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Abstract

This paper presents an approach for automatically generating high-quality high-
order parameterizations for isogeometric analysis on triangulations. A B-spline rep-
resented boundary geometry is parameterized into a collection of high-order Bézier
triangles or tetrahedra in 2D and 3D spaces, respectively. Triangular Bézier splines
are used to represent both the geometry and physical field over the triangulation.
By imposing continuity constraints on the Bézier ordinates of the elements, a set
of global Cr smooth basis is constructed and used as the basis for analysis. To en-
sure high quality of the parameterization, both the parametric and physical mesh
are optimized to reduce the shape distortion of the high-order elements relative
to well-defined reference elements. The shape distortion is defined based on the
Jacobian of the triangular Bézier splines, and its sensitivity with respect to the lo-
cation of control points is derived analytically and evaluated efficiently. Moreover,
a sufficient condition is derived to guarantee the generated mesh is free of local
self-intersection, thanks to the convex hull property of triangular Bézier splines.
By using a Heaviside projection function, the non-negative Jacobian determinant
constraints are formulated efficiently as a single optimization constraint. Several
2D and 3D numerical examples are presented to demonstrate that high-quality
high-order elements are generated using our approach.

Keywords Domain parameterization, Isogeometric analysis, Triangular Bézier splines,
High-order elements, Cr smoothness
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1 Introduction

Isogeometric analysis (IGA) is a numerical analysis approach introduced by Hughes et al
[1] to integrate Computer-Aided Design (CAD) and Finite Element Analysis (FEA). It
uses the same Non-Uniform Rational B-Splines (NURBS) as basis to both represent the
geometry and approximate field variables in solving partial differential equations (PDEs).
Due to the same basis used in geometric representation and in solution approximation, it
eliminates the geometric approximation error commonly occurred in classical FEA proce-
dures. Once the initial mesh is constructed, refinements can also be easily implemented
and exact geometry is maintained at all levels without the necessity of interaction with
the CAD system [1, 2]. The exact geometry representation has also led to the devel-
opment of isogeometric shape optimization [3, 4, 5], where the optimized geometry can
be directly imported into CAD systems . Another advantage of isogeometric analysis is
its computational efficiency on a per-node basis over classical C0 Lagrange polynomial
based FEA. The higher continuity of the NURBS basis has been demonstrated to signif-
icantly improve the numerical efficiency and accuracy on a per-node basis in many areas
including structural analysis [2, 6], fluid simulation [7] and shape optimization [3, 4, 5, 8].

However, the tensor-product structure of NURBS has restricted its applicability in
analysis. First, many CAD models cannot be represented by one single NURBS patch.
Therefore, multiple patches have to be used for geometry with complex topology and it
is not easy to achieve high-order continuity between such patches. Besides, it is challeng-
ing to construct NURBS based volumetric mesh from surface representation of complex
geometries [9, 10, 11]. Analysis of trimmed geometries [12] and local mesh refinement are
also known to be cumbersome for NURBS based IGA.

As an alternative, triangular Bézier splines (TBS) have recently emerged as a pow-
erful alternative to shape modeling and isogeometric analysis, due to their flexibility in
representing domains of complex topology and their high-order of continuity. Local refine-
ment can also be implemented without any difficulty. Normalized basis of Powell-Sabin
(PS) splines has been used for numerical solution of PDEs in [13, 14]. More generalized
framework of IGA on triangulations are introduced in [15, 16, 17], where Cr smooth ra-
tional triangular Bézier splines (rTBS) are used as basis to represent both the geometry
and physical field. The rTBS elements can be locally refined and represent any geometric
model of complex topology, including trimmed geometries [17]. By using a smooth-refine-
smooth scheme, optimal convergence has also been demonstrated with Cr elements for
generalized geometries [16, 17]. The rTBS based IGA has also been used in shape opti-
mization where optimized designs with complex topology have been demonstrated and
can be directly linked to CAD systems [18]. Recently, an isogeometric approach based
on unstructured tetrahedral and mixed-element Bernstein-Bézier elements has also been
proposed[19].

Although high-order elements in IGA have exhibited high efficiency in analysis, pa-
rameterization quality is a general concern. A good parameterization requires the phys-
ical mesh to be valid, that is free of local self-intersection or folding. Although NURBS
based IGA has been demonstrated to be robust with severe mesh distortion [20], a good
parameterization can be beneficial to both the analysis accuracy and computation effi-
ciency [21, 22, 5, 11, 23]. Both planar and volumetric B-spline based parameterization
[5, 22, 11] have been investigated previously, where Jacobian based measurements are used
as objectives to improve the parameterization quality through an optimization procedure.
T-spline based parameterization has also been studied [24, 25]. Parameterization in IGA
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based on PS splines is studied in [23], where the planar parameterization is improved by
minimizing the Winslow functional. Generating high-quality triangular and tetrahedral
Lagrange finite elements has also been studied in [26, 27, 28], where a shape distortion
measurement is used as objective to improve the mesh quality. The shape distortion is
calculated based on the Jacobian of the parameterization evaluated at sampled points in
the elements.

