
Topology optimization in B-spline space

Xiaoping Qian

Mechanical, Materials, and Aerospace
Engineering Department

Illinois Institute of Technology
Chicago, IL 60062, USA
Email: qian@iit.edu

Highlights

• The density distribution is represented by B-splines over a rectangular domain.

• Through degrees and knot resolution control, optimized designs are free from checker-boards
without extraneous filtering or penalty.

• The B-spline based density representation is independent from analysis elements, applicable
to various analysis techniques and allows multi-resolution design without re-meshing.

• Compared with existing density filter based schemes, the B-spline based density representation
is compact in storage and does not require neighboring element information.

Abstract In this paper, we present a new form of density based topology optimization where the
design space is restricted to the B-spline space. An arbitrarily shaped design domain is embedded
into a rectangular domain in which tensor-product B-splines are used to represent the density field.
We show that, with proper choice of B-spline degrees and knot spans, the B-spline design space is
free from checkerboards without extraneous filtering or penalty. We further reveal that the B-spline
representation provides an intrinsic filter for topology optimization where the filter size is controlled
by B-spline degrees and knot spans. This B-spline filter is effective in removing numerical artifacts
and controlling minimal feature length in optimized structures when the B-spline basis functions
span multiple analysis elements. We demonstrate that the B-spline filter is linear in storage cost
and does not require neighboring element information. Further, this B-spline based density repre-
sentation decouples the design representation of density distribution from the finite element mesh
thus multi-resolution designs can be obtained without re-meshing the design domain. In particu-
lar, successive optimization with respect to design resolutions leads to topologically simple features
obtainable in either coarse or fine design resolutions, thus achieving a form of mesh independency
with respect to design representation. This approach is versatile in the sense a variety of finite
element and isogeometric analysis techniques can be used for solution of equilibrium equations and
a variety of projection methods can be used to approximate B-spline density in analysis. Numerical
studies have been conducted over several representative topology optimization problems, including
minimal compliance of MBB beams, compliant mechanism inverters, and heat conductions.

Keywords Topology optimization, B-splines, finite element, isogeometric analysis
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1 Introduction

Topology optimization is a computational technique for optimally distributing materials in a design
domain under governing physics. Its applications ranges from traditional mechanics applications
[1] to fluids, heat transfer, electromagnetic and multiphysics applications [2]. Various methods for
topology optimization have been developed. They include density distribution, level set, phase field,
and evolutionary methods [2]. The density distribution based method is by far the most popular
approach where the densities at the analysis elements or nodes are usually used as design variables
to represent the density. One challenge in topology optimization is how to deal with numerical
artifacts such as checkerboard and mesh dependencies [3]. The approaches to overcome numerical
artifacts in topology optimization can be through relaxation of admissible set or restriction of
admissible set. One way to enlarge the admissible design space is to allow an infinite perforation
at a microscale. Global material properties can be obtained from such microstructures through
homogenization [1, 2, 4]. An alternative is to restrict the design space so that in the restricted
solution space the optimization problem is well-posed. One type of restriction approaches is to
impose constraints on the design space and this includes bounds on the design gradients [5], slope
constraints [6], and constraints on perimeters [7]. The other type of restriction includes the use of
filters and penalty: sensitivity filters from Sigmund [8, 9], density filter [10, 11], regularized penalty
[12], and Tikhonov-type regularization [13].

In this paper, we present a new form of density representation in the density distribution based
topology optimization. We restrict the density distribution to be in the B-spline space. We embed
an arbitrarily shaped design domain into a rectangular domain where tensor-product B-splines are
used to represent the density distribution. We cast topology optimization as seeking optimal distri-
bution of B-spline represented density where design variables are B-spline coefficients. Numerical
studies have been conducted over several representative topology optimization problems, including
minimal compliance of MBB beams, compliant mechanism inverters, and heat conductions. The
salient features of such B-spline based density parametrization include

• Design space can be free from checkerboard without extraneous filtering or penalty. We show
that, when the B-spline resolution is compatible with the underlying analysis resolution, the
optimized designs are free from checkerboard. Our study further reveals that B-splines have
inherent filtering effect with the effective filter size depending on the degrees and knots of the
B-splines. Unlike the usual analysis elements based density representation, the B-spline based
density representation is independent from analysis elements and thus the B-spline filter does
not require information on density variables’ neighboring analysis elements. Due to its tensor
product nature, the B-spline filter is compact and can be computed on the fly, thus reduces
the usual storage cost of cubic (or quadratic) order with respect to filter size to linear cost for
three-dimensional (or two-dimensional) problems. Note, the classical density or sensitivity
filter can be hugely expensive for large-scale three-dimensional problems since the required
storage is proportional to (r/h)3 where the r is the filter radius and h is the element size.
Thus, the B-spline filter provides an efficient filtering scheme similarly as partial differential
equation (PDE) based filter [14, 15, 16], but without the need to solve the PDE.

• Mesh independence. Since the density is parameterized by finite number of B-spline co-
efficients, this ensures that the topology optimization is a finite-dimensional problem with
optimized designs independent from analysis mesh resolution.
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• Multi-resolution design. B-spline based design parametrization provides an easy means for
multi-resolution design due to the readily available algorithms for B-spline refinement and the
fact the B-spline domain does not need to be conformal to the underlying geometry. Multi-
resolution designs can thus be obtained without re-meshing the design domain provided that
the computational mesh for the analysis is sufficiently fine. Multi-resolution design allows
design at coarse design resolution be used as initial designs for optimization at fine resolu-
tion, thus leads to topologically simple designs that are independent from design resolutions.
Numerical results show that mesh independency with respect to design resolution can be
achieved via such successive multi-resolution design optimization.

• Separate design and analysis representation. This B-spline based design parametrization of
density distribution is independent from the analysis discretization of the design domain
where a variety of analysis techniques can be used. This separation allows finite element
discretization in topology optimization solely determined by desired accuracy in modeling
the governing physics. It also allows the design resolution to be solely determined by the
desired minimum length scale of features in the resulting design. In this paper, B-spline
based topology optimization has been implemented in linear quadrilateral elements, triangular
linear elements and NURBS based isogeometric analysis with density evaluated respectively
at element center, element node, and quadrature points.

Our B-spline based density representation is based on our earlier work on B-spline based hetero-
geneous object modeling [17, 18, 19] where B-splines are used to represent both material composition
and geometry and for solution of governing physical problems in multi-material or functionally gra-
dient materials objects. Interestingly, an approach similar to this paper has been proposed in [20]
where material representation in B-splines and geometry representation in implicit form have been
used. Details on heterogeneous object modeling are available in a survey [21].

Our use of B-splines in topology optimization is different from other B-spline related approaches
in topology optimization. In [22], trimmed B-spline surface analysis and isogeometric analysis are
used for topology optimization where surface control points and trimming curves’ control points
are design variables and some selection criteria are used to generate internal holes. In [23], a phase-
field approach is adopted for topology optimization and isogeometric analysis is used for geometric
exactness of the design domain and for solution of phase field problems. In [24], B-spline finite
elements are used in a density based approach to obtain topology that is free from checkerboard.
In this approach, a penalization of density gradient is used to smooth the density and obtain mesh-
independent solution. The use of B-splines as an implicit representation for shape optimization
with topological control has been explored in [25]. It is also worth noting that, although the use
of B-splines for density parametrization has not been explored much in topology optimization, in
shape optimization the use of B-splines to avoid shape oscillation and to ensure existence of solution
has been used as early as 1980s [26], and as recent as isogeometric shape optimization [27, 28].

Our approach is also different from wavelet approaches. Design parametrization in wavelet space
has been explored in [29, 30]. However, wavelet representation cannot be used directly in topology
optimization as it introduces a large number of constraints for enforcing the density constraints,
thus reducing its computational efficiency. Instead, intermediate variables are mapped from density
via the sigmoid function to variables in wavelet space in order to impose density box constraints
[29]. In contrast, in our proposed approach, B-spline coefficients are directly used as design variables
under simple box constraints.
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In the remainder of this paper, Section 2 presents B-splines and its mathematical properties that
are useful for topology optimization. Section 3 presents the optimization formulation for topology
optimization in B-spline space. Section 4 analyzes the B-spline representation and shows B-spline
is a filter with inherent length scale. Section 5 presents numerical results on topology optimization
of MBB beams, compliant inverters and heat conduction. Section 6 shows results on topology
optimization of curved design domains. This paper is concluded in Section 7.

2 B-splines

This section gives a brief introduction on B-splines. B-splines are commonly used in data approxi-
mation and in computer-aided geometric design. B-splines and non-uniform rational B-splines have
become the standard representation in computer-aided design systems. Here, we introduce basic
B-spline properties that are useful for topology optimization in this paper. For details on B-splines,
refer to [31, 32].

