t is the traction on the boundary,
and Γ̂t is the parametric domain of the traction boundary in the ξ1ξ2 space.

3.2 Structural shape optimization

The general mathematical formulation of a structural optimization problem can
be stated as follows

min
αs

f(u(α),α)

s.t. hi(u(α),α) = 0, i = 1 to nh
gj(u(α),α) ≤ 0, j = 1 to ng
αmins

≤ αs ≤ αmaxs
, s = 1 to neq

,

where the objective function f is a function of the state variable, e.g. displace-
ment u and the design variables α, nh is the number of equality constraints,
ng is the number of inequality constraints, and neq is the number of design
variables. The behavior constraints are represented by equality and inequality
constraints hi and gj .

To solve the generally nonlinear optimization problem, both gradient based
and gradient-less methods can be applied. In this paper, we focus on a gradient
based approach where both the structural response and its sensitivity over design
change is required. The specific optimization algorithm used in this paper is
the gradient-based method of moving asymptotes (MMA) [21].

For example, a commonly used design formulation for structural shape op-
timization is to minimize the mean compliance of a structure under a fixed
amount material through a volume fraction constraint V ≤ V ∗. Its discrete
form reads 

min
α

f = fTu

s.t. V ≤ V ∗
Ku = f

.

Another objective function used in this paper is to minimize the displacement
at the point of load under a volume fraction constraint, i.e.

min
α

f = lTu

s.t. V ≤ V ∗
Ku = f
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where l is a zero vector with a 1 corresponding to the point of load.
Using the gradient-based optimization approach such as MMA to solve the

above optimization problems requires the sensitivities of objective functions
and constraints over the design variables, i.e. ∂f/∂α, ∂hi/∂α and ∂gj/∂α.
Evaluating these sensitivities requires sensitivities of physical quantities such as
the stiffness K and force vector f over the design variables.

4 Sensitivity analysis

Sensitivity is useful in evaluating the robustness of a particular design and in
determining search directions during structural optimization. During the op-
timization process, the geometric domain Ωe will change due to the change of
design variables α, however the corresponding parametric domain Ω̂e does not
under certain constraints such that the mesh remains in a good quality. This
can be ensured by checking the Jacobian of the mapping.

Since the plate thickness te and the stress-strain matrix D are constant,
differentiation of Eq. (6) gives

∂Ke

∂αs
=
∫

Ω̂e

(
∂BT

∂αs
DB|J|+ BTD

∂B
∂αs
|J|+ BTDB

∂|J|
∂αs

)
te dΩ̂. (10)

Differentiating Eq. (9) gives

∂fe
∂αs

=
∫

Ω̂e

(
∂NT

∂αs
b|J|+ NT

(
∂b
∂x1

∂x1

∂αs
+

∂b
∂x2

∂x2

∂αs

)
|J|+ NTb

∂|J|
∂αs

)
tedΩ̂

+
∫

Γ̂te

(
∂NT

∂αs
t|J|+ NT

(
∂t
∂x1

∂x1

∂αs
+

∂t
∂x2

∂x2

∂αs

)
|J|+ NT t

∂|J|
∂αs

)
dΓ̂t

.

(11)
Our goal is now to find analytical formulas for ∂BT /∂αs, ∂|J|/∂αs, ∂N/∂αs

and ∂x/∂αs.

4.1 Full Analytical Sensitivity in NURBS Isogeometric
Shape Optimization

First, we define two additional matrices:

G =

∂N1
∂x1

∂N2
∂x1

...
∂Nnen

∂x1

∂N1
∂x2

∂N2
∂x2

...
∂Nnen

∂x2

 ,
Ĝ =

∂N1
∂ξ1

∂N2
∂ξ1

...
∂Nnen

∂ξ1

∂N1
∂ξ2

∂N2
∂ξ2

...
∂Nnen

∂ξ2

 .
In the following, for notational convenience, let us denote ∂/∂αs by a prime

(′) and the derivative over ξj , ∂()/∂ξj , as as (),ξj
. Note, if we know G′, B′ can

be drawn from it.
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Thus for the calculation of the sensitivities of stiffness matrix and force
vector over design variables αs, it suffices to find expressions for N′, G′, x′, and
|J|′.

We present below our results concerning analytical sensitivities for shape
optimization based on NURBS isogeometric analysis. The detailed proof is
provided in the Appendix.

Theorem 1 (Full sensitivity for P and W in isogeometric optimization)

|J|′ = |J|tr
(
GP′ + J−1Ĝ′P

)
, (12)

G′ = J−1Ĝ′(I−PG)−GP′G, (13)

x′ = NTP′ + (N′)TP, (14)

N ′i =
Riw

′
i

RTW
− RiwiRTW′

(RTW)2
, (15)

(
Ni,ξj

)′ =
Ri,ξjw

′
i

RTW
−
Ri,ξjwiR

TW′ +Riw
′
i(R,ξj )TW +Riwi(R,ξj )TW′

(RTW)2

+ 2
Riwi(R,ξj )TWRTW′

(RTW)3
. (16)

Note, I is an identity matrix.
(
Ni,ξj

)′ in Eq. (16) is used in describing Ĝ′. In-
serting the above equations into Eqs. (10) and (11) gives the complete analytical
sensitivities of stiffness matrix and force vector over the design variables. Since
both the effect of positions P and weights W of control points are considered,
we thus refer to the resulting sensitivity as total sensitivity.