In this work, we focus on generating high-quality high-order Bézier triangular and
tetrahedral elements in IGA based on triangular Bézier splines [15, 16, 17]. Given a B-
spline represented boundary geometry, we first generate a linear triangular/tetrahedral
mesh over a polygonal domain that approximates the original geometry. Then we elevate
the degree of the linear mesh to produce the initial parametric mesh. By replacing the
boundary control points of the parametric mesh with the Bézier control points extracted
from the input B-spline boundary, an initial high-order C0 physical mesh is created.
However, the replacement of boundary control points may result in self-intersection of
elements near curved boundaries. Moreover, to construct Cr parameterization, some
points in the parametric and physical mesh may need to be relocated to satisfy the
high-order continuity constraints, and likely resulting in poor quality or even tangled
elements. To untangle the meshes and improve the parameterization quality, we develop
an approach to sequentially optimize the parametric and physical meshes with the goal to
reduce the shape distortion of the elements relative to well-defined elements. In addition,
we derive a sufficient condition to guarantee the generated elements to be free of local
self-intersection, taking advantage of the convex hull property of the triangular Bézier
splines. Directly incorporating the aforementioned sufficient condition for each element as
constraints into the optimization would dramatically slow down the optimization, due to
the large number of constraints. Instead we use a Heaviside projection based constraint
formulation [29] to cast the large number of constraints into a single constraint, which
significantly improves the optimization efficiency.

The remainder of this paper is organized as follows. Section 2 gives a brief introduc-
tion of bivariate and trivariate splines on Bézier triangles and tetrahedra respectively.
Section 3 describes the process of constructing an initial parameterization in IGA on tri-
angulations. The definition of shape distortion and its calculation is discussed in Section
4. Section 5 describes the details of optimization formulation and analytical sensitivity
derivation. Some numerical examples are presented in Section 6 followed by conclusion
in Section 7.

2 Triangular Bézier splines

To make the paper self-contained, in this section we briefly introduce bivariate and trivari-
ate splines defined on Bézier triangles and tetrahedra respectively. The constraints for
their smooth joins are also presented. For further reading please see [30, 31].

2.1 Bivariate splines on Bézier triangles

B-spline has been widely used to represent curves and surfaces. Each knot span of a
B-spline curve corresponds to a Bézier curve which is defined through Bernstein basis
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functions. A d-th degree Bernstein polynomial is defined as

Bij,d(ξ) =

(
d

i, j

)
ξi(1− ξ)d−i, ξ ∈ [0, 1], (1)

where
(
d
i,j

)
=

d!

i!j!
, i+ j = d. Accordingly a d-th degree bivariate Bernstein polynomial is

defined as

Bi,d(ξ) =
d!

i!j!k!
γi1γ

j
2γ

k
3 , |i| = i+ j + k = d, (2)

where i represents a triple index (i, j, k) and (γ1, γ2, γ3) is the barycentric coordinate of
a point ξ ∈ R2. Every point ξ = (ξ1, ξ2) in a fixed triangle with vertices v1,v2,v3 ∈ R2

can be written uniquely in the form

ξ = γ1v1 + γ2v2 + γ3v3, (3)

with γ1 + γ2 + γ3 = 1.
It has been shown that the set {Bi,d}|i|=d is a basis for the space of degree d bivariate

polynomials Pd [30]. A triangular Bézier patch is defined as

b(ξ) =
∑
|i|=d

piBi,d(ξ), (4)

where pi represents a triangular array of control points.
Under the isoparametric concept, the same bivariate Bernstein basis defining a triangle

τ = {v1,v2,v3} can also be used to define a polynomial function f of degree d over τ as

f(ξ) =
∑
|i|=d

biBi,d(ξ). (5)

The bi (or bijk) are called the Bézier ordinates of f . Their associated set of domain points
is defined as

Dd,τ =

{
qijk =

iv1 + jv2 + kv3

d
, i+ j + k = d

}
. (6)

Thus the control polygon of the function f is given by the points (qijk, bijk). Figure 1
gives an example of the associated domain points of the Bézier ordinates and triangular
Bézier patch.

Two polynomials f and f̃ of degree d join r times differentiably across the common
edge of two triangles τ = {v1,v2,v3} and τ̃ = {v4,v3,v2} if and only if [30]

b̃ρ,j,k −
∑

µ+ν+κ=ρ

ρ!

µ!ν!κ!
bµ,k+ν,j+κγ

µ
1 γ

ν
2γ

κ
3 = 0, j + k + ρ = d, ρ = 0, · · · , r, (7)

where γ1, γ2, γ3 are the barycentric coordinates of vertex v4 with respect to triangle τ .
Figure 2 gives an illustration of two triangular Bézier patches with C1 continuity con-
straints. The red solids represent free nodes whose values can be freely chosen, while the
three white solids representing dependent nodes are determined by the red free nodes
through the continuity constraints. The shaded area indicates the triangles where con-
tinuity constraints are imposed. As can be seen in Figure 2b, the control points in each
shaded triangle pair are coplanar. For better visualization of the underlying C1 patch,
the control net in Figure 2b is shifted up slightly.
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Cr constraints on triangulations

Cr constraints on triangulations

b3,0,0 b2,1,0 b1,2,0 b0,3,0

b2,0,1 b1,1,1 b0,2,1

b1,0,2 b0,1,2

b0,0,3
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v3
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(a) Associated domain points of the Bézier
ordinates bijk in {v1,v2,v3}.

