
Isogeometric Analysis and ShapeOptimization via Boundary Integral

Kang Li Xiaoping Qian
kli@iit.edu qian@iit.edu

Department of Mechanical, Materials and Aerospace Engineering
Illinois Institute of Technology

Chicago, IL 60616, USA

Abstract

In this paper, we present a boundary integral based approach to isogeometric analysis and shape optimization.
For analysis, it uses the same basis, Non-Uniform Rational B-Spline (NURBS) basis, for both representing object boundary and

for approximating physical fields in analysis via a Boundary-Integral-Equation Method (BIEM). We propose the use of boundary
points corresponding to Greville abscissae as collocation points. We conducted h-, p- and k-refinement study for linear elasticity
problems. Our numerical experiments show that collocation at Greville abscissae leads to overall better convergence and robustness.
Replacing rational B-splines with the linear B-Splines as shape functions for approximating solution space in analysis does not
yield significant difference in convergence.

For shape optimization, it uses NURBS control points to parametrize the boundary shape. A gradient based optimization
approach is adopted where analytical sensitivities of how control points affect the objective and the constraint functions are derived.
Two 3D shape optimization examples are demonstrated.

Our study finds that the boundary integral based isogeometric analysis and optimization has the following advantages: 1) the
NURBS based boundary integral exhibits superior computational advantages over the usual Lagrange polynomials based BIEM on
a per degree-of-freedom basis; 2) it bypasses the need for domain parameterization, a bottleneck in current NURBS based volumetric
isogeometric analysis and shape optimization; 3) it offers tighter integration of CAD and analysis without model conversion since
both the input and output geometric model for analysis and optimization are the same NURBS surfaces.
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1. Introduction

Isogeometric analysis is a computational technique that
uses the same basis to represent geometry and to approx-
imate physical fields in analysis [1]. It has gathered grow-
ing interest from both analysis and CAD research commu-
nities due to its computational advantage over traditional
finite element analysis and its promise to alleviate the bur-
den of creating analysis-ready geometric models from the
CAD representation. It has been successfully extended to
a variety of boundary value problems [2].
To leverage the possible advantages of closer integration

of CAD and FEA in isogeometric analysis and to utilize
NURBS’s capability of concise representation of complex
shape, NURBS based isogeometric analysis has been ex-
tended to shape optimization where both NURBS control
points [3–5] and weights [6] have been used as design vari-
ables to control the boundary shape.
However, a critical challenge remain in current isogeo-

metric analysis and shape optimization practices. That is
domain parameterization, i.e. how to parameterize a volu-
metric domain from its boundary. Since current isogeomet-
ric analysis [2] is based on volumetric formulation where
trivariate NURBS solids are needed for analysis of three-
dimensional (3D) problemswhile geometry in CAD systems
are a boundary representation where only surface represen-
tation is available. The creation of NURBS geometry that
is amenable to isogeometric analysis has been referred to as
“analysis-aware modeling” [7]. Methods such as lofting [8],
swept volume parameterization [9], and discrete harmonic
functions based techniques [10] have been proposed for do-
main parameterization. A Coons patch based method for
constructing NURBS mesh from its boundary for isogeo-
metric shape optimization has been proposed in [4].
This paper presents a new approach to isogeometric anal-

ysis and shape optimization that can bypass the need for
domain parameterization. It is based on a boundary inte-
gral formulation of the analysis problem where the govern-
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ing equations are transformed into integral equations on
a boundary via the fundamental solutions of the under-
lying physical problems. The object boundary in NURBS
representation is discretized, without approximation, into
many elements. The physical fields such as displacement
and tractions in the elasticity are approximated byNURBS.
The integral equations are then converted to a set of linear
equations from which the unknowns are solved. It should
be noted that the idea of converting volumetric integral to
boundary integral to improve numerical accuracy and uti-
lizing the geometric exactness in NURBS based representa-
tion for physical analysis has been explored in [11,12] where
van der Waals forces between objects are computed. The
idea of developing boundary integral based isogeometric
analysis has been suggested in [1,2] and attempted in [13]
for solving an external potential flow problem. Although
NURBS based shape optimization via boundary integral
has been explored in [14], it only used NURBS to represent
design boundary, not to approximate the physical fields for
analysis. Further, the analytical gradients were not derived
since it used evolutionary optimization.
Our study finds that the proposed approach, isogeomet-

ric analysis and shape optimization via boundary integral,
has several advantages over existing analysis and optimiza-
tion methods. They include: 1) the geometric exactness
from design representation to analysis models, 2) compu-
tational advantages in analysis over Lagrange polynomials
on a per degree-of-freedom (DOF) basis, 3) bypassing the
need for domain parameterization that is otherwise needed
in volumetric isogeometric analysis. The contributions of
this paper include the following:
– A boundary integral based isogeometric analysis method
has been developed. This includes all the essential steps
in applying NURBS basis functions in the boundary in-
tegral process, including techniques for resolving singu-
larities in kernel integration.

– A collocation scheme leading to accurate and stable nu-
merical analysis on the boundary has been identified.
Our study finds that collocation points corresponding to
Greville abscissae lead to more accurate and robust anal-
ysis results than those from alternative schemes such as
maximal basis, Gaussian quadratures or uniform distri-
bution.

– Superior convergence rate of NURBS based BIEM over
usual Lagrange polynomials based BIEM, on a per DOF
basis, has been revealed. Our study suggests isogeo-
metric analysis via boundary integral obtained using
NURBS of order p has the same order of convergence as
in Lagrange polynomials of order p based BIEM. This
is significant since the convergence rate is independent
of inter-element continuity. Thus by leveraging Cp−1

inter-element continuity, NURBS can converge at the
same rate as in Lagrange polynomials, but with far
fewer DOFs. It is also worth noting that approximating
physical fields with B-Spline basis yields nearly identical
convergence results as with the rational B-spline basis.