Such sensitivity information reflects the effect of change from both control
point positions and weights. It should be pointed out, although we present these
formulas in the context of a 2D elasticity problem, they are exactly applicable
to 3D problems. To the author’s best knowledge, this is the first reported
analytical sensitivity for NURBS based shape optimization, taking into account
the effect of the NURBS weights and control points.

If the weights do not change with respect to design variables, i.e. w′i = 0,
this leads to N ′i = 0 and

(
Ni,ξj

)′ = 0, and thus Ĝ′ = 0. The above sensitivity
equations would then become a partial sensitivity for P as follows.

Corollary 2 ( Partial sensitivity for P in isogeometric optimization)

|J|′ = |J|tr(GP′),
|G|′ = −GP′G,

x′ = NTP′,

N′ = 0,(
Ni,ξj

)′ = 0,

which are identical to the forms presented in [17, 18], except that instead of
using nodal coordinates, we use control points’ coordinates P and instead of
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using the Lagrange basis function in FEA, we use the NURBS basis function
in isogeometric analysis. In this sense, the full sensitivity presented in Theo-
rem 1 generalizes the sensitivity in structural optimization from the classical
Lagrange shape function based isoparametric finite element analysis where the
basis functions do not change with respect to design variables to NURBS based
isogeometric analysis where the basis functions could change.

The total analytical sensitivities presented in Theorem 1 can also be ex-
tended to traditional finite element based shape optimization. In traditional
FEA, the Lagrange basis function does not change w.r.t to the design vari-
ables, i.e. N ′i,ξj

= 0, we thus have the following corollary for total analytical
sensitivities for both P and W in FEA based shape optimization:

Corollary 3 ( Full sensitivity for P and W in FEA based optimization)

|J|′ = |J|tr(GP′),
|G|′ = −GP′G,

x′ = NTP′,

N ′i =
Riw

′
i

RTW
− RiwiRTW′

(RTW)2
,(

Ni,ξj

)′ = 0,

In Corollary 3, the sensitivities for both positions and weights of control points
are given. The term x′ and consequently the term N ′i are needed to calculate
the physical coordinates’ derivatives over the design variables, e.g. in the body
force term in Eq. 11 and in structural grid generation where element nodes are
generated from a NURBS representation.

The significance of Theorem 1 on total sensitivities for both P and W is
obvious for the following reasons.

• Low computational overhead : the terms used in Eqs. (12) - (16) can
be divided into two parts: 1) Geometric sensitivity as represented by
P′ and W′, which measures the sensitivities of positions and weights of
NURBS control points over design variables. These terms are thus referred
to as geometric sensitivity in NURBS geometric optimization since the
NURBS shape can be completely characterized by P and W for given
degrees and knot vectors in the NURBS geometry. 2) analysis terms. All
the remaining terms are calculations already incurred during the usual
isogeometric or finite element analysis. Together, geometric sensitivity in
conjunction with the calculations incurred during the usual analysis leads
to physical sensitivity, thus low computational overhead is required in the
analytical sensitivity analysis. That is, to compute sensitivities of physical
quantities such as mass, stiffness and force, all the extra terms we need
are the derivatives of control points P and weights W with respect to
design variables. The computational implementation of these analytical
sensitivities only takes a few extra lines of code.
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• Flexible design parameterization and re-parameterization: For a given
NURBS geometry (surface or solid), different design parameterization,
i.e. controlling the NURBS geometry via different design variables αs,
can be easily supported via the calculation of geometric sensitivity P′

and W′. The corresponding physical sensitivities can then be easily cal-
culated through Eqs. (12) - (16). Any design re-parameterization for a
given NURBS solid would not require any modification of analysis related
terms.

• Enlarged design space: Since the weights are represented as variables in the
above equations, the design space has been enlarged from control point
positions only to control point positions and weights. This can lead to
better optimal design. In particular, due to the use of rational form of
Basis functions and the use of weights as variables in the optimization,
the solution space thus admits conic curves and surfaces.

• Checking Karush-Kuhn-Tucker (KKT) optimality conditions: The ana-
lytical sensitivity allows the check of KKT conditions, i.e. gradients of
objective function and constraints over design variables to see if a given
shape is optimal.

5 Sensitivity propagation from the design model
to the analysis model

In this section, we illustrate how analytical sensitivities in Theorem 1 are com-
puted in isogeometric shape optimization, through sensitivity propagation from
the design model to the analysis model.

5.1 Design and analysis models

In our isogeometric optimization approach, we make distinction between the
geometric model for design parameterization (referred to as a design model)
and that for analysis (referred to as an analysis model).