A univariate B-spline function of degree p is defined as follows

f(x) =

n∑
i=0

Bi,p(x)bi, (1)

where {bi} represents a set of i = 0, . . . , n B-spline coefficients. A degree p B-spline basis function
{Bi,p} is defined on a knot vector Ξ = {x̄0, x̄1, . . . , x̄n+p+1}. A knot vector Ξ is a set of non-
decreasing real numbers in parameter space. The interval [x̄i, x̄i+1] is called the i-th knot span.
A knot vector is said to be uniform if its knots are uniformly spaced and otherwise non-uniform.
In this paper, uniform B-splines are used. The i-th (i = 0, . . . , n) B-spline basis function can be
defined recursively as

Bi,p(x) =
(x− x̄i)Bi,p−1(x)

x̄i+p − x̄i
+

(x̄i+p+1 − x)Bi+1,p−1(x)

x̄i+p+1 − x̄i+1
, (2a)

Bi,0(x) =

{
1 x̄i ≤ x ≤ x̄i+1,

0 Otherwise.
(2b)

B-spline basis functions have some important properties, including

• Local support: a p-th order B-spline function is non-zero in at most (p+ 1) knot intervals.

• Non-negative and partition of unity, that is

Bi,p(x) ≥ 0,

n∑
i=0

Bi,p(x) = 1.

Figure 1 shows the B-spline basis functions for degree p = 1, 2, 3 over the knot vector Ξ =
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. The B-spline basis functions that span the knot interval [3, 3 + p + 1]
are highlighted. It can be seen that a p-th degree B-spline function spans p+ 1 knot spans.

A tensor-product B-spline function of degree p in x direction and degree q in y direction is a
bivariate piecewise polynomial function of the form

f(x, y) =

n∑
k=0

m∑
l=0

Bk,p(x)Bl,q(y)bk,l,
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Figure 1: B-spline basis functions with degrees p = 1, 2, 3 for knot vector Ξ =
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. The B-spline basis functions that respectively span [3, 3 + p + 1] are
highlighted.

where bk,l form a (n + 1) × (m + 1) B-spline coefficients for the function f(x, y), and {Bk,p} and
{Bl,q} are the B-spline basis functions defined on the knot vectors in x and y directions. Although
the coefficients bk,l are not customarily associated with any spatial coordinates, the function f(x, y)
can be cast as a non-parametric (or explicit) B-spline geometry in parametric representation as

S(x, y) =

 x
y

f(x, y)

 .
The x, y coordinates of such B-spline coefficients are at Greville abscissae. More specifically, xi of
the ith B-spline coefficient is given by

xi =
1

p
(x̄i+1 + x̄i+2 + · · ·+ x̄i+p), i = 0 to n,

where x̄i are knots (with total n + p + 1 knots) in x direction. The y coordinates of the B-spline
coefficients are defined similarly. The points (xk, yl, bkl) are called control points of the function
f(x, y). Figure 2 shows the locations of B-spline coefficients (red points), the effective knot spans
(black squares) in the domain of the B-spline function, and the knots in x, y directions (red lines).

Without loss of generality, we here consider a bivariate B-spline function on a knot-interval
basis, defined by an array of (p+1)× (q+1) B-spline coefficients. Note, the B-spline basis function
has local influence property, i.e. within a given knot span, only (p+1)× (q+1) number of non-zero
basis functions. So the number of B-spline coefficients per B-spline knot interval is (p+1)× (q+1).
The B-spline basis function Nk,l for the B-spline coefficient bk,l (k = 0, . . . , n and l = 0, . . . ,m) can
be written as

Nk,l(x, y) = Bk,p(x)Bl,q(y) (3)

where p and q are degrees of the B-spline basis functions Bk,p and Bl,q. Figure 3 gives an illustration
of a B-spline basis function in 2D where p = 3 and q = 2. As can be seen from this figure, the
shape function spans 4 knot intervals in x direction and 3 knot intervals in y directions.

5



(a) p = q = 1 (b) p = 3, q = 2

Figure 2: Control points for functions in B-spline form. Red lines represent knots, red circles repre-
sent the B-spline control points and black squares represent the domain of the function partitioned
into knot spans.

Figure 3: A tensor product B-spline basis function with degrees p = 3 and q = 2, spanning
(p+ 1)× (q + 1) knot intervals.
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3 Topology optimization in B-spline space

In this section, we first give an algebraic description of optimization formulation with density field
restricted to the tensor-product B-spline space. We then show how sensitivity of the objective
function and the volume constraint with respect to B-spline coefficients can be derived.

3.1 Continuous formulation of topology optimization in B-spline space

We give the formulation for the minimal compliance problem. The basic idea of our approach, as
shown in Fig. 4, is to embed an arbitrarily shaped design domain Ω into a B-spline function domain
Ω. This B-spline function ρ̃(x),x ∈ Ω, represents the density distribution that are parameterized
by a finite number of B-spline coefficients ρi.

Void 

Solid 

Ω

Γ0

Γt

(a) Design domain Ω (b) B-spline domain Ω (black rectangle)

Figure 4: The design domain Ω is embedded into a B-spline domain Ω where Ω ⊆ Ω.

For a given design domain Ω, the minimal compliance problem can be stated as finding the
optimal distribution of stiffness tensor Eijkl [2]. With the energy bilinear form

aE(u, v) =

∫
Ω
Eijklεij(u)εkl(v) dΩ,

and the load linear form

l(u) =

∫
Ω
fu dΩ +

∫
Γt

tu dΓ,

the minimal compliance problem can be stated as
min
u∈U,E

l(u)

s.t. aE(u, v) = l(v),∀v ∈ U
E ∈ Ead

(4)

where the equilibrium equation is written in the weak, variational form with U denoting its kine-
matically admissible displacement field and αE depends on the stiffness tensor E. With the SIMP
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formulation, the set of admissible stiffness tensor can be written as

Eijkl(x) = ρ̃(x)sE0
ijkl, s > 1, (5a)∫

Ω
ρ̃(x) dΩ ≤ V ∗, x ∈ Ω, Ω ⊆ Ω (5b)

ρ̃(x) =
∑
i

Ni(x)ρi, 0 ≤ ρi ≤ 1, x ∈ Ω (5c)

where ρ̃(x) is the desired distribution of density over a rectangular domain Ω, s is the penalty
factor and V ∗ is the allowed material volume. The design domain Ω is embedded into the domain
of the B-spline function and is a subset of the B-spline domain Ω (the black box in Fig. 4).
Although the density function is defined over the B-spline domain Ω, the volume constraint (5b)
and equilibrium equation (4) are imposed on the design domain Ω. The continuous density function
ρ̃(x) is parameterized by a finite set of B-spline coefficients ρi. Due to the partition of unity and
non-negative properties of B-spline basis functions, the density is bounded between 0 and 1, i.e.
0 ≤ ρ̃(x) ≤ 1 since each B-spline coefficient ρi is bounded within [0, 1] as shown in (5c).

The design representation of density is through B-splines ρ̃(x) defined over the rectangular
domain Ω with design resolutions controlled by the number of knots and degrees. In practice, the
B-spline domain can be constructed from the bounding box of the design domain as [xmin, xmax]×
[ymin, ymax]. This rectangular domain is then partitioned into mx×my knot intervals with additional
p + 1 (and q + 1) knots in two ends of x (and y) direction. In this paper, we are using uniform
B-splines so all knots are uniformly distributed. There are (mx +p)× (my + q) B-spline coefficients
ρi as design variables. Thus, we have a finite dimensional optimization problem: seeking a material
density distribution ρ̃(x) that minimizes the compliance under the equilibrium constraint.

3.2 Discretized formulation

The continuous form of equilibrium equations in (4) is solved numerically, typically via finite element
methods. The continuous B-spline represented density function ρ̃(x) thus needs to be approximated
in each element. The approximation of density distribution ρ̃ in each analysis element is noted as
ρ. The FE discretized version of the problem (4) with a given B-spline parameterization of density
can be stated

min
ρ,u

c(ρ̄) = fTu (6a)

s.t. K(ρ̄)u = f (6b)

g(ρ̄) =

∑
e∈Ne

∫
Ωe ρ̄(x) dv

V0
− γ ≤ 0 (6c)

0 ≤ ρi ≤ 1, ∀i ∈ Nd (6d)

where ρ represent a set of B-spline coefficients, ρ̄(x) represents the analysis approximation of
continuous density ρ̃(x), K is the stiffness matrix of the underlying physical problem, u and f
are the unknown state variables and force vector in finite element analysis,

∫
Ωe ρ̄ dv is the volume

of the analysis element e, V0 =
∫

Ω dΩ is the volume of the design domain and γ is the allowed
material volume fraction. The vector f represents the force vector in minimal compliance design.
The equation (6c) represents the volume constraint that is imposed on the approximate density
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field ρ̄ that is used in FE analysis. The box constraints for the design variables in (6d) is that
ρi ∈ [0, 1] due to the partition of unity and non-negative properties of B-spline basis functions so
that the resulting density values ρ̃ is always within physically meaningful range [0, 1]. Note, this
formulation is general and is applicable to other common optimization problems such as compliant
mechanism and heat conduction problems. For the compliant inverter design, one can replace f in
the cost function with a zero vector at all DOFs except one at the output degree-of-freedom. For
heat conduction, we change it to a scalar problem and replace f in the cost function with a unit
vector.