– Analytical sensitivities in NURBS based BIEM shape

optimization have been derived that are required in gra-
dient based optimization and other applications such as
constructing surrogate models and modeling uncertain-
ties.
In the remainder of this paper, Section 2 develops the

numerical method of boundary integral based isogeometric
analysis. Section 3 gives formulation of shape optimization
and develops the analytical sensitives for gradient based
optimization. Section 4 details numerical result of the anal-
ysis and shape optimization. Section 5 concludes this paper
and discusses future research directions.

2. Isogeometric analysis via boundary integral

In this section we develop the numerical formulation of
NURBS based boundary integral for isogeometric analy-
sis. We focus on technical issues in the boundary integral
that are particular due to the use of NURBS basis in re-
placement of usual Lagrange polynomials, e.g. collocation
scheme and singularity evaluation. We describe the for-
mulation through an elastostatics problem, although it is
readily applicable to other physical problems. For general
discussion on BIEM, refer to [15,16].

2.1. Boundary integral for linear elastostatics

The analytical boundary integral equation (BIE) [15] for
linear elastostatics problem, in the absence of body force,
is formulated as follows:

Cij(s)uj(s)+

∫

Γ

T ∗
ij(s,x)uj(x) dΓ(x) =

∫

Γ

U∗
ij(s,x)tj(x) dΓ(x)

(1)
where Γ is the structural boundary of domain Ω, s is the
source point (boundary load point), x is the boundary field
point, uj is the displacement at field point, tj is the trac-
tion at field point, U∗

ij is the fundamental displacement ker-
nel, T ∗

ij is the fundamental traction kernel, and Cij is the
coefficient term depending the boundary geometry at field
point x. The fundamental solution kernels for 2D and 3D
problems are given as follows:

U∗
ij(s,x) =

1

8πµ(1− ν)

[

(3− 4ν)δij ln
1

r
+ r,i r,j

]

(2D)

U∗
ij(s,x) =

1

16πµ(1− ν)r
[(3− 4ν)δij + r,i r,j ] (3D)

T ∗
ij(s,x) = −

1

4π(1− ν)r

{

∂r

∂n
[(1− 2ν)δij + 2r,ir,j ]

+(1− 2ν)(nir,j − njr,i)} (2D)

T ∗
ij(s,x) = −

1

8π(1− ν)r2

{

∂r

∂n
[(1− 2ν)δij + 3r,ir,j ]

+(1− 2ν)(nir,j − njr,i)} (3D)

(2)
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where d is problem dimension (d = 2 or 3), i, j = 1, 2, ..., d,

r = x−s, r = |r|; r,i =
∂r

∂xi
=
xi − si
r

, ni is the component

of unit outward normal, δij is the Kronecker delta, µ is the
shear modulus, ν is Poisson’s ratio.
If the above analytical boundary formulation is imple-

mented by discretizing boundary Γ into nel Lagrange ele-
ments, then the following discrete form of BIE is obtained:

Ck(sk)uk(sk) +

nel
∑

l=1

[
∫

Γl

T∗(sk,x)Nl dΓ(x)

]

ul

=

nel
∑

l=1

[
∫

Γl

U∗(sk,x)Nl dΓ(x)

]

tl

(3)

where k = 1, 2, ..., nnd and

Nl =
[

N1Id N2Id ... Nnelnd
Id

]

(4)

sk is the k-th source point, Γl is the l-th Lagrange element.
uk is the displacement of sk, nnd is the global node number
on boundary Γ, nelnd is the local node number of Γl. Nl is
the d × (d × nelnd) shape function matrix, Id is the d × d
identity matrix. ul and tl are the (d× nelnd)× d displace-
ment and traction matrix associated with the nelnd nodes
of Γl.
Collocating source points along the boundary and apply-

ing (3) at the collocated points yields a number of equa-
tions which could be assembled into the following equation
system:

[H] {u} = [G] {t} (5)

The unknown displacements and tractions could be found
by solving the above equation. After all the boundary quan-
tities are known, they are employed to calculate displace-
ment, strain and stress throughout the domain. Due to the
interpolatory nature of Lagrange polynomials, all nodes are
on the boundary. Thus (5) could be formed by collocating
sk on all the nodes and applying discrete BIE (3) for each
collocated node.
The isogeometric BIEM differs from Lagrange BIEM in

that the shape function matrix (4) for the discrete BIE is
replaced (k = 1, 2, ..., ncp)

Nl =
[

N1Id N2Id ... Nnelcp
Id

]

(6)

where most of the quantities are the same as in (3) except
the following difference: ncp is the global control point num-
ber on boundary Γ, nelcp is the local control point number
of the l-th element Γl. Nl is the d× (d×nelcp) shape func-
tion matrix. ul and tl are the (d× nelcp)× d displacement
and traction matrix associated with the nelcp control points
of Γl.
The subsequent equation system assembly and equation

solving are quite similar to conventional BIEM. However,
the use of NURBS basis function in BIEM does result in
a few important changes, which are presented in later sec-
tions.