In design parameterization, the structure shape is controlled by a set of
design variables. The design control net is only as dense as necessary for defining
the boundary shape. Excessive number of design variables could lead to wriggly
optimal shapes. Figure 3.a shows two parameterizations of a hole profile within
a square plate (only a quarter of the plate is shown).

• If a freeform hole profile is desired, the positions and weights for control
points 1, 4, 7, and 10 can be chosen as independent design variables. This
is indeed the shape parameterization used in the design of the plate with
a hole in Section 6.1.

• Alternatively, if the hole profile is constrained to be circular, the design
variable is the circle radius r.
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In each case, the geometric sensitivities of 12 control points P and the corre-
sponding weights W in Figure 3.a can be derived with respect to the respective
design variables. Once P′ and W′ are known, they can be used in conjunction
with the the design model based analysis terms in equations (12) to (16) to
compute physical sensitivities such as K′ and f ′.

123

4
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6,

7

8

9

10

11

12

r

l

(a) Design parameterization (b) Analysis refinement

Figure 3: Design parameterization of a hole profile in a plate and the refined
analysis model. Only a quarter of the plate is shown. a) Design model used
in shape parameterization; b) Analysis model through the refinement from the
design model. Bold blues lines mark the element boundaries and red circles are
control points.

However, the mesh at such density is likely not sufficient for accurate analysis
required in optimization. This is especially true, given the fact that the weights
are now design variables which can distort the isoparametric curve (element
boundaries). Numerical results in Section 6 will further attest to this. Thus,
the analysis model often requires much finer mesh. Mesh refinement techniques
such as h-refinement, p-refinement, and k-refinement [3] can be used for this
purpose. Figure 3.b shows an analysis model that is resulted from the origi-
nal design model through knot insertion in both ξ1 and ξ2. The design model
consists of 2 × 1 elements. The analysis model now consists of 4 × 2 elements
and has 24 control points and corresponding weights. With such mesh refine-
ment, sensitivity propagation is then needed that can automatically calculate
the geometric sensitivities of control point positions and weights in the analysis
model (i.e. the 24 control points in Fig. 3.b) based on the information on the
geometric sensitivities of control point positions and weights in the design model
(i.e. the 12 control points in Fig. 3.a). The subsection below describe how such
sensitivity propagation can be conducted.
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5.2 Sensitivity propagation from the design model to the
analysis model

Here we focus on the sensitivity propagation during h-refinement. Sensitivity
propagation formulation for other refinement can be derived similarly.

The basic procedure for h-refinement is through knot insertion. We describe
below first the knot insertion for a B-spline curve, then its extension to a NUBRS
curve.

Knot insertion refers to adding a new knot into the existing knot vector
without changing the shape of the curve. Because the fundamental equality for
B-spline curve m = n + p + 1 where m + 1 is the total number of knots for a
degree p B-spline curve with n+ 1 control points, inserting a new knot leads to
a new control point to be added. More precisely, some existing control points
are removed and new ones are added.

Given a set of n+1 control points P0, P1, ..., Pn, a knot vector {ξ0, ξ1, ..., ξm}
and a degree p, we can insert a new knot ξ̄ into the knot vector without changing
the shape of the B-spline curve x(ξ) as follows. Assuming we need to insert a
knot ξ̄ into the knot span [ξl, ξl+1], we have the following basic knot insertion
procedure for a B-spline curve:

• Find l such that ξ̄ lies in the knot span [ξl, ξl+1].

• Find p+ 1 control points Pl−p, Pl−p+1, ..., Pl.

• Compute p new control points Qi from the above p+ 1 control points by
using the formula

Qi = (1− βi)Pi−1 + βiPi,

where the ratio βi is computed as below:

βi =
ξ̄ − ξi

ξi+p − ξi
for l − p+ 1 ≤ i ≤ l.

Thus the new knot vector becomes {ξ0, ξ1, ..., ξl, ξ̄, ξl+1, ..., ξm}. The new control
points are {P0, P1, ..., Pl−p, Ql−p+1, Ql−p+2, ..., Ql, Pl, Pl+1, ..., Pn}.

The knot insertion for a NURBS curve is typically done by converting the
given NURBS curve in three-dimensional (3D) to a B-spline curve in 4D, per-
forming knot insertion in this four-dimensional (4D) B-spline curve, and then
projecting the new set of control points back to 3D to form the new set of con-
trol points for the given NURBS curve. In this paper, we present the control
points in 2D for convenience. Let Pi = (xi, yi), then the control points in 3D is
Pwi = (wixi, wiyi, wi). Then the new control point Qwi is calculated as follows

Qwi = (1− βi)Pwi−1 + βiP
w
i .