Our formulation is versatile in the sense that the B-spline density function ρ̃(x) can be applied
in various analysis techniques and the density for analysis can be approximated in different ways.
The B-spline based design representation of density is independent from how the physical domain
is discretized in analysis elements. The density used in analysis ρ(x) is simply evaluated from
the design representation ρ̃(x) at location x. In this paper, we demonstrate how three common
methods can be used for approximating B-spline represented density distribution in finite element:

• Element center based approximation where element-wise constant density is used to approx-
imate the density distribution ρ̃(x, y). The density is typically evaluated at element center
xc
e, representing the center of e-th element. Therefore, the element density is ρe(x) = ρ̃(xc

e).

• Node based approximation where the density is evaluated from element nodes. That is, ρ(x) =∑
k ρ̃(xk)Nk where xk represents the k-th node and Nk is the corresponding nodal shape

function.

• Gaussian quadrature based approximation where the density is evaluated from quadrature
points of the element. That is, ρe,j = ρ̃(xq

e,j) where xq
e,j are element e’s j-th quadrature point.

Each element can be viewed as being partitioned into cells with each cell corresponding to a
quadrature point and cell areas proportional to the quadrature weights.

In all cases, the density distribution for analysis ρ(x) approximates the B-spline represented density
ρ̃(x) via the evaluation of the B-spline density function at points, either element centers xc

e, nodes
xn
i , or quadrature points xq

e,j , in the B-spline domain.
Figure 5 gives a 2D and 3D view of the density distribution of an optimized design from degree

p = 3, q = 2 B-spline of 30×10 knot intervals with analysis done by 30×10 four-node quadrilateral
linear elements. Although in this example, each element aligns with each knot span, they do not
have to be in alignment in general. Figure 5a and Figure 5b present the distribution of B-spline
coefficients ρi, densities ρ̃ in element centers and the finite elements. Figure 5c plots the topological
design with the distribution of piecewise constant density ρ̄(x) in analysis elements. Figure 5d shows
the 3D continuous distribution of density ρ̃(x) and the corresponding B-spline coefficients {ρk,l}.
Figure 6 gives graphical illustrations of embedding design domains into B-spline domains for the
use of the other two types of density evaluation points. In this figure, two additional element
types are used: three-node linear triangular elements in a curved domain (Fig. 6a and b), and
bi-quadratic NURBS elements for a curved design domain (Fig. 6c and d). In this figure, the red
lines represent the knots and black outer bounds represent the B-spline domain Ω. In Fig. 6b,
nodes from triangular mesh as shown in Fig. 6a are shown as blue dots in the B-spline domain Ω.
In Fig. 6d, 3× 3 quadrature points for each bi-quadratic NURBS element in Fig. 6c are shown as
blue dots in the B-spline domain.

Since the density distribution in each element can be approximated in various forms through
ρ̃(x) at density evaluation points, the stiffness matrix and the material volume for each element
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(a) Distribution of B-spline coefficients ρi. (b) Q4 linear elements and element centers xc
e.

(c) Piecewise constant densities ρ̄ in analysis elements.

B−spline density

(d) 3D view of B-spline representation of the density
distribution ρ̃(x, y) and B-spline coefficients ρi.

Figure 5: Optimized design and its density representation from degree p = 3, q = 2 B-splines of
30× 10 knot intervals with analysis done by 30× 10 quadrilateral linear elements. (a) Distribution
of 33× 12 B-spline coefficients ρi (red circle), (b) locations of 30× 10 density variables (blue dot)
ρ̃(xc

e) in each element, and 30×10 analysis elements (black square), (c) Piecewise constant densities
ρ̄(x) in analysis elements, (d) 3D view of density distribution ρ̃(x) and the B-spline coefficients
ρk,l.
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(a) Triangular mesh of a curved de-
sign domain

(b) Mesh nodes in B-spline domain

(c) NURBS discretization of a curved
design domain

(d) Quadrature points in B-spline do-
main

Figure 6: Analysis elements are embedded into B-spline domains and element density approximated
through density evaluation points. (a) and (b): Element density is approximated through nodal
density where the density at each node is evaluated from the domain of bi-quadratic B-splines of
20× 20 knot spans. (c) and (d): Density in NURBS elements is approximated through density at
quadrature points, which are embedded into the domain of bi-quadratic B-splines of 20× 20 knot
spans.
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can therefore be expressed through these density evaluation points. Generally, an element stiffness
matrix is computed as follows

Ke =

∫
Ω̂e

B(x)TD(ρ)B(x)|J(x)| dΩ̂ (7)

where Ω̂e is the parametric domain of the element, D(ρ) is the strain-stiffness matrix as a function
of density ρ in the element and J is the Jacobian of the mapping from parametric integration
domain to physical domain. In practice, the integral is done numerically by determining the value
of the integrand at Gauss quadrature points in the element. We show below how the element
stiffness matrix of the three approximations can all be expressed as algebraic equations consisting
of density at the evaluation points xd where xd can be xc,xn or xq. That is, the element stiffness
matrix can be expressed as sum of terms evaluated at quadrature points xj

Ke =
∑
j

E (ρ̄(xj))B
T
j D0Bj |J j |ωj , (8)

where D0 is the stress-strain matrix for unit material and ωj is the weight for quadrature point
j and E(ρ̄(xj) is the material stiffness for quadrature point j in the element e. With the SIMP
interpolation, the material stiffness can be expressed as

E(ρ̄(x)) = Emin + ρ̄(x)s(E0 − Emin) (9)

where E0 is the stiffness of the solid phase, s is the penalization power, and ρ̄(x) is the physical
density in element e and Emin is the minimal material stiffness to avoid singularity in stiffness
matrix .

If ρ is element-wise constant, all quadrature points have the same density as the B-spline density
at element center, i.e. ρ̄(xj) = ρ̃(xc). Therefore the element stiffness matrix can be simplified as

Ke = E (ρ̃(xc
e))
∑
j

BT
j D0Bj |J j |ωj = E (ρ̃(xc

e))K
0
e. (10)

If ρ is represented via nodal density ρ(x) =
∑

k ρ̃(xn
k)Nk(x) where each nodal density ρ̃(xn

k) is
evaluated at each nodal position xn

k in the B-spline domain Ω, we have

Ke =
∑
j

(
Emin +

(∑
k

ρ̃(xn
k)Nk,j

)s

(E0 − Emin)

)
BT

j D0Bj |J j |ωj , (11)

where Nk,j represents the node k’s shape function evaluated at element e’s j-th quadrature point.
If ρ is represented via density at quadrature points ρe,j = ρ̃(xq

e,j) where xq
e,j are element e’s

j-th quadrature point. We have

Ke =
∑
j

(
Emin + ρ̃(xq

j)
s(E0 − Emin)

)
BT

j D0Bj |J j |ωj . (12)

The material volume for each element can also be computed similarly. Generally, the volume for
each element can be represented as Ve =

∫
Ωe ρ(x) dΩ. If the density is approximated element-wise

constant, we have

Ve = ρ̃(xc)
∑
j

|J j |ωj . (13)
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If the density is approximated via nodal density, we have

Ve =
∑
j

|J j |ωj

∑
k

ρ̃(xn
k)Nk,j . (14)

If the density is approximated via quadrature points, we have

Ve =
∑
j

|J j |ωj ρ̃(xq
j). (15)

3.3 Sensitivity analysis

We use a gradient-based method for optimization. Thus the sensitivity of the cost function c and
the volume constraint g with respect to the design variables, i.e. B-spline coefficient ρi, are needed.
With the algebraic equations in the previous subsection describing the element stiffness matrix and
element volume as functions of ρ̃(xd) at density evaluation points xd, it is not difficult to derive the
sensitivity of the cost function and the volume constraint with respect to B-spline coefficients. Here
we use the element-wise constant approximation as an example to show how analytical sensitivities
can be readily derived.

The adjoint method can be used to compute the sensitivity of the objective function c with
respect to design variables, i.e. B-spline coefficient ρi, as follows

∂c

∂ρi
= λT ∂K

∂ρi
u

where λ is the adjoint vector determined from the adjoint equation Kλ = −f . Here
∂K

∂ρi
can be

obtained on an element level by differentiating (10)

∂Ke

∂ρi
=

∂Ke

∂ρ̃(xc
e)

∂ρ̃(xc
e)

∂ρi
= s (ρ̃(xc

e))
s−1 (E0 − Emin)K0

e

∂ρ̃(xc
e)

∂ρi
. (16)

The density at the element center can be expressed as

ρ̃(xc
e) =

∑
i∈Ixc

e

Ni(x
c
e, y

c
e)ρi (17)

where (xce, y
c
e) represents the coordinates of the center xc

e of the e-th element, Ixc
e

is the indices of
(p+1)×(q+1) B-spline coefficient ρi that influences the density ρ̃(xc

e) and Ni is the B-spline shape
function corresponding to the B-spline coefficient ρi. The index set Ixc

e
depends on the position

of xc
e with respect to the knot distribution of the B-spline representation. The sensitivity of ρ̃(xc

e)
with respect to the design variable, i.e. B-spline coefficients ρi, is

∂ρ̃(xc
e)

∂ρi
= Ni(x

c
e, y

c
e) (18)

The Ni(x
c
e, y

c
e) is non-negative, thus leading to the monotonous increase of material stiffness with

respect to the density. Plugging the above equation into (16) leads to the sensitivity of the cost
function with respect to the B-spline coefficients ρi. The sensitivity of the volume constraint with
respect to ρi can be computed similarly by using the chain rule of differentiation over (13).
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Generally, the sensitivity of cost function and volume constraint essentially has two components,
as shown in (16), the derivatives with respect to density ρ̃(xd) at evaluation points xd where xd

is xc for element center, xn for nodal point, and xq for quadrature points, and the derivative
of ρ̃(xd) with respect to B-spline coefficient ρi. The density ρ̃(xd) at each evaluation point is
influenced by (p + 1) × (q + 1) B-spline coefficients. The sensitivity with respect to ρi for such
influence is Ni(x

d). Ni(x
d) is constant for every ρi, thus it can be pre-stored before optimization.