(b) Triangular Bézier patch b(ξ).

Figure 1: Domain points and triangular Bézier patch.

v1 v2

v3 v4

1

(a) Two domain triangles with C1 con-
straints on Bézier ordinates.

(b) Two Bézier patches with C1

continuity.

Figure 2: Triangular Bézier patches with C1 continuity. The dependent nodes (white
solids) are determined by the free nodes (red solids) through the continuity constraints.
The shaded areas indicate the triangles with shared edges where the constraints are
imposed. As can be seen in Figure 2b, the control points in each shaded triangle pair are
coplanar. For better visualization, the control net is shifted up slightly in Figure 2b.
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Consider a parametric domain Ω̂ and its triangulation T̂ . We introduce the spline
spaces of piecewise polynomials of degree d over T̂ [30]

Srd(T̂ ) = {f ∈ Cr(Ω̂) : f |τ ∈ Pd ∀τ ∈ T̂}, (8)

where τ is an arbitrary triangle in T̂ and r is the continuity order of the spline over
Ω̂. In addition, if a bivariate spline has higher smoothness at some vertices, we call it a
superspline and denote the associated space as [30]

Sr,ρd (T̂ ) = {f ∈ Srd(T̂ ) : f ∈ Cρv(v) ∀v ∈ V}, (9)

where V is the set of all vertices in T̂ and ρ := {ρv}v∈V with r ≤ ρv ≤ d for each v ∈ V .
There are several approaches to obtain Cr spline spaces on a triangulated domain

Ω̂(T̂ ). In this thesis we are interested in the spaces Srd and Sr,ρd with full approximation
power of d-th degree polynomials. The straightforward way is to apply condition (7)
directly on the triangles, which requires the degree of the polynomial much higher than
r, such as d ≥ 3r+ 2 [32]. The alternative way is splitting each triangle in T̂ into several
micro-triangles before imposing the continuity constraints on the micro-triangles. The
original triangles are then called macro-triangles. These include the CT split [33] with
polynomials of degree d ≥ 3r for continuity r-odd and d ≥ 3r + 1 for r-even, and the
PS split [34] with polynomials of degree d ≥ 9r−1

4
for r-odd and of degree d ≥ 9r+4

4

for r-even. For example, in this paper we use CT split to obtain S1
3 spline space with

cubic polynomials, and PS split to obtain S1
2 , S2

5 and S2,3
5 spline spaces with quadratic

and quintic polynomials respectively. We also use so-called polynomial macro-element
technique to obtain S1

5 and S1,2
5 spline spaces with quintic polynomials without using any

split technique.
Figure 3 shows the CT and PS splits with corresponding free and dependent domain

points respectively. In the CT split, each vertex of a triangle in T̂ is connected with
its centroid point to form three micro-triangles, as shown in Figure 3a. We denote this
resulting triangulation as T̂ct. In the PS split, for each triangle we connect its incenter
to each of the three vertices and connect the two incenters of two triangles sharing a
common edge. In addition, we connect the middle of each boundary edge to the incenter
of the associated triangle, resulting in six micro-triangles. For the ease of implementation
in this paper, the centroid point instead of the incenter of each triangle is used as the
interior split point and the resulting triangulation is denoted as T̂ps, as shown in Figure
3b.

Uniform refinement can also be performed as needed. For example, each triangle
can be subdivided into four sub-triangles by connecting the middle points of the edges.
This kind of 1-to-4 split based uniform refinement is used in our subsequent analysis of
convergence during mesh refinement.

2.2 Trivariate splines on Bézier tetrahedra

Following the bivariate case, the trivariate Bernstein polynomial of degree d with respect
to a tetrahedron τ = {v1,v2,v3,v4} is defined as

Bijk,d(ξ) =
d!

i!j!k!l!
γi1γ

j
2γ

k
3γ

l
4, i+ j + k + l = d, (10)

where (γ1, γ2, γ3, γ4) is the barycentric coordinate of a point ξ ∈ R3 with respect to τ ,

ξ = γ1v1 + γ2v2 + γ3v3 + γ4v4, (11)
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(a) Cubic C1 mesh using CT split. (b) Quadratic C1 mesh using PS split.

Figure 3: The CT and PS refinements of macro-triangles with C1 continuity constraints.
The dependent domain points (white solids) are determined by the free domain points
(red solids) through the continuity constraints. The shaded areas indicate where the
continuity constraints are imposed.

with
γ1 + γ2 + γ3 + γ4 = 1.