The position of its projection in 2D becomes

Qi =
(1− βi)Pwi−1 + βiP

w
i

(1− βi)wi−1 + βiwi
, (17)
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and the weight is
wQi = (1− βi)wi−1 + βiwi. (18)

Equations (17) and (18) form the basis for sensitivity propagation, i.e. prop-
agating the sensitivity of control point position Pi and weight wi over design
variable αs, i.e. (P ′i , w

′
i), to the new control point Qi and wQi

after the knot
insertion, i.e. (Q′i, w

′
Qi

).
From Eq. (18), we know

w′Qi
= (1− βi)w′i−1 + βiw

′
i. (19)

From Eq. (17) and the new sensitivity for the weight wQi
, we have

Q′i =
(1− βi)

(
P ′i−1wi−1 + Pi−1w

′
i−1

)
+ βi (P ′iwi + Piw

′
i)

wQi

− (1− βi)Pi−1wi−1 + βiPiwi
w2
Qi

w′Qi

. (20)

Therefore equations (18), (19), and (20) give all necessary equations for
sensitivity propagation for h-refinement of a NURBS curve. A NURBS surface
is defined with an array of control points and knot vectors. By repeating the
above knot insertion procedure and the sensitivity propagation to all rows and
all columns of control points, sensitivity propagation can thus be applied to 2D
surface, and similarly to a tri-variate NURBS volume in 3D.

6 Computational examples

In this section, we present three numerical examples that use our full analytical
sensitives for shape optimization. These examples, drawn primarily from [11],
are commonly used examples in the shape optimization literature [22, 23, 24].

All problems are under plane stress conditions and the plate thickness te =
1.0. Unless otherwise specified, the convergence criteria used is the change of
objective function values, i.e.

ε =
∣∣∣∣f (k) − f (k−1)

f (0)

∣∣∣∣
where f (k) is the objective function value at the k−th iteration.

For the sake of simplicity in implementation, when mesh refinement is used,
knots are recursively inserted at the parametric middle-point of every knot span.

6.1 Design of a plate with a hole

We begin our numerical examples with a classic shape optimization problem:
optimizing the hole profile in a large plate under a biaxial stress field. The
objective is to minimize the plate compliance under the constraint of material

15



volume. For an infinitely large plate, this problem has an analytical solution:
circle under symmetric load and ellipse under asymmetric load. This makes it
especially suitable to examine the role of weights in shape optimization since,
without varying weights, NURBS degenerates into non-rational B-spline and
cannot represent conic sections exactly.

The initial design, including the structural dimensions and loads, is shown
in Fig. 4. It is modeled as a bi-quadratic NURBS surface with 4 × 3 control
points. The knot vectors are {0,0,0,0.5,1,1,1} and {0,0,0,1,1,1}, thus leading to
2× 1 knot spans. The Young’s modulus is 210 and Poisson’s ratio is 0.3.

σy = 2.5

σx = 2.5

a = 75 b = 25

A
B

C
D

Figure 4: Initial design for a hole in a plate.

Design with both positions and weights

In this example, to ensure the optimality condition, we use the KKT norm
used in the MMA algorithm as the termination criteria and it should be less
than 6.0e-6. We optimize the hole shape under two different volume fraction
constraints: V ≤ V ∗, 1) V ∗ = 96% and 2) V* = 99%. Here ’%’ refers to the
percentage of the total volume (10, 000) of the square plate without the hole.

For the first type of design with the volume constraint V ∗ = 96%, the initial
hole shape is a straight line (Fig. 5). The model is refined 3× 4 times, leading
to (2 × 23) × (1 × 24) elements (knot spans). The optimization is conducted
with 8 design variables, including x-coordinates for control points A,B,C and
y-coordinates for control points B,C,D and weights for control points B,C.
The optimized design is shown in Fig. 5. In addition, following the work in [11],
we also optimized the hole profile by pre-setting the control points for node B
and C as wB = wC = 1 (with these weights, the NURBS curve degenerates into
a B-spline curve) and wB = wC = (1+

√
2/2)/2 (with these weights, the NURBS

curve can exactly represent the circular profile). We plot the three optimized
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(a) Initial design (b) Optimized design

(c) Local view of optimized design

Figure 5: Hole profile optimization under V ∗ = 96% with both control points
and weights as design variables.
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Table 1: Optimal designs under the constraint V ∗ = 96%

Type Iteration Compliance Volume

Theoretical N/A 466.5701 9600.0000
Initial N/A 462.5555 9687.5000

8 variables, 23 466.5699 9599.9997
6 variables, wB = wC = 1 31 466.5708 9599.9996

6 variables, wB = wC = 0.8536 31 466.5701 9599.9996

profiles and the exact circule arc in Fig. 5.b. Visually speaking, the differences
among the four profiles are indiscernable. In the view (Fig. 5.c) magnified at
a scale comparable to that in [11], even though the control points are different
for the three sets of optimized profiles, due to the influence of the weights, the
hole profiles remain inseparable . This higher accuracy than that in [11] can be
ascribed to the use of refined analysis model in our optimization.

The detailed comparison of compliance for the initial design, the optimized
designs, and iteration times are shown in Table 1. This table demonstrates
that optimization with both positions and weights of control points as design
variables leads to smaller objective function value, i.e. compliance, than those
without.

(a) Initial design (b) Optimized design

Figure 6: Hole profile optimization under V ∗ = 99% with both control points
and weights as design variables. Red circles are control points for the design
model. The blue curves are knot curves of the refined analysis model.