If an optimization problem has total M density evaluation points xd
l , l = 1 · · · ,M , thus there are

total M(p + 1)(q + 1) entries Ni(x
d
l ) to be pre-stored. This can become expensive, especially for

3D problems. Fortunately, for B-spline basis functions, due to their tensor product nature, the
storage cost can be reduced significantly with negligible influence on the overall efficiency. For
each density point xd

l , there are (p + 1)(q + 1) B-spline basis function Ns,t(x
d
l ), s = 1, · · · p + 1,

t = 1, · · · , q + 1. Here s and t are matrix indicies for the basis function N . Instead of directly
storing these (p+ 1)× (q + 1) entries, for each density point xd

l , one can simply store p+ 1 entries
of Bs(x

d
l ) and q + 1 entries of Bt(y

d
l ) where Bs( x

d
l ) and Bt(y

d
l ) are respectively the B-spline basis

function in x and y directions. Then the tensor-product B-spline basis function Ns,t(x
d
l ) can be

dynamically reconstructed as
Ns,t(x

d
l , y

d
l ) = Bs(x

d
l )Bt(y

d
l ) (19)

during each optimization iteration. That is, the tensor product form of B-spline basis function
makes it possible for storing only M((p + 1) + (q + 1)) entries instead of M(p + 1)(q + 1), at the
expense of computing the simple multiplication in (19) in each iteration. The sensitivities in all
numerical examples in this paper are obtained this way. Such storage saving can be substantial for
3D problems. Although the equations are only shown here in 2D, it is directly applicable to 3D.

Remark 1 This tensor product form of B-splines reduces the quadratic (or cubic) storage cost of
B-spline sensitivities with respect to B-spline degrees and knot spans to linear cost for 2D (or 3D)
problems.

Remark 2 The analysis density ρ̄(x) used in computing stiffness matrix and material volume
depends on the B-spline density ρ̃(xd) at density evaluation points xd, not on neighboring elements.
Therefore, this formulation does not require access of finite element neighborhood information as
otherwise would be required in the usual density filter based approach.

It should be noted that those B-spline coefficients that do not have any influence over the design
domain will have zero sensitivity over the cost function and the volume constraint. Therefore, in a
gradient based approach, these coefficients do not change during the optimization iterations.

4 B-spline as a filter

In previous section, we have given algebraic description of our formulation for topology optimization
in B-spline space. Now we proceed to show that in such a formulation, B-splines serve as a filter
for topology optimization.

4.1 Geometric interpretation: B-spline is a filter with inherent length scale

The B-spline represented density ρ̃ and the design variables (B-spline coefficients) ρi are related
through equation (17) and the sensitivity is shown in equation (18). These two equations are of
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(a) p = q = 1 (b) p = 3, q = 2

Figure 7: The density (blue point) at each knot span is affected by surrounding (p + 1) × (q + 1)
B-spline coefficients (shown as bold red circles).

the same form as the usual density filters [11, 10]. The usual density filter can be noted [33] as

ρ̃i =

∑
j∈Ne,i

w(xj)vjρj∑
j∈Ne,i

w(xj)vj
, (20)

where vj represents the volume of element j, Ne,j represents the set of neighboring elements lying
within the filter domain for element i and the weighting function is usually defined as a distance
based hat function

wh(x) =
1

r

(
1− |x|

r

)
. (21)

Comparing equations (17) and (20), it is clear that B-spline based density representation can be
viewed as a B-spline based filter for design variables ρi in finite element analysis, i.e. the density
variables that participate in the finite element analysis is a spatial average of adjacent B-spline
coefficients. Figure 7 highlights how a density point ρ̃(xd) in any given knot span is determined by
its adjacent (p+ 1)× (q + 1) B-spline coefficients.

The difference between the B-spline filter and the usual density filters is three-fold:

• Weight function. Here the weighting function is the B-spline shape function (2) that is
piecewise polynomials of degree p× q, instead of usually a distance based linear hat function
(21) that is controlled by the filter radius r. In the B-spline weight function, the weight value
for a density evaluation point xd depends on the location of xd with respect to the knots in
the B-spline design representation, not on other density evaluation points or other FE element
points. In the usual density filter, the weight value depends on distance between adjacent
density variables, usually represented based on finite elements, e.g. element center or element
node.

• Influence region. Instead of usual axial-symmetric circular filter region as characterized by
filter radius in (21), the B-spline filter has a rectangular influence region. For a given B-spline
domain Ω that bounds the design domain Ω, when the number of knot intervals increases (i.e.
the design resolution increases), each knot interval’s length in physical space becomes smaller.
As shown in Fig. 3, the weight (shape) function spans (p+ 1)× (q + 1) knot intervals.

• Resolution constraint. Although the analysis density is a filtered representation of B-spline
coefficients as shown in (17), this in and of itself is not sufficient to preclude numerical
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artifacts such as checkerboard from appearing in optimized design. For a filter to be effective
in removing numerical artifacts in topology optimization, the filter function’s support needs
to span multiple analysis elements. In the usual density filters, the design representation of
density distribution is based on the finite element mesh, thus the filter size is explicitly chosen
to be larger than the element size for it to be effective. In the B-spline based filter, for the
filter to be effective, the support of B-spline basis functions must contain multiple analysis
elements, i.e. the resolution of B-spline representation in terms of size of knot intervals δx×δy
and the analysis representation in terms of element size h need to be constrained.

Thus, the B-splines, as a filter for topology optimization, are characterized by the degrees of B-
splines, the number of knot intervals mx ×my and the analysis element size h. A p × q B-spline
representation has an inherent length scale and the effective length scale is (p + 1)δx × (q + 1)δy
respectively in x and y directions. With the effective B-spline filter length and through numerical
study in Section 5, we have the following necessary condition for the B-spline filter to be effective
in preventing numerical artifacts in topology optimization.

Necessary condition When the support of B-spline function (p+ 1)δ is smaller than the element
size h,

(p+ 1)δ ≤ h, (22)

the filter is not effective.
When (p+ 1)δ ≤ h (where δ is the size of a knot span), the corresponding B-spline coefficients

can affect only one analysis element. Thus in this condition the B-spline filter is not effective for
topology optimization and checkerboard may occur. This is demonstrated by numerical results in
Section 5.

Through numerical study in Section 5, we also propose a sufficient condition, that is

Sufficient condition When the knot span δ is larger or equals to the element size h,

h ≤ δ, (23)

there are no checkerboard patterns in optimized designs.
Since each B-spline basis function spans (p+1)δ, when h ≤ δ, each B-spline basis function spans

at least p + 1 elements. Thus each B-spline coefficient affects at least p + 1 adjacent elements. In
such cases, our numerical study shows that there are no checkerboards for all degrees (p ≥ 1)of B-
splines. When h ∈ (δ, (p+ 1)δ], whether the B-spline filter is effective in suppressing checkerboards
or not depends on the degrees of B-splines and the resolution contrast α = h/δ between the element
size h and knot span δ assuming square elements and square knot spans. That B-splines is a filter
with inherent length scale thus provides a geometric explanation for the next section on why there
are no numerical artifacts such as checkerboards and how the minimal length scales of optimized
topology are affected by the degrees and knot intervals with B-spline parameterization. See Section
5.1.1 for more details.

4.2 Analytical analysis of B-spline representation of density

In this subsection, we present propositions on B-spline representation of density with the goal of
illustrating the effect of increasing B-spline degrees and reducing B-spline resolution on density
used in analysis. They have the effect of reducing the density difference between adjacent analysis
elements. We assume ρi ∈ [0, 1] as required in the formulation (6).
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We now show the transition from a solid knot interval to zero density knot interval in 1D.

Proposition 1 If any point xa interior to a knot span (x̄j , x̄j+1) has density 1, then the density
in the entire knot range (x̄j−p, x̄j+p+1) is non-zero. That is, if

∃xa ∈ (x̄j , x̄j+1), ρ̃(xa) = 1,

then
∀x ∈ (x̄j−p, x̄j+p+1), ρ̃(x) > 0.