2.2. Collocation

A collocation scheme determines the locations on the
boundary where the boundary integral equation (3) are
applied. These boundary locations will be referred to as
‘collocation points” or “source points” interchangeably in
this paper. The NURBS basis is non-interpolatory and the
control points are not necessarily located on the boundary.
Thus a source point collocation scheme is needed for the
isogeometric BIEM. In this paper, we consider four B-spline
collocation schemes:
– Uniform distribution where collocation points corre-
spond to a parameter sequence that are equally dis-
tributed on the parameter domain;

– Gaussian quadrature where collocation points are gen-
erated by mapping a number of Gaussian quadrature
points from [−1, 1] onto the patch parameter domain [17].
Accounting for end conditions, the number of Gaussian
points should be two less than control points number on
the patch;

– Maximum basis where collocation points correspond to a
parameter where one of the shape functions reaches the
maximum value [18];

– Greville abscissae [19,20] where the parameters corre-
sponding to collocation points for a degree-p NURBS
with (n+1) control points and a length-(n+ p+2) knot
vector Ξ = {ξ0, ξ1, ..., ξn+p+1} are defined by:

ζi =
1

p
(ξi+1 + ξi+2 + ...+ ξi+p) i = 0, 1, ..., n (7)

In this paper, we assume that the collocation points are to
be imposed on a patch with uniform distribution of internal
knots. For non-uniform distribution of knots, e.g. in adap-
tive mesh refinement, collocations based on uniform distri-
bution and Gaussian quadrature may be challenging since
these schemes do not take into account the distribution of
internal knots.

Parameter domain

Physical domain

0 1

Uniform

Gaussian

Maxbasis

Greville

Control point Knot point

(a) p = 3, ncp = 5

Uniform

Gaussian

Maxbasis

Greville

0 1

Parameter domain

Physical domain

Control point Knot point

(b) p = 3, ncp = 6,

Fig. 1. Four collocation schemes: uniform distribution, Gaussian

quadratures, Maximum-basis and Greville abscissae, for a degree-p
NURBS with ncp control points defined on knot vector Ξ: a)
Ξ = {0, 0, 0, 0, 1

2
, 1, 1, 1, 1}; b) Ξ = {0, 0, 0, 0, 1

3
, 2

3
, 1, 1, 1, 1}. (The

first and last collocation points are the two clamped control points
and are not shown)
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The collocation points are generally different under these
four collocation schemes. As an example, Fig. 1 shows the
collocation points by the four schemes for two cubic NURBS
curves. Based on our numerical experiments in Section
4.1.4, the Greville abscissae collocation leads to accurate
and stable analysis result and is adopted in this paper.

2.3. Singularity evaluation

The fundamental solution kernels in (2) contain terms
ln 1

r
, 1
r
and 1

r2
. All these terms tend to infinity as the field

point approaches the source point (r → 0), which causes the
singularity. The accuracy of singularity evaluation has great
influence on the analysis results achieved from equation
system (5), since a singular term occurs either inU∗ or T∗,
with the former forming the entries of [G] and the latter
forming those of [H] in (5). The singularities for BIEM fall
into two categories: strong singularity and weak singularity

[21], which are treated differently as discussed next.

2.3.1. Strong singularity

Strong singularity arises only in fundamental traction
T∗ for both 2D and 3D cases. It is usually evaluated by
an indirect rigid body motion method that utilizes a simple
fact: a pure translational motion of a finite elastic domain
does not result in any shape change of the domain, and
hence boundary tractions must be all zeros.
If there are nel elements and ncollo collocation points on

the boundary, evidently we have ncollo = nnd(global node
number) for Lagrange elements and ncollo = ncp(global
control point number) for NURBS elements. The rigid body
motion method sets each entry in tl to 0 in (3), thus the
global traction vector {t} is a zero vector, which becomes
a zero matrix when pre-multiplied by arbitrary compatible
matrix (including [G]). Using this fact, an intermediate
equation toward obtaining (5) as below:

[Ĉ] {u} + [Ĥ] {u} = O =⇒ [Ĉ] + [Ĥ] = O (8)

where O is zero matrix, [Ĉ] is a sparse matrix whose
nonzero entries relate to the strongly singular terms, and
the intermediate matrix [Ĥ] for obtaining [H] is assembled
as follows:

[Ĥ] = AT∗

(
∫

Γ

T∗N dΓ

)

(9)

where the assembly operator AT∗ performs integration
∫

Γl
T∗N dΓ (l = 1, ..., nel) for all the ncollo collocation

points. We further denote the d× d block matrix (d: prob-

lem dimension) in [Ĉ] and [Ĥ] by Ĉk,j and Ĥk,j , whose
rows and columns are associated with the k-th colloca-
tion point and the j-th node/control point respectively
(j, k = 1, 2, ..., ncollo).
In the Lagrange BIEM, based on the interpolatory prop-

erty of Lagrange basis functions, the node(s) with nonzero
shape function at the k-th collocation point (k-th node) is
the node itself (j = k), the only shape function with value

of 1. As as result, the rigid body motion method only in-
volves modifying the coefficients on the main diagonal en-
tries of [Ĥ] for obtaining [H], more specifically:

Hk,k = Ĥk,k+Ĉk,k = −

ncollo
∑

j=1

Ĥk,j (j 6= k), k = 1, ..., ncollo

In the rigid body motion implementation for isogeomet-
ric BIEM, however, the coefficients modification of [Ĥ]
are not restricted to diagonal entries since a point on the
boundary is defined by up to p+1 (or (p+1)×(q+1)) non-
zero basis functions and thus by up to p+ 1 (or ((p+ 1)×
(q + 1))) control points for boundary curves (or surfaces).
Suppose the displacements of global control points {Pk}

are {uk} (k = 1, 2, ..., ncollo). The k-th collocation point
sk corresponds to Greville abscissae ζk, and {χki } (i =
1, ..., nelcp) is the index set of the local control points with
nonzero shape functions at sk. The displacement of the sk

is then:

uk =

nelcp
∑

i=1

Nχk
i
(ζk)uχk

i
(10)

Substituting (10) into (3) leads to the following rigid body
motion formula for the isogeometric BIEM:

Hχk
i
,k = Ĥχk

i
,k +Nχk

i
(ζk) Ĉk,k

i = 1, ..., nelcp, k = 1, ..., ncollo
(11)

2.3.2. Weak singularity

Weak singularity appears with kernel displacement U∗

when source point s is located on the the same element as
field point x. Next we will discuss how they are treated for
both 2D and 3D cases for the isogeometric BIEM.