For the second type of design with the volume constraint V ∗ = 99%, the
initial hole shape and the final optimized shape after mesh refinement are shown
in Fig. 6. Note, the initial 2×1 knot spans undergo 4×5 subdivisions, leading to
(2×24)×(1×25) elements. Again, this optimized design with 8 design variables
is compared with designs optimized with only control point positions as design
variables and weights are set at 1 and (1 +

√
2/2)/2 for control point B,C. The
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Table 2: Optimal designs under the constraint V ∗ = 99%

Type Iteration Compliance Volume

Theoretical N/A 428.7086 9900.0000
Initial N/A 428.1381 9910.5851

8 variables 6 428.7087 9899.9997
6 variables wB = wC = 1 5 428.7092 9899.9995

6 variables wB = wC = 0.8536 5 428.7087 9899.9995

detailed comparison of the optimization results and iteration times for these
designs are shown in Table 2. Again, optimization with both positions and
weights of control points as design variables leads to smaller objective function
value, i.e. compliance, than those without.
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Figure 7: Radial distances from optimized holes to the circle center with both
control points and weights as design variables. These holes are derived from
different shape representations under V ∗ = 96%.

Since the four profiles (theoretical circular arc, the NURBS profile optimized
with 8 design variables, the B-spline profile optimized with 6 design variables
and weights set to 1, and the NURBS profile optimized with 6 design variables
but wB = wC = (1 +

√
2/2)/2) are so close under each volume constraint, we

plot in Fig. 7 and Fig. 8 the radial distances from points on these four curves
to the theoretical circle center. Figure 7 shows, with V ∗ = 96%, the deviation
from the theoretical circle is about 0.33% percent for the B-spline representation
(6 design variables) derived design and 0.18% for the NUBRS representation (8
design variables) derived design.

As V ∗ approaches 1, the finite plate approximates the infinite plate better
and we thus expect the optimal profile closer to an exact circle. Figure 8 shows,
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Figure 8: Radial distances from optimized holes to the circle center with both
control points and weights as design variables. These holes are derived from
different shape representations under V ∗ = 99%.

with V ∗ = 99% , the deviation is approximately 0.33% for the B-spline represen-
tation ( 6 design variables) derived design while less than 0.08% for the NUBRS
representation (8 design variables) derived design. That is, for NURBS rep-
resentation derived optimal designs, the deviations have become smaller from
V ∗ = 96 to V ∗ = 99, yet this is not true for B-spline representation derived
optimal designs. This is perhaps due to the fact B-spline cannot represent ac-
curately the circular profile. For the NURBS representation with pre-specified
weights (wB = wC = (1 +

√
2/2)/2), the deviation on the resulting profile is

about the same as that on the NURBS repersentation derived profile. This fur-
ther illustrates the significance of the use of weights as design variables in shape
optimization.

Design with weights

Due to the use of both weights and positions of control points as design variables,
the optimized profiles in the previous subsection are closer to the exact circle
than those with positions only as design variables. In order to better understand
and examine if exact circles can be recovered, we use the weights of Point B
and Point C as design variables, and positions of control points are set for
representing the exact circle and satisfying the volume constraint (Fig. 9). This
figure shows the initial design with volume constraint of 96% and all weights
are set to 1. The termination criteria is KKTnorm from the MMA code to be
smaller than 1.0e-6. In the optimization, the initial model is subdivided 2 × 3
times for analysis.

Figure 10 shows, at three different initial conditions, 1) wB = wC = 0.1, 2)
wB = wC = 10, and 3) wB = 0.1, and wc = 10, the optimized profiles recover
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B

C

Figure 9: Control point positions for optimization with wB and wC as design
variables.

well the exact circle (Fig. 9.d). Table 3 shows the recovered weights under these
initial conditions. They deviate from the nominal weights (1 +

√
(2)/2)/2 =

0.853553391 for an exact circle less than 0.0001. Since the optimized profiles in
the previous experiment have been shown to be very close to the exact circle, it
is of no surprise that exact weights can be very well recovered.

Table 3: Recovered weights under different initial conditions

w
(0)
B w

(0)
C Iteration (k) w

(k)
B w

(k)
C

0.1 0.1 5 8.535909e-001 8.535909e-001
10 10 8 8.535914e-001 8.535914e-001
0.1 10 12 8.535274e-001 8.536550e-001

Design with weights under asymmetric loads

We extend the above design with weights as design variables to design under
asymmetric loads, i.e. σx = −5 and σy = 2.5. The theoretical prediction for an
infinite plate is that the optimal hole is an ellipse with the ratio of major/minor
axes equals to that of the load.