Proof. By definition of B-splines, we have ρ̃(xa) =
∑j

i=j−pBi,p(xa)ρi. Since ρi ∈ [0, 1] and

Bi,p(x) ∈ [0, 1], we have
∑j

i=j−pBi,p(xa)ρi ≤
∑j

i=j−pBi,p(xa) = 1 . A basis function Bi,p spans
the knot intervals [x̄i, x̄i+p+1] and is 0 only at x = x̄i or x̄ = xi+p+1. If ρ̃(xa) = 1 thus its p + 1
coefficients must all be 1, i.e ρi = 1, i = j − p, · · · , j. We thus have that the density ρ̃ is non-zero
between 2p+ 1 knot intervals (x̄j−p, x̄j+p+1).

This proposition shows that for a degree p B-spline, if there is one solid point in the interior
of a knot interval (x̄j , x̄j+1), p knot intervals smaller than x̄j and p knot intervals larger than x̄j+1

all have non-zero density. It can also be inferred from the proof that, if a solid point is interior
to a knot interval, then the density in the entire knot interval is solid. It can be further seen that
the above proposition can also be extended to the transition from void knot interval to grayscale
density knot intervals as follows.

Corollary 2 If any point xa that is interior to a knot span (x̄j , x̄j+1) has density 0, then the
density in the entire knot range (x̄j−p, x̄j+p+1) is smaller than 1. That is, if

∃xa ∈ (x̄j , x̄j+1), ρ̃(xa) = 0,

then
∀x ∈ (x̄j−p, x̄j+p+1), ρ̃(x) < 1.

Due to the tensor product nature of B-spline representation, we have the following corollary.

Corollary 3 The gray transition from solid to void or from void to solid spans p knot intervals in
x direction and q knot intervals in y direction.

Figure 8 gives an illustration of gray transition from a solid element to void elements. The
underling design representation is a p = 2, q = 3 B-spline with 9 × 9 knot intervals. To represent
a solid analysis element, 3 × 4 B-spline coefficients of value 1 are used and all other coefficients
are 0 (shown as red circles in Fig. 8b). It is clear from Fig. 8a that with such a solid element,
the neighboring 2 elements on both sides of x direction and neighboring 3 elements on both sides
along y directions all have non-zero densities. That is, the gray transition spans on each side p
knot intervals in x direction and q knot intervals in y direction.

A checkerboard consists of alternation of void and solid, i.e. densities ρ̄i = 0 or 1, in adjacent
elements. The appearance of checkerboard can be ascribed to the fact that alternating void/solid
density in adjacent elements leads to artificial stiffness in linear quadrilateral element based analysis
[3], thus the optimizer would produce such checkerboard for maximal stiffness. Here we conjecture
that restricting the allowed maximal density difference in adjacent elements in the design space
is useful for suppressing checkerboard. We show that the B-spline filter effectively restricts the
allowed density difference between adjacent elements.
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(a) 2D view of piecewise density dis-
tribution ρ̄ with the center element
as solid.

(b) 3D view of continuous density ρ̃ and B-spline coefficients ρ.

Figure 8: Gray transition spanning p or q knot intervals on each side: a degree p = 2, q = 3
B-spline of 9× 9 knot intervals is used to represent a solid element at the center. The solid center
element is highlighted in (a) and the transitions span 5 elements in x direction and 7 elements in
y direction. A 3D visualization of continuous density ρ̃ is shown in (b). Red circles represents the
B-spline coefficients and blue cross represents where ρ̄ for each analysis element is sampled. Black
grid represents the quadrilateral elements.

For any two points xa and xb, their density can be expressed as ρ̃(xa) =
∑

i∈Ia ρiNi(xa) and
ρ̃(xb) =

∑
j∈Ib ρjNj(xb) where Ia and Ib respectively represent p+ 1 number of indicies for B-spline

coefficients ρi and ρj that have influence at xa and xb. The difference in their density ρ̃(xa)− ρ̃(xb)
can be expressed as

ρ̃(xa)− ρ̃(xb) =
∑
i∈Ia

ρiNi(xa)−
∑
j∈Ib

ρjNj(xb) (24a)

=
∑

i∈Ia\Iab

ρiNi(xa)−
∑

j∈Ib\Iab

ρjNj(xb) +
∑
k∈Iab

ρk(Nk(xa)−Nk(xb)) (24b)

where Iab = Ia∩Ib is the intersection of index sets Ia and Ib. We thus have the following proposition.

Proposition 4 The maximal density difference between two points xa and xb depends on the basis
functions that have non-zero influence over both points. More specifically,

max (ρ̃(xa)− ρ̃(xb)) = 1−
∑
k∈Iab

min(Nk(xa), Nk(xb)), (25)

where Iab = Ia ∩ Ib.

Proof. In order to maximize the density difference ρ̃(xa) − ρ̃(xb) between two points xa and
xb, since all basis functions are non-negative, we have ρi = 1 and ρj = 0 from (24a). So from (24b)
we have

max (ρ̃(xa)− ρ̃(xb)) = max

 ∑
i∈Ia\Iab

Ni(xa) +
∑
k∈Iab

ρk(Nk(xa)−Nk(xb))

 . (26)
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The values of ρk depends on the sign of Nk(xa) − Nk(xb). If Nk(xa) − Nk(xb) >= 0, ρk = 1.
Otherwise, ρk = 0. So we further split the set Iab into two sets: I+

ab corresponding to Nk(xa) −
Nk(xb) >= 0 and I−ab corresponding to Nk(xa) − Nk(xb) < 0. The equation (26) can then be
simplified as

max (ρ̃(xa)− ρ̃(xb)) =
∑

i∈Ia\Iab

Ni(xa) +
∑
k∈I+ab

(Nk(xa)−Nk(xb))

=
∑

i∈Ia\Iab

Ni(xa) +
∑
k∈I+ab

Nk(xa) +
∑
k∈I−ab

Nk(xa)−
∑
k∈I−ab

Nk(xa)−
∑
k∈I+ab

Nk(xb)

=
∑
i∈Ia

Ni(xa)−
∑
k∈I−ab

Nk(xa)−
∑
k∈I+ab

Nk(xb)

= 1−
∑
k∈I−ab

Nk(xa)−
∑
k∈I+ab

Nk(xb).

(27)
In the last part, we used the partition of unity property of B-spline basis functions. The last part

in the equation above equals to 1 −
∑
k∈Iab

min(Nk(xa), Nk(xb)) after we combine the index sets I−ab

and I+
ab.

This proposition shows that, when two points have a larger number of overlapping basis func-
tions (i.e. larger Iab) or larger overlapping basis function values (i.e. larger min(Nk(xa), Nk(xb)),
the density difference allowed by the B-spline representation becomes smaller. In practice, when we
increase the degrees of B-spline functions or reduce the number of knot spans for a given B-spline
domain, we effectively restrict the allowed density difference between any two adjacent elements.

5 Topology optimization in rectangular design domains

In this section, we present numerical results of topology optimization in B-spline space where the
design domain is of rectangular shape. The optimization results of curved design domains are
shown in the next section. Here we focus on the role of the B-spline based density representation in
suppressing numerical artifacts and controlling minimal feature length in optimized structures. We
also show the use of B-spline representation for multi-resolution designs. Numerical experiments
have been conducted on the minimal compliance, compliant mechanism and heat conduction prob-
lems. All analysis in this section is done with quadrilateral four-node (Q4) linear elements and the
density variables in each element is element-wise constant.

An illustration of the three test problems, MBB beam, compliant inverter, and heat conduction,
with design domains and boundary conditions are shown in Figure 9. For the MBB example, the
objective is to minimize the compliance where the Young’s modulus E0 = 1 and Emin = 1.0e − 9,
and the volume fraction γ = 0.5. The design domain and the boundary conditions for the inverter
and heat conduction are the same as those in [33]. For the compliant inverter, we use (9) to
represent the density power law where E0 = 1 and Emin = 1.0e− 9. The objective is to maximize
the negative output displacement uout. The spring stiffness kin = 1 and kout = 0.001, and the
force vector fin = 1. The volume fraction is 0.3. For the heat conduction, the design objective
is to maximize the transfer of the heat fTu generated in the design domain where it is under a
unit distributed thermal load. The conductivities for the solid and the void phases are E0 = 1 and
Emin = 0.001. The volume fraction is 0.5.
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Figure 9: Design domain and boundary conditions for (a) MBB beam, (b) compliant inverter, and
(c) heat conduction.

In the examples in this paper, the B-spline degrees p in x and q in y directions are the same,
unless otherwise noted. The optimization is done by the Method of Moving Asymptotes [34] with
the termination criteria being that the maximum change of design variables ρi is 0.01 and the
maximum allowed iteration number is 500. The penalty coefficient s in the power law is 3 in all
cases. The penalty is increased at the increment of 0.04 per iteration until it reaches 3. The initial
designs are all of uniform density and satisfy the volume fraction constraints, unless they are in
successive optimization. In successive optimization, the optimized designs at a coarse resolution
are set as initial designs for optimization at a finer resolution. For convenience of comparison with
optimized results from the existing density filter, all optimized designs plotted in this section are
the piecewise constant density ρ̄ in each analysis element unless otherwise specified.