Similarly {Bijkl,d}i+j+k+l=d form a basis for the space of degree d trivariate polynomials
Pd [30]. The associated domain points of a tetrahedron τ = {v1,v2,v3,v4} are

Dd,τ =

{
qijkl =

iv1 + jv2 + kv3 + lv4

d
, i+ j + k + l = d

}
, (12)

as shown in Figure 4a.
Suppose τ := {v1,v2,v3,v4} and τ̃ := {v5,v2,v4,v3} are two tetrahedra sharing the

face F := {v2,v3,v4}. Two polynomials f and f̃ of degree d on τ and τ̃ join together
with Cr continuity across the face F if and only if [30]

t̃mijk −
∑

ν+µ+κ+δ=m

tν,i+µ,k+κ,j+δB
m
νµκδ(v5) = 0, i+ j + k = d−m, m = 0, · · · , r, (13)

where Bm
νµκδ are the Bernstein polynomials of degree m associated with the tetrahedron

τ . Figure 4b gives an illustration of two cubic Bézier tetrahedra with C1 continuity
constraints. The red solids represent free nodes whose values can be freely chosen, while
the blue solids representing dependent nodes are determined by the red free nodes through
the continuity constraints. The shaded small tetrahedra indicate the domain points
involved in the continuity constraints. Conditions for smooth joins of the two polynomials
at the common vertex and across the common edge can also be found in [31].

Consider a parametric domain Ω̂ and its tetrahedral partition T̂ . We introduce the
spline spaces of piecewise polynomials of degree d over T̂ [30]

Srd(T̂ ) = {f ∈ Cr(Ω̂) : f |τ ∈ Pd ∀τ ∈ T̂}, (14)

where τ is an arbitrary triangle in T̂ and r is the continuity order of the spline over Ω̂.
Similar to the superspline spaces in 2D, for a trivariate spline given 0 ≤ r ≤ µ ≤ ρ,

we define

Sr,ρ,µd (T̂ ) := {f ∈ Srd(T̂ ) : f ∈ Cρ(v), ∀v ∈ V , f ∈ Cµ(e), ∀e ∈ E}, (15)

where V and E are the sets of vertices and edges of T̂ respectively. f ∈ Cρ(v) and
f ∈ Cµ(e) mean the polynomial has Cρ and Cµ smoothness at the vertex v and across
the edge e respectively.
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(a) Associated domain points of a Bézier
tetrahedron.

(b) Two domain tetrahedra with C1 con-
straints on Bézier ordinates. The Bézier
ordinates corresponding to the dependent
nodes (blue) are determined by the free
nodes (red) through the continuity con-
straints.

Figure 4: Domain points and continuity constraints of Bézier tetrahedra.

Various Cr macro-element spaces have been described in [30]. In this thesis we focus
on a quintic C1 macro-element space defined on the Alfeld split of a tetrahedral partition.
In Alfeld split, each tetrahedron is subdivided into four sub-tetrahedra by connecting its
barycenter to each of its vertices, as shown in Figure 5. For refinement of a tetrahedral
mesh, we consider a quasi-uniform refinement, where a tetrahedron is subdivided into
eight subtetrahedra. Four subtetrahedra are obtained by cutting off the four corners by
connecting the midpoints of the edges. The other four are obtained by connecting the
shortest diagonal of the remaining octahedron.

Figure 5: Alfeld split of a tetrahedron. Each tetrahedron is subdivided into four sub-
tetrahedra by connecting the barycenters to the four vertices.

3 Initial parameterization in TBS based IGA

In this section we describe the procedure of constructing an initial parameterization for
2D geometries using triangular Bézier splines, which was introduced in [15, 16]. A similar
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procedure for constructing initial parameterization for 3D geometries can be found in [17].
The process is illustrated in Figure 6 and can be described as follows.

(1) Given a domain Ω with B-spline boundary curves of degree d (Figure 6a), we sub-
divide each B-spline curve into a set of Bézier curves via knot insertions (Figure
6b).

(2) The end points of these Bézier curves are connected to form a polygonal parametric

domain Ω̂. The domain Ω̂ is then triangulated using Delaunay triangulation to obtain
T̂0 and the associated domain points are generated according to Eq. (6) (Figure 6d).

(3) In order to reproduce the exact B-spline boundary in later Cr parametrization, we

further adjust those vertices in T̂0 that correspond to Ck (k ≥ r) knot points in
the physical boundary. We move each such boundary vertex to the line segment
connecting the adjacent vertices of Cq (0 ≤ q < r) smoothness, and so that the
length-ratio of consecutive edges is the same as the ratio of the corresponding knot
intervals in the B-spline boundary curve. For example, in Figure 6d and 6e,

|v0v1| : |v1v2| : |v2v3| : |v3v4| = (t1 − t0) : (t2 − t1) : (t3 − t2) : (t4 − t3).

If there are too few Cq knots points in the boundary curve to form a suitable domain
Ω̂, some smooth knot points (such as the two points marked as red squares in the inner
round boundary in Figure 6a) are also used as corner points to form the polygonal
domain (Figure 6c). In this way, we obtain a C0 parametrization with Cr smoothness
along the boundary except at corner vertices where the smoothness is C0 [15].

(4) Replace the boundary control points of Ω̂T̂ with corresponding control points of the
Bézier curves in the physical domain to obtain a triangulation T0 on the physical
domain (Figure 6e).

The above procedure gives us an initial C0 parameterization that can be used for
isogeometric analysis. However, a couple of issues need to be noted in this procedure.
First, although the Delaunay triangulation generated in Step (2) is usually of high quality,
the adjustment of vertices in Step (3) to ensure Cr smoothness of the boundary will
change the shape of elements along the boundary and thus reduces their quality. Second,
the boundary replacement in Step (4) may result in self-intersected elements, as shown
in Figure 6f. Because of the over recessed control points after replacement, the control
polygon of the curved boundary intersects the other two boundaries of the element.