Figure 11 shows the initial position of the hole with weights wB = 0.1,
wC = 10 and the resulting design under the volume constraint V ∗ = 96%.
Similar optimizations have been done for different volume constraints. The
results are described in Table 4 where w0

B = w0
C = (1+

√
2/2)/2. The KKT norm

1.0e-6 is used for convergence termination. The analysis meshes are obtained
with 4 × 5 subdivisions from the initial NURBS model, except for the 99.9%
volume constraint with 4× 6 subdivisions. The optimizations all converge after
9 to 12 iterations.
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(a) Initial weight: 0.1 and 0.1 (b) Initial weight: 10 and 10

(c) Initial weight: 0.1 and 10 (d) Optimized design

Figure 10: Design optimization with weights as design variables under different
initial conditions. Red circles are control points for the design model. The blue
curves are knot curves in the refined analysis model.
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(a) Initial design (b) Optimized design

Figure 11: Optimized design under asymmetric load with V ∗ = 96% with
weights as design variables. The red profile is an exact ellipse satisfying the
volume constraint.

δ1

δ2

(a) general trend

(b) Magnified view of Fig. 11.b near
control point B

(c) Magnified view of Fig. 11.b near
control point C

Figure 12: Optimized hole shape under asymmetric load with weights as design
variables. Dotted red curve representing the exact ellipse.
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Table 4: Optimal designs under asymmetric load

Volume fraction wB wC (wB − w0
B)/w0

B (wC − w0
C)/w0

C

85% 0.78752 0.99992 -7.74% 17.15%
90% 0.78772 0.99880 -7.71% 17.02%
96% 0.81705 0.90446 -4.28% 5.96%
99% 0.84072 0.86822 -1.50% 1.72%

99.5% 0.84148 0.86756 -1.41% 1.64%
99.9% 0.84373 0.86748 -1.15% 1.63%

Table 4 shows the computational results for the finite-dimensioned plate
nearly agree with the optimal result of the infinite plate. Note, the optimal
designs for the finite and infinite plates are distinct [24, 25]. As the hole be-
comes smaller (the volume fraction of the solid approaches unity), the difference
between the two sets of optimal design also become smaller as seen in Table 4.
At 99.9%, the errors for the weights of the point B and point C are about a
little over one percent.

An interesting trend can also be observed in Table 4: wB is consistently
below the weight for the exact ellipse and wC consistently above it. As the
volume fraction for the solid increases, the deviations become smaller. This
suggests the optimal shape for a finite plate under asymmetric load would look
as exaggerated in Fig. 12.a. As the volume fraction increases, δ1 and δ2 repre-
senting the deviation to the exact ellipse as shown in Fig. 12.a become smaller.
A magnified view of the optimized profile and the exact ellipse in Figure 11.b is
shown in Fig. 12.b and it demonstrates just this.

Optimal or not

One major advantage of having analytical sensitivities is that they can be used
in understanding whether a given shape is optimal or not by checking the KKT
condition.

For an objective function f(x) subject to the constraint g(x) ≤ 0, when point
x∗ is a regular point, then if x∗ is an optimal point, we have ∇f + λ∇g = 0
where λ is the Lagrange multiplier, and ∇ is the gradient w.r.t. the design
variables αs. Here we assume the constraint is active.

We thus propose the use of KKT norm as defined below to determine whether
a given shape is optimal or not. For each design variable αs, we define a number
µs as follows:

µs = − ∂f

∂αs
/
∂g

∂αs
.

From µs, we can define a pseudo Lagrange multiplier µ̃

µ̃ =
∑neq

s=1 µi
neq
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where neq is the number of design variables.
The KKT norm with the pseudo Lagrange multiplier µ̃ is then defined as

follows

V =
[
∂f

∂αi
+ µ̃

∂g

∂αs

]
, where s = 1 to neq,

KKTNorm =
√

VTV.

When a given shape is optimal, we would have the pseudo Lagrange multi-
plier µ̃ equal the real multiplier λ, i.e. µs = µ̃ = λ, and the KKT norm equal
zero.

We compute the above defined KKT norm for a circular hole profile under
symmetric load σx = −σy and elliptical hole profiles under asymmetric load
σx = −2 ∗ σy. The results are shown in Table 5. The analytical hole (circular
and elliptical) profiles are generated to satisfy the volume constraints listed in
the table. There are 8 design variables, including positions of four control points
and weights of the two middle control points. The mesh density is also described
in the table.

Table 5: KKT norm of circles and ellipses under symmetric and asymmetric
loads

Load Mesh Volume fraction KKT norm

symmetric 32× 32 96% 1.4611e-5

asymmetric 32× 32 85% 0.0045
asymmetric 32× 32 90% 0.0019
asymmetric 32× 32 96% 3.0563e-4
asymmetric 32× 32 99% 2.8213e-5
asymmetric 32× 32 99.5% 1.9374e-5
asymmetric 32× 64 99.9% 1.1935e-5

Table 5 demonstrates the following:

• Circular hole under symmetric load at 96% volume constraint is very close
to the optimal shape since its KKT norm is small. This explains why the
weights computed earlier are very close to the analytical weights for an
exact circle.

• Under asymmetric load, below 96% volume constraints, the elliptical pro-
files are clearly not optimal since their corresponding KKT norm is rela-
tively large.