5.1 Minimal compliance in MBB beam

5.1.1 Numerical artifacts and filtering

In this subsection, we use numerical study to show that B-spline is effective in preventing checker-
board in optimized designs. As shown earlier, the B-spline filter for topology optimization is
determined by the B-spline degree, the number of knot spans (design resolution) and the number
of analysis elements (analysis resolution). We here use MBB example where the analysis is done
with nx × ny = 96× 32 Q4 linear elements and the density distribution is represented by B-splines
of different degree p = q and different knot spans mx × my. Both elements and knot spans are
square, thus resolution contrast α = h/δ = my/ny = mx/nx.

The influence size of B-spline coefficients is (p+1)δ where δ represents the knot span. Therefore,
either reducing the number of knot spans for a given B-spline domain or the increase of B-spline
degree effectively increases the B-spline filter size. Figure 10 shows that reducing the number of
B-spline knot spans is effective in removing checkerboard. In this figure, the designs are obtained
with quadratic B-splines of different number of knot spans, but analyzed with the same number
of elements. In the paper, we use a prefix “A” and “D” before a pair of numbers to represent the
number of analysis elements and the number of B-spline knot spans. The cost function values and
optimization iteration number are shown in the figure with prefix ‘c’ and ‘I’. When the number
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(a) D192 × 64, c=184.86, I78 (b) D168 × 56, c=196.60, I145 (c) D132 × 44, c=199.35, I244

(d) D123 × 41, c=199.12, I168 (e) D96 × 32, c=204.18, I176 (f) D48 × 16, c=223.27, I147

Figure 10: Reducing the number of B-spline knot spans is effective in removing checkerboard. All
B-splines in this figure are quadratic p = 2. The analysis is done by 96× 32 linear elements.

of knot spans my equals to 64 or 56, there are checkerboard in the optimized designs. As the
number of B-spline knot spans decreases, i.e. the ratio of design resolution with respect to analysis
resolution of density representation α decreases, the corresponding cost function increases and the
minimal feature size increases. When the number of knot span in y direction is 41 (Fig. 10d),
the checkerboard disappears. That is, when the number of knot span decreases while the number
of analysis elements kept the same, the effective filter size increases, leading to the suppression of
checkerboard. Figure 11 shows that the increase of the B-spline degrees can also be used to suppress
checkerboard. This is because, with the same design resolution, i.e. knot spans are the same, as
the degree increases, the B-spline’s effective filter size grows. As both Fig. 10 and Fig. 11 show,
as an overall trend, the design is generally less and less complex as the design resolution becomes
coarse and the degree of the basis increases. Individual designs from degree to degree may vary
slightly in complexity as shown in cases p = 5 and p = 6 in Fig. 11. In Fig. 11, the optimization
was terminated after 500 iterations. If the iterations continues, it takes 918 iterations to converge
with compliance of 197.0215 at p = 7 and it takes 773 iterations to converge with compliance of
198.4451 at p = 9. There is no difference from optimized topology terminated at 500 iterations.

(a) p=2, c=184.86, I78 (b) p=4, c=196.61, I140 (c) p=5, c=196.81, I408

(d) p=6, c=200.85, I194 (e) p=7, c=197.07, I500 (f) p=9, c=198.64, I500

Figure 11: Increasing B-spline degrees can suppress checkerboard. The analysis is done by 96× 32
linear elements and the density distribution is represented by D192× 64.
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Figure 12: The increase of B-spline degrees allows increased design resolution (i.e. more B-spline
knot spans) without causing checkerboards.

Since either reducing the B-spline resolution (number of knot spans) or increasing the B-spline
degree can increase the filter size and suppress checkerboard, one can combine them both to see
what is the allowed maximum number of knot spans (i.e. highest design resolution), for a given
B-spline degree and given number of analysis elements, without causing checkerboard. Figure 12a
shows for MBB beam the allowed knot spans 3my ×my for B-spline degrees p = 1 to 8. For linear
degree, the largest number of knot spans without causing checkerboard is just 32, same as the
number of analysis elements. For p = 2, the number is 41, as shown in Fig. 10d. As the degree
p increases, the allowed knot spans increases. Figure 12b shows the normalized ratio of allowed

design resolution versus analysis resolution α =
my

ny
=

mx

nx
with respect to the B-spline degree.

The key observation is that, as the B-spline degree increase, the allowed design resolution (number
of knot spans) can also increase. The allowed design resolution can be larger than the analysis
resolution (number of analysis elements) when degree p is larger than 1. Therefore, for a given
element size h, one can choose knot span size δ and degree p so that the point (p, α) = (p, h/δ) is
below the curve in Fig. 12b in order to avoid checkerboard.

For better illustration of our B-spline based density representation, we also plot the B-spline rep-
resented continuous density representation. Figure 13 plots the B-spline coefficients (1st column),
the corresponding B-spline represented continuous density ρ̃(x) (2nd column) and the piecewise
constant density representation ρ̄(x) used in analysis (third column) for designs resulting from
degrees p = 4 and p = 9. These designs correspond to the designs Fig. 11b and Fig. 11f.

5.1.2 Filter size and minimal feature length

Having demonstrated how the number of knot spans and degrees can be used to suppress checker-
boards, we now proceed to show how these factors can be used to control minimal feature length in
optimized designs and we also compare the results with those from the usual density filter. Figure
14 shows how reducing the number of knot spans increases the minimal feature length. In this
figure, all designs are analyzed with 90× 30 analysis elements and parameterized with cubic p = 3
B-splines. As the number of knot spans reduces from 135 × 45 (Fig. 14a) to 27 × 9 (Fig. 14i),
the topology becomes simpler and the minimal feature length becomes larger. The cost function
generally increases as the number of knot spans decreases, although the cost function for D105×35
is slightly smaller than that of D120× 40.
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(a) B-spline coefficient (b) B-spline represented density
ρ̃(x, y)

(c) Element-wise constant density
ρ̄(x, y)

(d) B-spline coefficient (e) B-spline represented density
ρ̃(x, y)

(f) Element-wise constant density
ρ̄(x, y)

Figure 13: Density display. B-spline coefficients (1st column), B-spline represented continuous
density ρ̃(x, y) (2nd column) and the corresponding element-wise constant density ρ̄(x, y) used in
analysis (third column). Top row: p = 4 and bottom row: p = 9.

(a) D135 × 45, c=201.67, I143 (b) D120 × 40, c=203.82, I188 (c) D105 × 35, c=202.81, I261

(d) D90 × 30, c=209.86, I167 (e) D75 × 25, c=211.18, I143 (f) D60 × 19, c=220.25, I136

(g) D42 × 14, c=232.61, I122 (h) D30 × 10, c=257.35, I91 (i) D27 × 9, c=259.58, I117

Figure 14: Reducing the number of B-spline knot spans leads to larger minimal features. B-spline
degree p = 3 with analysis element resolution A90× 30.
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(a) p = 1 c=204.53, I320 (b) p = 2 c=204.46, I120 (c) p = 3 c=209.86, I167

(d) p = 4 c=206.84, I309 (e) p = 5 c=213.32, I255 (f) p = 6 c=212.92, I299

(g) p = 9 c=215.47, I454 (h) p = 34 c=253.30, I220 (i) p = 35 c=246.32, I431

Figure 15: Increasing B-spline degrees leads to increased feature size. The analysis resolution is
A90× 30 and the design resolution is D90× 30.

Figure 15 shows that increasing B-spline degree leads to increased feature size where the analysis
resolution is A90×30 and the design resolution is D90×30. As the degree p increases, the structural
boundary becomes less crisp and more gray elements with density between 0 and 1 occurs along
the boundary. These observations are expected per Corollary 3: as the degree p controls the size
of each design variable ρi’s influence region, i.e. p number of gray knot intervals. Higher degrees p
implies a larger minimal feature and a larger intermediate area transitioning the density from solid
to void or from void to solid. With the increase of B-spline degree p, the obtained compliance in
the optimized design also becomes larger.

In order to compare the B-spline based optimization results with those from the density filter
based approach, we show a set of optimized designs that are obtained with 90× 30 linear elements
with piecewise constant density parameterization under density filtering (21). Figure 16 shows such
a set of optimized MBB beams where the density filter is used to remove the checkerboard patterns.
These designs are obtained with the filter radius increasing from 1.1 to 4.2. The topologies obtained
with filter radius between 1.7 to 2.8, and between 2.9 and 4.1, are respectively the same. As the
figure shows, when the filter radius r increases, the minimal length of the optimized structures
increases accordingly. By comparing the designs in Fig. 16 with those in Fig. 14 and Fig. 15, one
can see that the topologies from B-splines with resolution smaller than analysis element resolution
(in Fig. 14e) and degree p ≥ 6 (in Fig. 15f) are similar to those r ≥ 1.7 in Figure 16. The designs
obtained with lower degree B-splines (p < 6) in ( Fig. 15) and higher resolution (in Fig. 14) and
the designs with piecewise constant density parameterization under small filter radius (r < 1.7)
differ. This difference can be ascribed to the existence of multiple local minimal solutions. This
comparison suggests that topology optimization in B-spline space leads to similar optimized design
as existing density filter based approach.
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(a) r = 1.1, C = 197.6307, I = 119 (b) r = 1.2, C = 201.5263, I = 169 (c) r = 1.3, C = 202.2242, I = 271

(d) r = 1.4, C = 202.1902, I = 255 (e) r = 1.7, C = 208.3813, I = 167 (f) r = 2.8, C = 229.1557, I = 500

(g) r = 2.9, C = 227.0404, I = 500 (h) r = 4.1, C = 248.2161, I = 258 (i) r = 4.2, C = 244.2658, I = 500

Figure 16: MBB beams optimized with the usual density filter and piecewise constant density
parameterization with 90× 30 linear elements. As the filter radius r increases, the minimal length
of optimized structures increases.