L

L

x

R

I

R

1

2

L R

1 1x1

12

0x21x0

I

L

x

R

0x1

x1x2

U
*

Fig. 2. 2D weak singularity in three collocation cases

2.3.2.1. 2D weak singularity The RHS of (3) cannot be
accurately evaluated by standard Gaussian quadrature due
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to the singular kernel U∗
ii as r → 0. A common approach

is to separate the singular part out of the original weakly
singular integrand through change of variable:

f(ξ) ln
1

r(ξ)
= g(η) ln

1

r(η)
= g(η) ln

1

η
+ g(η) ln

1

ψ
(12)

where the non-logarithmic part g(η) ln 1
ψ

contains no sin-
gularity and could be well evaluated by standard Gaussian
quadrature, while the logarithmic part g(η) ln 1

η
could be

much more accurately calculated by use of a special Loga-
rithmic Gaussian quadrature [15].
Recall that r = |x−s| is the distance between field point

x and source point s, which correspond to parameter ξ
and ζ respectively. The idea of the change of variable is to
separate the original singularity as below:

r = |x− s| = (ξ − ζ)
r

(ξ − ζ)
(13)

where singular parameter difference (ξ − ζ) is extracted
from |x− s| so that the remainder r

(ξ−ζ) contains no singu-

larity and could be evaluated with standard quadrature.
In Lagrange BIEM, the separation in the change of vari-

able is easily accomplished because the explicit form of the
remainder part is very easily derived by taking out com-
mon factor from the difference of Lagrange polynomials,
and the collocation parameter ζ is uniformly distributed on
the parameter domain [16].
For isogeometric BIEM, the explicit expression of r

(ξ−ζ)
can be hard to find in a straightforward way. Fortunately,
deriving the explicit form is unnecessary since only its value
is needed, this value is immediately known from r and η,
where η is determined by a generalized change of variable
for three collocation cases shown in Fig. 2. The formulas
are given by:






























ηx =
ξ − ξL
ξR − ξL

(left-end collocation)

ηx =
ξR − ξ

ξR − ξL
(right-end collocation)

ηx1
=

ξ − ξL
ξI − ξL

, ηx2
=

ξR − ξ

ξR − ξI
(mid-side collocation)

(14)
where ξx correspond to field point x, ζ correspond to source
point s; ξL, ξR are the parameters that correspond to the
left and right end of the element respectively, ξI is the pa-
rameter corresponding to source point in mid-side colloca-
tion, which involves adding two terms from the both the
left and right side to s.
It could be easily verified that as long as the boundary

geometry is represented by linearly independent polyno-
mial shape functions, extracting the singular term η given
in (14) from r will leave the remainder to be non-singular.
Consequently, the generalized change of variable formula
applies for both Lagrange and NURBS elements.

2.3.2.2. 3D weak singularity Weakly singular integrals in
3D are generally handled by Lachat-watson transformation

[22], in which the singularity is canceled out by an intro-
duced Jacobian term that is also singular, leaving what can
be accurately evaluated by standard Gaussian quadrature.
This transformation applies for both Lagrange and NURBS
elements, thus no modification is needed for the isogeomet-
ric BIEM.

3. Isogeometric shape optimization via boundary

integral

In this section, we describe the formulation of boundary
integral based isogeometric shape optimization and detail
how to obtain the sensitivities that is needed in gradient-
based optimization. For a general introduction on struc-
tural optimization, refer to [23,24].
The structural shape optimization problem via the BIEM

could be expressed in a nested formulation as below:

(SO)nf























min
α

f̂(α,u(α), t(α))

s.t. ĥi(α,u(α), t(α)) = 0, i = 1, ..., nh

ĝj(α,u(α), t(α)) ≤ 0, j = 1, ..., ng

αmin
k ≤ αk ≤ αmax

k , k = 1, ..., ns

(15)

where the objective f̂ = f(α,u(α), t(α)), equality con-

straint ĥi = hi(α,u(α), t(α)), and inequality constraint
ĝj = gj(α,u(α), t(α)) are functions of design variables
α = {αk}(k = 1, ..., ns), with ns being the number of de-
sign variables. The nested formulation means that the state
variables, u and t, are not considered as optimization vari-
ables. Rather, they are expressed implicitly as functions
of design variables, α, by the equilibrium equation in (5).
That is,

[H(α)] {u(α)} = [G(α)] {t(α)} (16)

Example design problems include minimizing the compli-
ance

∫

Γ
tTu dΓ or nodal displacement ui under volume con-

straint, or stress constraint σ(u, t) ≤ σ∗.
The problem (SO)nf in (15) is in general nonlinear and

can be solved by various optimization algorithms. The
gradient-based optimization is a common approach. In this
paper, we use the method of moving asymptotes (MMA)
[25] as the optimizer and the KKT norm [6] as the conver-
gence criterion.
In gradient-based optimization, sensitivities of how de-

sign variables α affect the objective and constraint func-
tions are needed. Analytical sensitivities can be obtained
for the discretized BIEM . For brevity, we here only outline
the main steps for obtaining the discrete analytical sen-
sitivities. Take the function f̂ as an example (constraint

functions ĥ, ĝ are handled similarly), differentiation w.r.t
the k-th design variable αk gives:

∂f̂

∂αk
=

∂f

∂αk
+

(

∂f

∂u

)T
∂u

∂αk
+

(

∂f

∂t

)T
∂t

∂αk
(17)

From here we will denote ∂()/∂αk by a prime ()′ and drop
the component index k of design variable for notation con-
venience. Usually ∂f/∂αk, ∂f/∂u and ∂f/∂t can be ob-
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tained directly from the function f . Obtaining displace-
ment sensitivity u′ and traction sensitivity t′ would require
differentiating (16):

[H′]{u}+ [H]{u′} = [G′]{t}+ [G]{t′} (18)

[H′] is immediately known from [Ĥ′] by (11) where [Ĥ′] and
[G′] could be found by differentiating the fundamental ker-
nel (AU∗ is a similar assembly operator as AT∗ introduced
in (9) ).