In addition, when constructing Cr parameterization, some of the interior control
points may need to be relocated to satisfy the high-order smoothness constraints [16, 17],
and likely resulting in poor quality or even tangled elements. Since the parameterization
quality is crucial for analysis accuracy and computational efficiency, these issues need to
be addressed to generate high-quality parameterization.

4 Shape Distortion of Bézier triangles and tetrahe-

dra

In this section, we formulate an optimization problem to improve the quality of TBS
based parameterization by optimizing the positions of the control points in the mesh.
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(a) Input domain with B-
spline boundary.

(b) Bézier extraction (c) Polygonal parametric
mesh.

v0 v1 v2 v3 v4

t0 t1 t2 t3 t4

1

(d) Parametric mesh with do-
main points. vi are bound-
ary vertices corresponding to
C1 knots points in 6e.

v0 v1 v2 v3 v4

t0 t1 t2 t3 t4

1

(e) Physical mesh after
boundary replacement. ti
are knot values of corre-
sponding C1 knot points.

1

(f) Detailed view of Figure (e). Because of
the over recessed control points, the control
polygon of the curved boundary intersects
with the other two boundaries of the element,
causing self-folding of the mesh.

Figure 6: Construction of initial parameterization for a given input domain bounded by
B-spline curves (Figure 6a). White and red squares are the end and interior control points
respectively of the boundaries. White circles are the domain and control points of the
mesh.
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The optimization formulation can simultaneously untangle the mesh and improve its
quality even if the initial mesh has invalid elements. Particularly, we develop a sufficient
condition to guarantee all Bézier triangular and tetrahedral elements in the final mesh to
be valid.

The shape distortion measure is defined in terms of the Jacobian of the geometric
mapping, and has been widely used to measure the quality of triangular and tetrahedral
elements [27, 35, 36]. Thanks to the spline basis of Bézier triangles and tetrahedral, the
Jacobian determinant of TBS based parameterization can also be expressed in the TBS
form. This allows efficient evaluation of Jacobian based functions and derivation of a
sufficient condition that guarantees the validity of the parameterization.

4.1 Definition of shape distortion

Given a reference element τ̂e, a master element τe and the mapping G0 between them:
G0 : τ̂e 7→ τe, as shown in Figure 7, the Jacobian of the mapping J = DG0 is usually used
to check whether the element τe is valid as following:

|J|


> 0 valid,

= 0 degenerated,

< 0 invalid.

(16)

A simple example of IGA with BT in 3D

Songtao Xia

May 8, 2017

-G0

⌧̂e ⌧e

1

Figure 7: Geometric mapping between a reference and master element.

To further measure the quality of τe, a shape distortion of τe with respect to τ̂e is
defined as [37]

η =
‖J‖2F
α|J|2/α

, (17)

where ‖J‖F is the Frobenius norm, |J| is the determinant of J, and α is the spatial
dimension, i.e. α = 2 for Bézier triangular element and α = 3 for Bézier tetrahedral
element. As can be seen in Eq. (17), the value of η equals 1 when τe has no distortion
with respect to τ̂e, i.e. the two elements only differ by a scale factor. The value of η tends
to ∞ when τe degenerates, i.e. |J| = 0. When the element τe is inverted, i.e. |J| < 0,
η becomes negative too. Therefore, η is not continuous when |J| varies from negative to
positive and not differentiable at |J| = 0.

To deal with invalid elements, a regularized distortion measure is proposed in [27] as

η =
‖J‖2F
αh2/α

, h =
1

2

(
|J|+

√
|J|2 + 4δ2

)
, (18)
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where δ is an element-wise regularization parameter. For valid elements, i.e. |J| > 0,
δ is 0, while for other elements, δ is a small positive number. A detailed description of
determining the value of δ can be found in [38]. In this work, we choose δ = 0.001 for
all the examples. An illustration of the function h, the Jacobian determinant |J| and the
regularization parameter δ is shown in Figure 8. With the regularized distortion measure,
the value of h is monotonically increasing when the element transits from invalid to valid,
allowing the optimization to recover from invalid meshes.

0 jJj

h(jJj)

/

Figure 8: The regularization function h is monotonically increasing when the element
transits from invalid to valid.

Note that the reference element can be any valid element. In this work, we choose
the ideal element (equilateral triangle or tetrahedra) as the reference when measuring
the parametric element in parametric mesh optimization, and choose the corresponding
parametric element as the reference when measuring the physical element in physical
mesh optimization.

4.2 Jacobian of TBS based parameterization

We first show the 2D case, where the Jacobian determinant of the bivariate spline based
parameterization can be written in the form of bivariate spline as well [11, 23]. Then the
3D case can be derived similarly.

Let G(ξ, η) : Ω̂ 7→ Ω be the geometric map, i.e.