5.1.3 Multi-resolution topology optimization by successive refinement of design rep-
resentation

The use of B-splines to represent the density field make it conducive for multi-resolution topology
optimization. That is, one uses coarse resolutions of B-spline density representation to quickly
explore and compare different designs and, among these designs, then choose a better design and
refine it into finer resolution for further optimization at the finer resolution. Table 1 gives a set of
successive optimized design where optimized designs obtained at low design resolutions (i.e. with
low number of knot intervals) in the first column are fed as initial designs for optimization at
high design resolutions (i.e. double the knot intervals for each refinement) in the second and third
column. It is worth noting that in all cases, mesh independence is achieved with respect to design
resolutions (i.e. the number of knot intervals) with such successive optimization. Here the mesh
independence is achieved due to the use of optimized design from low resolutions as initial designs
and the fact the low resolution design space is a subspace of high resolution design space. Thus
an optimal design in low resolution design space is also an optimal design in high resolution design
space.

Comparing results of the successive optimization from low design resolutions to high design
resolutions with results from direct optimization at high design resolutions shown in Fig. 17,
the successive optimization leads to optimized design with smaller compliance values and fewer
iterations. For example, the design in Table 1 (f) has compliance 193.46 with 314 iterations,
while the design (b) in Fig. 17 has compliance 196.19 with 464 iterations. Another difference is
that the successive optimization from low design resolutions to high design resolutions leads to
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Table 1: Successive optimization from low to high design resolutions by B-splines of different
degrees.

Initial design resolution Refinement once Refinement twice

p = 1
(a) 60 × 20, C = 215.121, I = 151 (b) 120 × 40, C = 196.519, I = 141 (c) 240 × 80, C = 189.902, I = 451

p = 3
(d) 45 × 15, C = 227.121, I = 142 (e) 90 × 30, C = 202.714, I = 96 (f) 180 × 60 C = 193.455, I = 314

p = 10
(g) 60 × 20,C = 237.878, I = 274 (h) 120 × 40, C = 207.755, I = 199 (i) 240 × 80, C = 197.098, I = 340

(a) 240 × 80, p = 1, c = 191.91, I500 (b) 180 × 60, p = 3, c = 196.19, I464 (c) 240× 80, p = 10, c = 199.65, I500

Figure 17: Direct optimization at high design resolutions corresponding to the third column in
Table 1. The number of analysis elements are respectively same as the number of knot spans in
each subfigure.

relatively larger minimal feature length in optimized structures when compared with those from
direct optimization at high design resolution. Further, such successive optimization has the effect of
making the blur boundary in the designs obtained at low design resolution (1st column) more crisp
(as shown in the third column). This is because, with the increased knot intervals, the physical
size of each knot interval becomes smaller and thus the gray transition region becomes smaller
accordingly.

5.2 Compliant mechanism

We have also extended the B-spline based topology optimization to the design of compliant inverter.
Table 2 compares a set of designs obtained with B-splines of degree 1, 3, 5, and 10 under different
optimization schemes. In all cases, the numbers of Q4 linear analysis elements are the same as
the respective numbers of knot spans. The first column shows the designs optimized at low design
resolution (100×50 knot spans). The second column shows the designs optimized successively with
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design representation refinement where the designs from low resolution in the first column are used
as initial designs for design at higher resolution (200×100 knot spans). It is clear that respectively
the same topologies are obtained as the initial designs in the first column, but with larger inverting
force and clearer structural boundary. The third column shows the designs directly optimized at
higher design resolution, which leads to smaller features in optimized structures and larger inverting
force than the designs obtained with coarse resolution (in the 1st column). This is because higher
design resolution corresponds to smaller effective filter size (thus smaller features) and larger design
space (thus better inverting force). Comparing the second and third columns where the designs are
obtained under the same number of design resolutions and the same number of analysis elements,
the designs with successive refinement of design representation contain larger features, with nearly
the same or even slightly better inverting forces. This example shows that B-spline based multi-
resolution designs allows the use of coarse resolution for more efficient exploration of different initial
designs. Comparing the designs obtained in different rows, one can see that, as the B-spline degrees
increase from p = 1 to p = 10, the minimal feature length in the optimized designs also becomes
larger. This suggests that again the B-spline degree can be used to control the minimal feature
length.
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Table 2: Optimized inverters by B-splines of different degrees under various optimization schemes.

100×50 200×100 (successive ) 200×100 (direct )

p = 1

(a) C = −2.347, I = 363 (b) C = −2.472, I = 451 (c) C = −2.444, I = 500

p = 3

(d) C = −2.3297, I = 346 (e) C = −2.4497, I = 202 (f) C = −2.4570, I = 500

p = 5

(g) C = −2.3094, I = 500 (h) C = −2.4493, I = 372 (i) C = −2.4136, I = 500

p = 10

(j) C = −2.1906, I = 222 (k) C = −2.3932, I = 500 (l) C = −2.3805, I = 437
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5.3 Heat conduction

The heat conduction problem is known to involve checkerbaord challenges. We show below a set
of experiments that illustrate the influence of B-spline degrees and the effect of multi-resolution
designs.

(a) p = 1, C = 1.217, I = 157 (b) p = 25, C = 1.336, I = 253 (c) p = 50, C = 1.390, I = 441

Figure 18: Optimization of heat conduction via B-splines of different degrees. They all have
100× 100 knot spans and analyzed with 100× 100 Q4 linear elements.

Figure 18 shows the results of optimization of heat conduction represented by B-splines of
different degrees. They all have 100 × 100 knot spans and analyzed with 100 × 100 Q4 linear
elements. They are the optimized designs with B-splines of degree 1, 25, and 50. Comparing these
designs, one can see that higher degrees of B-splines filters out smaller features in the optimized
structures and the resulting designs have larger objective function values.

(a) 50 × 50, C = 1.584, I = 184 (b) 100 × 100, C = 1.334, I = 180 (c) 200 × 200, C = 1.229, I = 500

Figure 19: Successive optimization via refinement of design representation. The B-spline is of
degree p = 25. (a) optimized design from 50× 50 knot intervals, (b) optimized design with initial
design from (a) and the design resolution refined into 100×100 knot intervals, (c) optimized design
with the initial design from (a) and the design resolution refined into 200× 200 knot intervals.
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Figure 19 shows successive optimization via refinement of design representation: (a) optimized
design from 50 × 50 knot spans, (b) optimized design with initial design from (a) and optimized
at design resolution 100 × 100 knot spans, (c) optimized design with design resolution 200 × 200
knot spans. The B-spline is of degree p = 25. The analysis mesh resolutions are respectively the
same as B-spline resolutions (knot spans). This example shows that the successive optimization
via refinement of design representations (i.e. knot spans) preserves the overall topology as in the
coarse mesh from the initial design, and makes the gray structures in low design resolution clearer
and sharper.

(a) p = 50, q = 1, C = 1.280, I = 500 (b) p = 1, q = 50, C = 1.332, I = 400

Figure 20: Influence of unequal B-splines degrees in heat conduction optimization. They have
100× 100 knot intervals and analyzed with 100× 100 Q4 linear elements.

Figure 20 gives an illustration of anisotropic control of feature length in heat conduction opti-
mization via unequal B-spline degrees. Figure 20a shows the optimized design with the B-spline
degrees of p = 50 in x and q = 1 in y directions. Figure 20b shows the B-splines of degree p = 1
in x and q = 50 in y directions. Comparing the two designs, it is clear that higher B-spline degree
in one direction and low degree in the other direction leads to long features in the higher-degree
direction and thin features in lower-degree direction. For this particular heat conduction problem,
since the heat sink is on the left side, higher degrees on the x direction apparently leads to lower
objective function values.

6 Topology optimization of curved domains

In the previous section, we have demonstrated various numerical results of topology optimization in
B-spline space for problems with rectangular domains where piece-wise constant material density
is used in a linear quadrilateral element based FE analysis. In this section, we aim to show that
the proposed approach works equally well for problems of curved domains and can be analyzed
with other forms of analysis elements such as linear triangular elements based FE analysis and
NURBS based isogeometric analysis. To demonstrate the versatility of our approach regarding how
B-spline represented density can be used in analysis, in linear triangular elements, the density for
analysis is evaluated at each node point. In NURBS elements, the density for analysis is evaluated
at each quadrature point. The triangular elements based FE is implemented via a commercial
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(b) Cantilever beam with a circular hole

Figure 21: Curved design domains for topology optimization.

FE software COMSOL and the NURBS based analysis was implemented based on own in-house
software [28, 35].