Ĥ′ = AT∗

[
∫

Γ

(T∗′N+T∗N) dΓ

]

G′ = AU∗

[
∫

Γ

(U∗′N+U∗N) dΓ

] (19)

An exposition of the sensitivity of fundamental solutions,
U∗′ and T∗′, is available in [26]. We here focus on the geo-
metric sensitivity. We adopt the same global index for {Pk}
and u = {uk} (k = 1, ..., ncp) as given in (10). Now we con-
sider a general source collocation point s that corresponds
to the Greville abscissae ζ on a NURBS patch, with {χi}
(i = 1, ..., nselcp) being the index set of its influential con-
trol points (with non-zero corresponding basis functions);
similarly, suppose the integration field point x corresponds
to the NURBS patch parameter ξ, with influential control
points index being {τj} (j = 1, ..., nxelcp). We have source
and field point sensitivities:

s′ =

ns

elcp
∑

i=1

Nχi
(ζ)P ′

χi
= NT

χP
′
χ

x′ =

nx

elcp
∑

j=1

Nτj (ξ)P
′
τj

= NT
τ P

′
τ

(20)

where P ′
χi

and P ′
τj

can be directly obtained by propagating
the sensitivity from control point design variables through
the refinement algorithms [6]. Recall that the distance vec-
tor is r = x − s and r′ = x′ − s′. The Jacobian and its
sensitivity for 3D problem is found by:

J = x,ξ1 × x,ξ2

J′ = x′
,ξ1

× x,ξ2 + x,ξ1 × x′
,ξ2

(21)

x,ξ1 = NT
τ,ξ1

Pτ , x,ξ2 = NT
τ,ξ2

Pτ

Nτj ,ξl =
Rτj ,ξlwτjR

TW −RτjwτjR
T
,ξl
W

(RTW)2
l = 1, 2

where (),ξ denotes the partial derivative w.r.t. ξ. The sen-
sitivity related to Jacobian J ′ and unit normal can then
be derived from the above quantities. For more details on
NURBS shape sensitivities, refer to [6].

4. Computational examples

In this section, we present numerical results on boundary
integral based isogeometric analysis and shape optimiza-
tion. All numerical results are with the same NURBS basis
for both representing geometry and approximating solution
space for analysis, unless otherwise noted as in Section 4.1.4
where we compare the linear and nonlinear function space.

4.1. Isogeometric analysis

The problem of a square plate with a hole often serves as a
benchmark for examining analysis techniques. We conduct
h-,p- and k-refinement to examine the convergence of the
isogeometric BIEM.
Fig. 3(a) gives the geometry and boundary condition

of the infinite quarter plate with symmetries w.r.t. both
axes, and the constants are: R = 1, L = 4, E = 105, ν =
0.3, Tx = 10. The exact solution [27,28] evaluated along
boundary CD and DE is imposed as the known traction
boundary condition for the problem in Fig. 3(b). For im-
posing the boundary condition, traction values at control
points are assigned to interpolate the exact traction vari-
ation. The exact stress at point A is σ11(A) = 30. An-
other quantity for comparison is the strain energy SE =
0.168898254. We will use both quantities as a base for com-
paring the convergence under various refinement schemes.

A

Tx
R

x1

x2

L0=

L
0

r

(a) Modeled as an infinite quar-
ter plate

L

L

t1,t2=0

t1,u2=0
t 2,

u
1
=
0

t =texact

A

B

DE

C

(b) Finite plate with boundary
conditions for BIEM

Fig. 3. Benchmark example: square plate with a hole

4.1.1. h-, p-, and k-refinement

The geometry as shown in Fig. 3(b) is represented by
5 quadratic NURBS curves separated by corner points
A,B,C,D,E in Fig. 3(b). The quarter circle AB is exactly
represented by three control points with weights 1, 1√

2
, 1.

The 5 curves BC,CD,DE,EA,AB have 2, 2, 2, 2, 1 el-
ements respectively on the coarsest mesh, and the knot
insertion and degree elevation algorithms [29] of NURBS
accomplishes the h, p, k-refinements. The volumetric ana-
logue of these refinement in isogeometric analysis is avail-
able in [2].
The errors of computed σ11(A) with respect to the ana-

lytical solution, under various refinement schemes, are com-
pared to obtain the convergence results in Fig. 4. During
the refinement, the element degree p goes from 2 to 5, and
the discretization ratio h/h0 from 1 (coarsest mesh) to 1

10
(finest mesh), where h is the characteristic size of the el-
ements at a discretization. Each point on the refinement
curves correspond to a pair (h/h0, p). However, the same
pair (h/h0, p) on the two curves in Fig. 4(a) and Fig. 4(b)
could correspond to different element configuration, de-
pending on its the refinement history. More specifically,

6



10
-1

1
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

h/h
0

E
rr

o
r 

o
f 

1
1(A

)