G(ξ, η) = (Gx,Gy) , (19)

where (x, y) and (ξ, η) represent points in the physical and parametric domain respec-
tively. The Jacobian of the map is

J =

[
∂G

∂ξ

∂G

∂η

]
, (20)

where
∂G

∂ξ
,
∂G

∂η
are the first order directional derivatives of G in the directions (1, 0) and

(0, 1) respectively. The geometric map including C0 and Cr for 2D parameterization is
in the form

G =
∑

i+j+k=d

pijkB
d
ijk,
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where pijk are the physical control points and Bd
ijk are the bivariate Bernstein basis of

degree d. Then the directional derivative of G in direction ξ = (ξ1, ξ2, ξ3) can be written
as

∂G

∂ξ
= d

∑
i+j+k=d−1

p
(1)
ijk(ξ)Bd−1

ijk (21)

with
p
(1)
ijk(ξ) = ξ1pi+1,j,k + ξ2pi,j+1,k + ξ3pi,j,k+1, (22)

where (ξ1, ξ2, ξ3) are the barycentric directional coordinates in direction ξ with respect to
the given element. Eq. (21) shows that the directional derivative of a degree d bivariate
spline is another bivariate spline with degree d− 1.

To calculate the Jacobian determinant of an element, we need to find the barycentric
directional coordinates γ1 = (γ11 , γ

1
2 , γ

1
3) and γ2 = (γ21 , γ

2
2 , γ

2
3) in directions (1, 0) and

(0, 1) respectively. Let (ξ1, η1), (ξ2, η2), (ξ3, η3) be the coordinates of the vertices of an
element, then γ1 and γ2 can be found as

γ1 =
1

M
(η2 − η3, η3 − η1, η1 − η2),γ2 =

1

M
(ξ3 − ξ2, ξ1 − ξ3, ξ2 − ξ1), (23)

where

M =

∣∣∣∣∣∣
ξ1 ξ2 ξ3
η1 η2 η3
1 1 1

∣∣∣∣∣∣ . (24)

Substituting Eq. (23) and (21) into Eq. (20), we obtain

det J = |J| = d2
∑

|s|=2d−2

B2d−2
s Js (25)

with

Js =
∑

i1+i2=s
|i1|=d−1
|i2|=d−1

(
d−1
i1

)(
d−1
i2

)(
2d−2
i1+i2

) det
[
p
(1)
i1

(γ1) p
(1)
i2

(γ2)
]
, (26)

where s, i1, i2 are index tuples. As can be seen, the Jacobian determinant is another
bivariate spline. Moreover, due to the convex hull property of bivariate spline, if all
coefficients Js > 0, then |J| > 0, i.e. the element is guaranteed to be valid when all
Js > 0. This sufficient condition is used as a constraint in our optimization formulation
to ensure the final optimized mesh is valid.

At the same time, the squared Frobenius norm can be computed as

‖J‖2F =

(
∂G

∂ξ

)2

+

(
∂G

∂η

)2

= d2
∑

|t|=2d−2

B2d−2
t Jt

(27)

with

Jt =
∑

i1+i2=t
|i1|=d−1
|i2|=d−1

(
d−1
i1

)(
d−1
i2

)(
2d−2
i1+i2

) (
p
(1)
i1

(γ1) · p(1)
i2

(γ1) + p
(1)
i1

(γ2) · p(1)
i2

(γ2)
)
. (28)
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Similar to the 2D case, the Jacobian of trivariate spline based parameterization can
also be derived. The geometric map based on trivariate spline parametrization is

G =
∑

i+j+k+l=d

pijklB
d
ijkl,

where pijkl are the physical control points and Bd
ijkl are the bivariate Bernstein basis of

degree d. The Jacobian of the map is

J =

[
∂G

∂ξ

∂G

∂η

∂G

∂ζ

]
, (29)

where
∂G

∂ξ
,
∂G

∂η
,
∂G

∂ζ
are the first order directional derivatives of G in the directions

(1, 0, 0), (0, 1, 0) and (0, 0, 1) respectively. Then the directional derivative of G in direction
ξ = (ξ1, ξ2, ξ3, ξ4) can be written as

∂G

∂ξ
= d

∑
i+j+k+l=d−1

p
(1)
ijkl(ξ)Bd−1

ijkl (30)

with
p
(1)
ijkl(ξ) = ξ1pi+1,j,k,l + ξ2pi,j+1,k,l + ξ3pi,j,k+1,l + ξ4pi,j,k,l+1, (31)

where (ξ1, ξ2, ξ3, ξ4) are the barycentric directional coordinates in direction ξ with respect
to the given element. Eq. (30) shows that the directional derivative of a degree d trivariate
spline is another trivariate spline with degree d− 1.

Let γ1, γ2 and γ3 be the barycentric directional coordinates in directions (1, 0, 0),
(0, 1, 0) and (0, 0, 1) respectively. The Jacobian determinant of a trivariate spline based
parameterization can be calculated as

det J = |J| = d3
∑

|s|=3d−3

B3d−3
s Js (32)

with

Js =
∑

i1+i2+i3=s
|i1|=d−1
|i2|=d−1
|i3|=d−1

(
d−1
i1

)(
d−1
i2

)(
d−1
i3

)(
3d−3

i1+i2+i3

) det
[
p
(1)
i1

(γ1) p
(1)
i2

(γ2) p
(1)
i3

(γ3)
]
. (33)

As can be seen, the Jacobian determinant is another trivariate spline, and the sufficient
condition on element validity also applies here. That is, the Bézier tetrahedral element
is guaranteed to be valid when all Js > 0.