Figure 21 shows two curved design domains for compliance minimization. In both cases, E = 1
and Emin = 1.0e−9 and Poisson’s ratio is 0.3. Figure 21a shows a circular beam and the load is on
the top-left corner with R1 = 1 and R2 = 3. Figure 21b shows a cantilever beam with a circular
hole, where the left side is fixed and the beam is under vertical load at the low-right corner. In
this domain, L = 9, H = 6, R = 2 and the center of the hole with respect to low-left corner is 1.5
in both horizontal and vertical distance. This problem has been studied in [36, 37].

6.1 B-spline based topology optimization with triangular linear elements

The discretization of the design domains via triangular elements and the embedding of the mesh
nodes into the B-spline domains are respectively shown in Fig. 6a, b, and Fig. 22. The left column
shows the two design domains are discretized into triangular elements with maximum element
size respectively as h = 0.15 and h = 0.25. The right column shows the nodes in the respective
domains of bi-quadratic (p = q = 2) B-splines. There are respectively mx × my = 20 × 20 and
mx ×my = 30× 20 knot spans. There are p+ 1 extra knots at each end of knot axes.

Figure 23 shows the optimized results of the curved beam (corresponding to Fig. 21a) with
linear triangular elements. Figure 23a shows that there is checkerboard like numerical artifact in
the optimized design when the optimization is done with the maximum element size h = 0.05,
density parameterized by bi-quadratic B-splines of 150× 150 knot spans. The compliance is 50.11.
When the B-spline degree is increased to 6 and correspondingly the influence region of each B-
spline coefficient has increased, the resulting design is free from checkerboard (Fig. 23b). When
the mesh density is increased to h = 0.03, with degree 6 B-splines of the same number of knot spans
(150 × 150) as in Fig. 23a, the optimized design (Fig. 23c) has slightly more complex topology.
The compliances in Fig. 23b and Fig. 23c are respectively 50.14 and 51.54. When the design in
Fig. 23b is analyzed with mesh size h = 0.03, the compliance is 52.54. This example illustrates
that the increase of B-spline degree leads to optimized design free from checkerboard.

Figure 24 shows the role of B-spline filters in optimization of the cantilever beam with a circular
hole via triangular elements with the maximum element size h = 0.06. From Fig. 24a to Fig. 24e,
the density distributions are parameterized with 270 × 180 B-spline knot spans, but of different
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(a) Triangular mesh at h = 0.25 (b) Nodes from (a) embedded in the
domain of quadratic B-splines with
30 × 20 knot spans

Figure 22: Embedding triangular mesh nodes for the two design domains in Fig. 21 into the domain
of B-spline density function for subsequent density evaluation.

(a) h0.05, p2, c50.11, I348 (b) h0.05, , p6, c50.14, I500 (c) h0.03, p6, c51.54, I500

Figure 23: Optimized circular beam parameterized with D150 × 150 B-spline knot spans and
analyzed with triangular linear elements
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(a) D270×180, p = 1, c = 59.84, I401 (b) p = 2, c = 59.90, I500 (c) p = 4, c = 60.14, I500

(d) p = 8, c = 60.48, I500 (e) p = 13, c = 60.83, I500 (f) D180×120, p = 4, c = 59.89, I500

Figure 24: Topology optimization of the cantilever beam with a hole via triangular elements

degrees. As the degree increase, the checkerboard initially appeared in Fig. 24a disappear and
the small features disappear. The increased B-spline degree also leads to larger compliance. An
alternative to removing checkerboard and filtering smaller features is through reducing the number
of knot spans. Figure 24f shows the design optimized with degree 4 B-splines of 180 × 120 spans.
Comparing the design with the one in Fig. 24a, checkerboard disappears due to the use of fewer
knot spans. Comparing it with the design in Fig. 24c, smaller features in Fig. 24c also disappear.

For better illustration of the density representation in our approach, Fig. 25 shows the density
distribution for optimized designs in Fig. 23c and Fig. 24f. The first column in the figure shows the
B-spline coefficients. The inactive design variables with zero sensitivity for cost function and volume
constraint are in gray color. The second column in the Fig. 25b shows the density distribution in
the B-spline domain Ω. The last column in Fig. 25c shows the density distribution ρ̃(x, y) in the
design domain with (x, y) ∈ Ω.

6.2 Topology optimization of curved domains with isogeometric analysis

The two problems with curved domains shown in Fig. 21 are also solved with NURBS based
isogeometric analysis where the density at each quadrature point in analysis is evaluated from the
B-spline representation of the continuous density function. It should be noted that, due to the use
of NURBS to represent the domain boundary in isogeometric analysis, there is no approximation
error in geometry even with a coarse mesh.

Figure 26 shows the NURBS representation of the design domain, analysis mesh refinement and
Gaussian quadrature points embedded into the parameter domain. Figure 26a shows the initial
NURBS representation of the domain (Fig. 21a), consisting of 2×1 bi-quadratic elements. The two
internal control points respectively for outer circle and inner circle have weights w = (2 +

√
2)/4
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(a) B-spline coefficients (b) ρ̃(x, y) over Ω (c) ρ̃(x, y) over Ω

(d) B-spline coefficients (e) ρ̃(x, y) over Ω (f) ρ̃(x, y) over Ω

Figure 25: B-spline representation of the density distribution for Fig. 23c and Fig. 24f.

(a) NURBS representation of the do-
main

(b) A8 × 4 Mesh (c) A8×4, D20×20, p = 2 quadrature
points

Figure 26: Topology optimization of the curved beam (Fig. 21a) with isogeometric analysis.
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(a) p1, c53.07, I336 (b) p2, c53.61, I386 (c) p4, c54.09, I500 (d) p = 5, c54.47, I500

Figure 27: Topology optimization of the circular beam with isogeometric analysis

θ

(a) NURBS representation (b) Refined A16 × 4 Mesh (c) A16 × 4, D30 × 20, p = 2 quadra-
ture points

Figure 28: Topology optimization of the cantilever beam (Fig. 21b) with isogeometric analysis

so as to represent the out and inner circles exactly and all other weights are 1. Figure 26b shows
refined 8 × 4 NURBS elements. Figure 26c shows the corresponding quadrature points in the
domain of bi-quadratic B-spline of 20 × 20 knot spans. For clarity, only coarse mesh and the
corresponding quadrature points are shown. The actual mesh and B-spline spans can be much
larger in optimization problems. Figure 27 shows optimized design with density parameterized
by B-splines and analyzed with biquadratic NURBS elements. The analysis is done by 128 × 64
biquadratic NURBS elements and the B-spline density is parameterized by biquadratic B-splines
of 128 × 128 knot spans. From Fig. 27a to Fig. 27d, the B-spline degree increases from p = 1 to
p = 13, the compliance increases and the minimal feature size also increases. This is due to the
increased influence region for each B-spline coefficient.

Figure 28 shows the NURBS representation of the design domain and quadrature points in the
B-spline domain for the problem in Fig. 21b. Figure 28a shows the bi-quadratic NURBS representa-
tion of the domain with design specification in Fig. 21b where the knots in ξ is {0, 0, 0, 0.25, 0.25, 0.5,
0.5, 0.75, 0.75, 1, 1, 1, } and in η is {0, 0, 0, 1, 1, 1}. The NURBS weights for four of the control points
that represent the circle, but not on the circle are so chosen, w = cos(θ), that they represent the
circular hole exactly. All other weights are 1. Figure 28b shows refined 16×4 bi-quadratic NURBS
elements. Figure 28c shows the corresponding quadrature points (3×3 per element) on the domain
of B-splines. Figure 29 shows the optimized design of the cantilever beam parameterized with
B-splines of 180 × 120 knot spans and analyzed with 128 × 32 NURBS elements. As the degree
increase from p = 2 to p = 10, the minimal feature size increases due to the increased influence
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(a) p = 2, c57.88, I201 (b) p = 6, c58.56, I500 (c) p = 9, c59.05, I397 (d) p = 10, c58.99, I500

Figure 29: Topology optimization of the cantilever beam parameterized with B-splines of 180×120
knot spans and analyzed with 128× 32 NURBS elements.

region of the B-spline coefficients.

7 Conclusions

This paper presents an approach for topology optimization in B-spline space where tensor-product
B-splines are used to represent the density field and the density for analysis is then projected from
the B-spline based continuous density field. It has been shown that the B-splines provide intrinsic
filtering via degrees and knot spans control. Our numerical studies find that, with proper choice
of B-spline degrees and knot spans, the design space is free from checkerboards without additional
regularization or filtering. Further, B-spline filter is compact, does not require neighboring element
information and allows anisotropic length control. Therefore, B-spline filter can be a competitive
alternative to the usual density filter, especially when storage cost becomes huge as in 3D problems
or when the connectivity of analysis elements is hard to obtain as in mesh-free analysis or in
third-part software based analysis.

An exciting opportunity opened up by the topology optimization with B-spline parameteri-
zation is the ease of multi-resolution design, leading to efficient exploration of design space. In
particular, successive optimization with respect to design resolution leads to topologically simple
features obtainable in design representation of different resolutions, thus achieving a form of mesh
independency with respect to design resolution.

Future work would also include exploring how B-spline representation can be used in robust
formulation [33] to ensure robust control of minimal feature length and how the compactness of
B-spline representation can facilitate multi-resolution topology optimization as proposed in [38, 39].
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