P

R

Degree elevation

Q 1

2

Knot insertion
( to      continuity)

p=2
p=3
p=4
p=5

C0

Inter-element

continuity C
0

(a) p-refinement

10
-1

1
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

h/h
0

E
rr

o
r 

o
f

1
1
(A

)

M

K

Knot insertion

Degree elevation

(from coarse mesh)

L

1

2
N

p=2
p=3
p=4
p=5

Inter-element

continuity C
p-1

(b) k-refinement

10
-1

1
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

h/h
0

E
rr

o
r 

o
f 

1
1(A

)

p=2
p=3
p=4
p=5

-refinementk

-refinementp

(c) Overlay of p-, k-refinement

Fig. 4. Convergence under p- and k-refinement

– p-refinement in Fig. 4(a) is done by two steps: 1) knot
insertion until C0 inter-element continuity (P → Q); 2)
degree elevation (Q → R). This is an analogue of the
degree elevation of classical Lagrange elements.

– k-refinement in Fig. 4(b) is achieved by reversing the or-
der of the two refinement algorithms: 1) degree elevation
from the coarsest mesh (K→ L); and 2) knot insertion (L
→ M). The Cp−1 inter-element continuity is preserved.

– h-refinement is obtained via knot insertion. It is used in
both p- and k-refinement, such as P→ Q in p-refinement
and K → N, L → M in k-refinement. The two cases of h-
refinements differ in that p-refinement (P → Q) requires

repeated h-refinement until C0 is obtained between ele-
ments while k-refinement (K → N) does not.

Although R and M in Fig. 4 have the same degrees p = 3
with the same h/h0, the element configuration, i.e. control
points and knot vectors are different. It is clear that h-, p-
and k-refinements all lead to reduced error. Fig. 4(c) over-
lays the results of p- and k- refinements on the same dis-
cretization scale. As data points move leftward, the element
number nel increases as discretization ratio h/h0 decreases.
The overlaid convergence results show that the NURBS
based k-refinement with Cp−1 inter-element continuity has
nearly identical convergence rate as p-refinement with C0

inter-element continuity on a per element basis. Since Cp−1

continuity is preserved in k-refinement, for the same num-
ber of elements, the number of nodes in k-refined NURBS
curves is, in the limit, p times smaller (p× q times smaller
in NURBS surfaces) than the number of nodes in similarly
p-refined mesh.
To better illustrate such nodal advantage of k-refinement,

Fig. 5 shows the convergence in Fig. 4(c) on a per DOF
(2× ncp) basis. From the figure, we can see that the accu-
racy advantage of k refinement over p-refinement becomes
more noticeable as the DOF (2 × ncp) increases and as
element degree elevates. The slopes at the large DOFs
confirm that, as the element number becomes very large,
the nodal advantage of k-refinement is p times better than
p-refinement.

10
2

10
3

10
-3

10
-2

10
-1

DOF

E
rr
o
r
o
f

1
1
(A
)

-refinementp

-refinementk

p+n= elncp

n= elncp

(a) p=2

10
2

10
-4

10
-3

10
-2

10
-1

DOF

E
rr

o
r 

o
f 

1
1
(A

)
-refinementp

-refinementk

10
3

p+n= elncp

n= elncp

(b) p=3

10
2

10
-6

10
-4

10
-2

DOF

E
rr

o
r 

o
f 

1
1
(A

)

-refinementp

-refinementk

10
3

p+n= elncp

n= elncp

(c) p=4

10
2

10
-8

10
-6

10
-4

10
-2

DOF

E
rr

o
r 

o
f 

1
1
(A

)

-refinementp

-refinementk

10
3

p+n= elncp

n= elncp

(d) p=5

Fig. 5. Error comparison between p- and k-refinement w.r.t DOF

4.1.2. Lagrange BIEM vs. Isogeometric BIEM

A comparison is also made in Fig. 6 between NURBS
based and Lagrange polynomials based BIEM for the ex-
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ample in Fig. 3. Fig. 6(a) shows that, as expected, the p-
refinement in NURBS basis and in Lagrange polynomials
have identical convergence rate. The slight difference can
be ascribed to the fact that NURBS uses rational polyno-
mials to represent the exact quarter circle while Lagrange
polynomials approximates the quarter circle. Fig. 6(b) con-
firms the nodal advantage of NURBS k-refinement over La-
grange polynomial’s p refinement. Previously we have al-
ready established the computational advantage of NURBS
k-refinement over NURBS p-refinement on a per-DOF ba-
sis, and now we have seen Lagrange p-refinement yields
almost the same accuracy with NURBS p-refinement at
the same element number and DOF. Therefore NURBS k-
refinement has the same computational advantage over La-
grange element on a per-DOF basis.
This study suggests isogeometric analysis via boundary

integral obtained using NURBS of order p has the same
order of convergence as in Lagrange polynomials of order
p based BIEM. Due to the Cp−1 inter-element continuity
in k-refinement, the NURBS based boundary integral has
the advantage over Lagrange polynomials based BIEM on
the per DOF basis. This result is similar to what has been
reported in computational efficiency of volumetric NURBS
based isogeometric analysis and its comparison with La-
grange polynomials based FEA [2].

4.1.3. Lagrange versus NURBS and volumetric versus

boundary

Fig. 7 compares four analysis methods from the follow-
ing combinations: Lagrange versus NURBS and volumetric
versus boundary. The reference quantity now is the strain
energy of the problem which has an exact solution [28].
Fig. 7 compares the strain energy error of the four methods
all with quadratic elements. We can observe that, on the
per DOF basis, 1) isogeometric FEM/BIEM is superior to
Lagrange polynomials based FEM/BIEM due to the inter-
element continuity advantage of NURBS and geometric ex-
actness, and 2) Boundary integral is better than volumetric
FE based analysis on the per DOF basis.