• As the hole becomes even smaller, i.e. V ∗ becomes larger, the KKT norm
becomes smaller. This suggests the elliptical profile approximates the
true optimal profile better. This agrees well with the theoretical result
that the optimal hole profile under asymmetric load is elliptical for an
infinitely large plate.
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6.2 Design of a cantilever beam

The goal in the design of a cantilever beam is to minimize the vertical displace-
ment at the point of load under a volume constraint.

The initial design of the beam is shown in Fig. 13. The beam has a pre-
determined length l = 30 and an allowable height of 1.5 ≤ h ≤ 10. The beam is
modeled using a 6×2 control net, quadratic in the ξ1 and linear in ξ2 directions.
The knot vector is {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1} in ξ1 and {0, 0, 1, 1} in ξ2.
leading to 4 × 1 knot spans. The initial design is a rectangle with h = 6. The
initial weights are set to 1 and the weights are bound to be between 0.1 and 1
during the iteration process. The Young’s modulus is 200 × 103 and Poisson’s
ratio is 0.3. The convergence criteria is ε = 1.0e− 7.

We consider two design cases. In the first one, there are total 6 design
variables and they are vertical positions of control points in the upper row. In
the second one, there are 12 design variables and they include both positions
and weights of control points in the upper row. In each case, the volume is
constrained to be 70% of the maximum area of 300. The load is 10.

To ensure reasonably accurate analysis during the optimization, the design
model is subdivided 4× 5 times, leading to total (4× 24)× (1× 25) = 64× 32 =
2048 elements for analysis.

Optimized designs for the two cases are shown in Fig. 14 and Fig. 15. These
designs are reached after 12 and 43 iterations with the convergence criteria of
ε = 1.0e− 7. The convergence history of the vertical displacement and volume
constraints for both cases are shown in Fig. 16 and 17. The second design with
both positions and weights as design variables leads to smaller displacement,
-1.037738e-2 versus -1.055000e-2 in the first design. The weights for the first,
third and sixth control points become 0.1 while others remaining nearly at 1.0,
thus leading to internal isoparametric curves moving away from these control
points, as shown in Fig. 15

h=6

l=30 F=10

Figure 13: Initial design of a cantilever beam, control net (consisting of a 6× 2
control points in red circles) and the loading condition.

The weight-induced uneven distribution of isoparametric curves in the op-
timized result (Fig. 15) is very apparent. Without mesh refinement, (in this
case 4 × 5 subdivisions), the analysis on the distorted and sparse mesh would
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Figure 14: The optimized design and the knot curves used in analysis where
only positions of control points at the top row are used as design variables.

Figure 15: The optimized design and the knot curves used in analysis where
both positions and weights of control points at the top row are used as design
variables.
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Figure 16: Convergence history for vertical displacement at the point of load
for two design cases: positions of control points as design variables and both
positions and weights of control points as design variables .
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Figure 17: Convergence history for the volume constraint for two design cases:
positions of control points as design variables and both positions and weights of
control points as design variables.

Figure 18: The optimized design and the knot curves used in analysis where
both control point positions and weights at the top row are used as design
variables and the weights of the control points in the bottom row are set the
same as their counterparts in the top row.
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not be accurate. Since the knots are inserted in the parametric middle point
of each knot span, the distribution of mesh elements is still not uniform. More
sophisticated mesh smoothing methods such as those used for addressing the
problem of “floating meshes” [26] can perhaps be developed to insert the knots
in an efficient manner that would result in a more uniformly distributed ele-
ments with fewer knot insertions. A simpler alternative, but not a complete
remedy, for this example is implemented. It set the weights of control points in
the bottom row equal to their counterparts in the top row. The result is shown
in Fig. 18. The displacement after optimization is -1.030668e-2 and it took 28
iterations.

6.3 Design of an open spanner

The goal is to design the outer shape of a full open end spanner. The design
objective is to minimize the displacements in two loading cases uFA

− uFB
for

a given material volume, with uFA
and uFB

as vertical displacements at the
point of loads FA and FB respectively. The boundary condition for load FA
and the initial design is shown in Fig. 19. The boundary condition for load FB
is symmetric to that of FA. The Young’s modulus is 210 × 103 and Poisson’s
ratio is 0.3. The convergence criteria is ε = 1.0e− 6.

The structure has a pre-defined length l = 25, maximum height h = 10 and
minimum handle thickness 2. The bolt shape and size (b = 2) is fixed. We use
a bi-quadratic control net to represent the structure. In total we have 10 × 9
control points. The initial weights are all set to 1. The volume for the optimal
design is constrained to be 35% of the initial volume.

We consider the following two design scenarios:

• Control points alone as design variables: The vertical positions of the
control points at the top and bottom sides are design variables. In order
to ensure the handle is straight, the three control points at the top and
bottom right ends are set to equal to each other. Thus, there are total 12
design variables.

• Control points and weights as design variables: In addition to the 12
control points as in the above case, weights for five control points at the
top and bottom left end are set as design variables. The outer limits for
the weights are 0.1 and 1. Thus, there are total 22 design variables in this
case.