At the same time, the squared Frobenius norm can be computed as

‖J‖2F =

(
∂G

∂ξ

)2

+

(
∂G

∂η

)2

+

(
∂G

∂ζ

)2

= d2
∑

|t|=2d−2

B2d−2
t Jt

(34)

with

Jt =
∑

i1+i2=t
|i1|=d−1
|i2|=d−1

(
d−1
i1

)(
d−1
i2

)(
2d−2
i1+i2

) (
p
(1)
i1

(γ1) · p(1)
i2

(γ1) + p
(1)
i1

(γ2) · p(1)
i2

(γ2) + p
(1)
i1

(γ3) · p(1)
i2

(γ3)
)
.

(35)
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5 Optimizing TBS based parameterization

To improve the quality of TBS based parameterization, we formulate an optimization
problem to minimize the shape distortion of Bézier triangle and tetrahedral elements.
The position of the free control points that do not affect the boundary are chosen as the
design variables.

5.1 Objective function and design variables

The shape distortion measure η is a point-wise value evaluated at a single point. The
element-wise measure is defined as the integration of η over the element, i.e.

‖η‖τe =

∫
τe

ηdΩ. (36)

To evaluate and improve the quality of a mesh composed by a set of elements, we define
the objective function as

F =
1

2

ne∑
e=1

∫
τe

(η(|J|)− 1)2 dΩ, (37)

where ne is the number of Bézier triangle or tetrahedral elements τe in the mesh.
In this work, the parametric and physical mesh are optimized in sequential steps.

First the linear parametric mesh is optimized with respect to the ideal elements, then
the optimized linear mesh is degree-elevated to the same degree as the physical mesh and
used as the reference to optimize the physical mesh.

When optimizing the linear parametric mesh, all boundary nodes are fixed, only
positions of the interior nodes p̂ı are used as optimization variables. Although it has
been shown that minimizing the objective function (37) alone without constraints can
lead to good mesh quality in practice [27, 36, 28], there is no theoretical guarantee that
the optimized mesh is free of local self-intersection. The reason is that in numerical
implementation, the Jacobian determinant in Eq. (37) is only evaluated at a limited
number of points for each element, which are usually the numerical integration points.
For a highly curved geometry of complex topology, it is possible that some local negative
Jacobian values may not be detected. Therefore the optimization may easily be trapped
into a local minimum and take many iterations to converge. Thanks to the convex hull
property of the spline representation for the Jacobian of TBS based parameterization in
Eq. (26) and (33), the Jacobian determinant is guaranteed to be positive if all of its
coefficients Js are positive [39]. Therefore we can incorporate this sufficient condition
into the optimization formulation to ensure the validity of the optimized mesh. The
optimization formulation can be given asmin

p̂ı

F =
1

2

n̂e∑
e=1

∫
τ̂e

(
η(|Ĵ|)− 1

)2
dΩ̂,

s.t. Ĵs > 0, s = 1, 2, · · · , n̂s,
(38)

where n̂e and n̂s are the total number of parametric elements and the Jacobian coefficients
for all elements in the mesh respectively. As been confirmed in our later numerical re-
sults, the optimization formulation with explicit constraints on the Jacobian determinant
converges in much fewer iterations than the formulation without any constraints.
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For physical mesh optimization, besides the control points that affect the boundary,
the positions of the dependent points for Cr elements are also excluded from optimization
variables, since their positions depend on the free points. Thus only the internal free
points are allowed to change positions. We denote such points as p,  = 1, 2, · · · , n0 and
use them as the optimization variables. The optimization problem now can be formulated
as min

p

F =
1

2

ne∑
e=1

∫
τe

(η(|J|)− 1)2 dΩ,

s.t. Js > 0, s = 1, 2, · · · , ns,
(39)

with ne and ns being the total number of physical elements and the Jacobian coefficients
for all elements in the mesh respectively.

Note that, the degree of the Jacobian determinant of a degree d Bézier tetrahedral
element is 3d− 3 and it has (3d− 2)(3d− 1)3d/6 coefficients. This means there would be
tens of thousands of constraints if we use the formulation Eq. (39), which is extremely
inefficient for optimization. To increase the efficiency, we use a Heaviside projection based
constraint formulation introduced in [29]. The Heaviside projection function is defined
as

H(Js) =
1

1 + e2βJs
=


1 Js < 0,
1
2

Js = 0,

0 Js > 0,

(40)

where β is a positive number to control the projection behavior. A plot of the Heaviside
function with different β parameters is shown in Figure 9. The Heaviside function projects
the Jacobian value on to a 0−1 scale. The larger the β value, closer the projection curve
to a step function, more non-linear the function becomes. In this work , we choose the
initial value of β to be 2, and gradually increase its value till it reaches 16. The projected
constraint is

ns∑
s=1

H(Js) ≤ ε, (41)

where ε is small positive value close to 0. As ε tends to zero during the optimization, the
projection forces all Js to be positive. In this work, the value of ε is gradually decreased
from 1 to 10−8 during optimization.