4.1.4. Comparison of collocation schemes

In this paper, we have used the Greville abscissae based
collocation scheme and NURBS basis as shape functions for
analysis. Here we study how different collocation schemes
affect convergence for both elasticity and potential prob-
lems. We also compare the convergence when using ratio-
nal B-splines versus using B-Splines as shape functions for
approximating solution space in analysis. For example, in
Fig. 3, weights other than unity are used to represent the
quarter circle. When using NURBS, these weights are used
in shape functions for approximating the solution space
(thus, a nonlinear function space for analysis). When using
B-Spline basis, the shape functions in (4) and (11) for anal-
ysis are computed with unity weights (thus a linear func-
tion space for analysis) but the original weights are pre-
served when computing geometry related quantities such
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they have the same DOF at the same degree and same element num-
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on NURBS based analysis.
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as Jacobian so that same geometry is used in both CAD
model and in analysis.

4.1.4.1. Elasticity problem: plate with hole We first com-
pare the convergence result based on the Greville abscissae
collocation scheme shown in Fig. 4(b) with results from the
three other collocation schemes. The results are shown in
Fig. 8 where the error of σ11(A) is again measured against
the discretization ratio h/h0. It can be seen that maximum
basis and Greville abscissae collocation produce reasonably
accurate and stable results, with the latter being slightly
more accurate. Analysis in the nonlinear function space
with the NURBS basis and in the linear function space with
B-Spline basis yield almost the same convergence for each
collocation scheme.
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Fig. 8. Convergence for elasticity under four collocation schemes
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Fig. 9. Heat conduction in an eccentric annulus

4.1.4.2. Potential problem: eccentric annulus We also
conducted the comparison for a heat conduction problem
in an eccentric annulus. The temperature T on a symmet-
ric eccentric annulus is governed by the Laplace equation

∆T = 0, subject to Dirichlet temperature boundary condi-
tions specified at outer and inner boundary. The symmetry
allows us to model only half the problem in Fig. 9(a),
where the two circular boundaries have Dirichlet bound-
ary conditions To = 100 and Ti = 0, and the symmetry
lines BC,AD are under Neumann boundary conditions
∂T
∂n

= 0. The boundary geometry for the BIEM is initially
represented by 4 NURBS patches separated by 4 corners
A,B,C,D, as shown in Fig. 9(b). Fig. 10 shows the con-
vergence of L2 error norm with respect to mesh size h/h0
when using NURBS k-refinement algorithm from degree
2 ∼ 5. Again we see Greville abscissae based colloca-
tion outperforms the rest, and NURBS basis and linear
B-Spline basis yield nearly identical analysis results.
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Fig. 10. Convergence for heat conduction under four collocations.

4.2. Isogeometric shape optimization

In this section, we present two 3D isogeometric shape
optimization examples. The convergence criterion is KKT-
norm ≤ 10−5, and the elastic material constants are chosen
to be E = 2× 105, ν = 0.3.

4.2.1. Fillet profile

The goal is to find the optimal fillet profile that has
the least possible volume without violating the stress con-
straints. The problem is described in Fig. 11, in which the
structure is under tension rightward and transition profile
connecting the two cylinders needs to be found to form the
shape of the fillet. The related dimensions are:L = 20, L1 =
9, L2 = 4.5, D1 = 18, D2 = 9, and the tension is T1 = 10.
The allowed von Mises stress on the boundary is σ∗ = 12.
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As depicted in Fig. 11, the whole shape is modeled by
36 quadratic elements and 106 control points in 5 patches,
which includes 2 end circular disks, 2 cylinders and the de-
sign patch for the transition portion that connects the two
cylinder surfaces. The design patch is represented by an ax-
isymmetric NURBS patch with 7 control points in the axial
direction of the cylinder. The x1 positions of those control
points are not allowed to change; and their x2 positions
can change except the control points that also lie on the
two cylinders, leaving only 5 control points A,B,C,D,E
movable. The 5 control positions are controlled by 5 design
variables α1, α2, α3, α4, α5. The design model is refined into
128 elements and 242 control points for analysis as shown
in Fig. 12(a). Due to symmetry of the model, we apply the
stress constraints only on some stress monitoring points
distributed along the x1 span of the entire model as shown
in Fig. 12(a). In the initial design some of these monitored
points, whose x1 positions are near point E, already violate
the stress constraint 12 as shown in Fig. 12(b).
The optimal design (Table 1) is obtained after 8 iterations

and the optimized fillet shape is shown in Fig. 12(c); the
fillet profile matches well with both the intuition and also
the shape in [30]. The maximum stress on the boundary
has been reduced from 15.4 to 12, shown in Fig. 12(d).

Table 1
Design variable change for 3D fillet optimization

Design
variable

Lower
bound

Upper
bound

Initial Optimized

α1 4.5 9 8.5500 5.9541

α2 4.5 9 7.6500 5.0196

α3 4.5 9 6.7500 4.6504

α4 4.5 9 5.8500 4.5000

α5 4.5 9 4.9500 4.5000

4.2.2. Connecting rod

The design goal is to find the shape with the minimum
volume while satisfying a stress constraint. The full geom-
etry and its loading condition are described in Fig. 13(a),
where the connecting rod is symmetric about both x1 − x2
and x2 − x3 planes, with the larger hole on the left con-

(a) Initial analysis model
with 128 quadratic elements
& stress monitoring

(b) Stress before optimization

(c) Optimized design (d) Stress after optimization

Fig. 12. Initial and optimized models

necting to the camshaft and the smaller hole on the right
connecting to the piston. Here we only consider the static
tensile loading case. The piston hole is fully fixed and the
left half of the camshaft hole is under a pressure of co-
sine distribution: T = Tmax| cosβ|, where Tmax = 80 MPa,
90◦ ≤ β ≤ 270◦. The allowed maximum von Mises stress is
σ∗ = 420MPa.