To ensure the analysis accuracy, each knot span in ξ1 and ξ2 is subdivided
into two. The original internal nodes are unchanged during the optimization and
the newly created internal nodes from subdivision are updated automatically
according to the coordinates and weights of outer control points.

The optimized solutions are reached after 18 iterations in the first case and
17 in the second one. The results are shown in Fig. 20 and 21. Both designs
recover well the known shape of a spanner and compare well with the results
obtained in the literature [22, 23, 11]. The resulting displacement at the point
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of loads in the first design (0.2886) is slightly larger than that (0.2411) in the
second design. Further, (nearly) sharp transitions occur in the upper and lower
side of the second design (i.e. optimized with both control points and weights as
design variables shown in Fig. 21). In this optimized design, the weight for the
protruded control point (the third from the left end) near the sharp transition
is 0.4365 while the weights for the neighboring control points are 0.1, thus the
appearance of the somewhat sharp transition. However, since there is no knot
repetition at this point, the contour is still C1 smooth.

FA, uF
A

FB, uF
B

l

h 2b

b

Figure 19: Initial design and two loading conditions of the open spanner prob-
lem. Red, bold outer shape represents the initial design. The bi-quadratic
control net (consisting of 10 × 9 control points) is shown in magenta and knot
curves in blue.

Figure 20: Optimal design and the knot curves of the open spanner with control
points at the top and bottom rows as design variables.
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Figure 21: Optimal design and the knot curves of the open spanner with both
control point positions and weights for five control points at the top and bottom
left end as design variables.

7 Concluding remarks

This paper presents analytical formulas for computing full sensitivities of both
positions and weights of NURBS control points in shape optimization. Such
analytical formulation allows accurate calculation of sensitivity and is useful in
gradient-based shape optimization. The analytical sensitivity is also useful in
determining whether a given shape is optimal.

The full analytical sensitivity for both positions and weights of NURBS
control points is especially beneficial for recovering optimal shapes that are
conical e.g. ellipses and circles in 2D, cylinders, ellipsoids and spheres in 3D
that are otherwise not possible without the weights as design variables.

NURBS weights have lent extra flexibility for shape parameterization. The
use of combined control points and weights has demonstrated consistently better
design in terms of lowering the objective function.

Our implementation is based on isogeometric analysis since its computation
is more accurate on a per-node basis. However, the analytical formulas of full
sensitivities are not limited to isogeometric analysis, these formulas are also
applicable to standard FEM based shape optimization.

Due to the use of weights as design variables, isogeometric shape optimiza-
tion may lead to uneven NURBS weights, thus leading to distorted distribution
of knot curves and element boundaries. Mesh refinement through knot insertion
has shown to be effective in resolving such distortion. Future work will further
investigate the use of mesh smoothing techniques to guarantee high-quality dis-
cretization.
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Appendix: Proof on analytical sensitivities in
NURBS based isogeometric shape optimization

We show below the derivation process of obtaining the expressions for G′, |J|′,(
Ni,ξj

)′, N ′i , and x′ in Theorem 1. They are obtained through the chain rule of
differentiation and Jacobi’s formula. The approach we are going to follow below
was initially reported in [16] and neatly organized in [17, 18].

For the two matrices (G and Ĝ′) defined in Section 4.1 , we have Ĝ = JG.
Taking the derivative with respect to the design variable αs, we have Ĝ′ =
J′G + JG′ . Thus, we obtain the expression for G′ as follows

G′ = J−1
(
Ĝ′ − J′G

)
. (21)

Meanwhile, from the NURBS geometry definition x = NTP, we have J =
ĜP. Taking the derivative on both sides with respect to the design variable αs,
we have

J′ = ĜP′ + Ĝ′P. (22)

Combinging Eq. (21) and Eq. (22), we have

G′ = J−1Ĝ′ − J−1
(
ĜP′ + Ĝ′P

)
G

= J−1Ĝ′ − J−1(ĜP′)G− J−1Ĝ′PG
= J−1Ĝ′(I−PG)−GP′G.

This corresponds to Eq. (13) in Theorem 1.
In order to compute |J|′, we utilize the Jacobi’s formula, |A|′ = |A|tr(A−1A′),

where A is a nonsingular matrix function.
Therefore, we have the following expression for |J|′

|J|′ = |J|tr
(
J−1J′

)
= |J|tr

(
J−1(ĜP′ + Ĝ′P)

)
= |J|tr

(
J−1ĜP′ + J−1Ĝ′P

)
= |J|tr

(
GP′ + J−1Ĝ′P

) , (23)
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which corresponds to Eq. (12) in Theorem 1.
The terms in Ĝ′ include ∂2Ni/∂ξj∂αs . Since we need to calculate ∂Ni/∂ξj

anyway in finite element analysis, the additional task would be to calculate their
derivative over αs.

The NURBS basis function’s derivative over the parametric coordinates is

Ni,ξj
=
Ri,ξj

wi

RTW
−
Riwi(R,ξj

)TW
(RTW)2

.

Taking another derivative over the design variable leads to the expression in
Theorem 1.
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