The size and shape of whole model are controlled by 5
dimensions in Fig. 13(b); they are: α1 = R3, α2 = R4, α3 =
Y1, α4 = Y2, α5 = Y3. The camshaft and piston outer radii
R3, R4 control the overall outer shape. The transition pro-
file between the endpoint of the bolt support P1 and the
starting point of the straight platform P6 is represented
by a quadratic NURBS curve of 6 control points P1, ..., P6

on knot vector ξ = {0, 0, 0, 14 ,
1
2 ,

3
4 , 1, 1, 1}. P5 is horizon-

tally aligned with P6 to ensure a smooth transition onto
the straight portion.The x2 coordinates Y1, Y2, Y3 of the
remaining control points P2, P3, P4 are to be optimized.
Other constant dimensions are: R1 = 26, R2 = 10; L1 =
150, L2 = 50, L3 = 120, L4 = 20, L5 = 12; R5 = 7, S2 =
4.5; S1 = 10. The x1 coordinates of the the 6 control points
are uniformed distributed from L4 to L2. θ = 30◦.

Only a quarter of the model is considered due to the
symmetry; the displacement DOFs on the symmetry plane
are prohibited: u3 = 0 on x1 − x2 plane, u2 = 0 on x1 − x3
plane. The quarter model boundary are represented by 103
elements and 372 control points in 22 quadratic NURBS
patches. The design model is refined into 382 elements and
857 control points for analysis.

10



x1

x2

x3

Camshaft hole

under pressure

TA

x2

x1

Piston hole

fully fixed

(a) Full model with load conditions

2

3

3

4

2

5

1

3

1

1

5

4

3

1

2

2

1

2

3

(b) Geometric dimensions and design variables R3, R4, Y1, Y2, Y3

Fig. 13. 3D connecting rod

The initial NURBS boundary mesh is shown in
Fig. 14(a). The side constraints on the 5 design variables
are needed to keep the connecting rod in reasonable shape
range, and another shape regularization constraint (the
cross product of Pi+1Pi and Pi+2Pi+1 should point toward
the positive x3 direction) is applied on transition NURBS
feature to ensure that the profile is curved toward the
same direction rather than twisting back and forth. The
stress monitoring points in this problem spread over the
entire boundary of the quarter model. The analysis mesh
is shown in Fig. 14(b). The initial design also violates the
stress constraint as seen also from Fig. 14(b), where the
maximum stress 510 MPa along the camshaft hole exceeds
the allowable stress 420 MPa.

Table 2
Design variables for the connecting rod

Design
variable

Dimension
in Fig. 13(c)

Lower
bound

Upper
bound

Initial Optimized

α1 R3 30 60 34.0000 43.2856

α2 R4 15 50 41.4449 15.0000

α3 Y1 10 60 41.4449 30.2313

α4 Y2 10 60 41.4449 25.1542

α5 Y3 10 60 41.4449 20.0771

The optimal design (Table 2) is obtained after 12 itera-
tions and the resulting shape is shown in Fig. 14(c); where
the optimized model is viewed from above and from below
respectively. The corresponding stress distribution are also
shown in 14(d), which shows that the maximum stress on

(a) Initial design (flat transition)

(b) Von Mises stress calculated by initial analysis
model (22 patches, 382 elements)

(c) Optimized design (curved transition)

(d) Optimized analysis model and stress

Fig. 14. Initial and optimized models with stress distribution

the boundary has been reduced back to allowable value 420
MPa.

5. Conclusion

This paper presents a boundary integral based approach
to isogeometric analysis and shape optimization where
NURBS basis is used to parameterize the boundary shape
and to approximate the physical fields in analysis. This
approach has been successfully applied to both 2D and 3D
elasticity problems. Its application in shape optimization
has been demonstrated.
Our study finds that the NURBS based boundary inte-

gral method leads to better numerical accuracy on a per-
node basis over traditional Lagrange polynomials based
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BIEM, and over NURBS and Lagrange polynomials based
volumetric isogeometric analysis. In addition, our study
demonstrates that approximating the solution space in
analysis with B-Spline basis and rational B-spline basis
yield similar analysis results. Collocation points corre-
sponding to Greville abscissae give better numerical accu-
racy and robustness over other collocation schemes. Due
to the use of boundary integral, this approach bypasses
the need for domain parameterization which remains a
bottleneck in current volumetric integral based isogeomet-
ric analysis. This works thus brings us a step closer to
the eventual goal of computational design and analysis:
seamless integration of design and analysis.
Future work would extend this approach to trimmed

NURBS surfaces. One plausible approach would be to con-
vert trimmed NURBS surfaces into T-spline surfaces [31],
from which boundary integral based isogeometric analy-
sis can be readily developed based on the formulation pre-
sented in this paper. Further, NURBS boundaries used in
practice may not be perfect where various pieces of bound-
ary curves or surfaces may not fit perfectly due to the im-
precisions in modeling, some kind of geometric preprocess-
ing may still be necessary.
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the resolution properties of B-spline and compact finite difference

methods. Journal of Computational Physics, 174(2):510–551,
2001.

[19] T.N.E. Greville. Introduction to spline functions. Theory and
Applications of Spline Functions, pages 1–35, 1969.

[20] G. Farin. Curves and Surfaces for CAGD. 1993.
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