The new optimization formulation becomes
min
p̂ı

F =
1

2

n̂e∑
e=1

∫
τ̂e

(
η(|Ĵ|)− 1

)2
dΩ̂,

s.t.
n̂s∑
s=1

1

1 + e2βĴs
≤ ε,

(42)

for parametric mesh optimization and
min
p

F =
1

2

ne∑
e=1

∫
τe

(η(|J|)− 1)2 dΩ,

s.t.
ns∑
s=1

1

1 + e2βJs
≤ ε,

(43)

for physical mesh optimization. By using the Heaviside projection based formulation,
the number of constraints reduces to 1 and the optimization efficiency is significantly
improved.
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Figure 9: Heaviside projection function with different parameters.

5.2 Sensitivity analysis

We use a gradient based optimization algorithm to solve the optimization problem in Eq.
(42) and (43), which requires sensitivity information. In this section, we describe how to
derive the gradient of the objective and constraint functions with respect to the design
variables. From Section 4.2, it can be seen that the Jacobian coefficients Js, determinant
|J| and the squared Frobenius norm ‖J‖2F are just linear functions of the control points,
so it is straightforward to obtain their sensitivities with respect to the control points. In
the following, we focus on the sensitivity of F with respect to the |J| and ‖J‖2F .

Taking the derivative of the objective function Eq. (37) with respect to an arbitrary
control point pı, we obtain

∂F
∂pı

=
ne∑
e=1

∫
τe

(η − 1)
∂η

∂pı
dΩ. (44)

We first proceed with the 2D case and the 3D case can be derived similarly. Using the

chain rule, we can compute the term
∂η

∂pı
based on Eq. (18) as

∂η

∂pı
=

∂η

∂ (‖J‖2F )

∂ (‖J‖2F )

∂pı
+
∂η

∂h

∂h

∂|J|
∂|J|
∂pı

=
1

2h

∂ (‖J‖2F )

∂pı
− ‖J‖

2
F

2

2

h2
1

2

(
1 +

2|J|
2
√
|J|2 + 4δ2

)
∂|J|
∂pı

=
1

2h

∂ (‖J‖2F )

∂pı
− |J|

2
F

4h2
2h√

|J|2 + 4δ2
∂|J|
∂pı

=
1

2h

∂ (‖J‖2F )

∂pı
− η√

|J|2 + 4δ2
∂|J|
∂pı

. (45)

The gradients
∂ (‖J‖2F )

∂pı
and

∂|J|
∂pı

can be easily derived from Eq. (26) and (27). Combining
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all equations together, we can obtain the sensitivity of the functions with respect to all
control points. However, the boundary control points are fixed during optimization.
Especially for Cr parameterizations, only the free points inside the domain are the design
variables. To map the sensitivity from all control points to the design variables, we recall
the continuity constraints

p = CTpf . (46)

From Eq. (46) we can get the sensitivity of a control point pı with respect to a design
control point p as

∂pı
∂p

= Cı, (47)

where bCı is the element in the continuity matrix C with row and column indices , ı
respectively. Substituting Eq. (47) and (45) into Eq. (44) will give the sensitivity of the
objective function with respect to the design variables.

The derivation for 3D parameterization is the same as 2D, the only difference is the
sensitivity of the shape distortion with respect to all control points, which we give below
as

∂η

∂pı
=

∂η

∂ (‖J‖2F )

∂ (‖J‖2F )

∂pı
+
∂η

∂h

∂h

∂|J|
∂|J|
∂pı

=
1

3h2/3
∂ (‖J‖2F )

∂pı
− ‖J‖

2
F

3

2

3h5/3
1

2

(
1 +

2|J|
2
√
|J|2 + 4δ2

)
∂|J|
∂pı

=
1

3h2/3
∂ (‖J‖2F )

∂pı
− |J|

2
F

9h5/3
2h√

|J|2 + 4δ2
∂|J|
∂pı

=
1

3h2/3
∂ (‖J‖2F )

∂pı
− 2η

3
√
|J|2 + 4δ2

∂|J|
∂pı

. (48)

6 Numerical examples

In this section, we present some numerical results on optimizing TBS based parameter-
ization. We use a gradient based algorithm named the method of moving asymptotes
(MMA) [40] to solve the optimization problems. The initial parameterization used in the
optimization are constructed using the method described in Section 3 for 2D geometries
and in [17] for 3D geometries. Although both the parametric and physical mesh are
included in our formulation, only the parametric mesh of the second example is opti-
mized. The initial parametric mesh constructed for all other examples are already close
to optimal and thus are not included in the optimization implementation.

6.1 Optimizing Bézier triangles

We first present some results of optimizing Bézier triangles for 2D parameterization.
In the first example, we demonstrate the need for explicit constraints on the Jacobian
determinant in the optimization formulation. Figure 10 shows an initial quartic C1

physical and parametric mesh along with the Jacobian determinant. As can be seen,
there is local self-intersection in the initial physical mesh. The minimum value of the
Jacobian determinant is about −2.8. First, we optimize the physical mesh using the
objective function shown in Eq. (37) without any constraints. Since there is no explicit
constraint on the Jacobian determinant, the optimization is trapped into a local minimum
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and it takes about 450 iterations to converge, as shown in Figure 11. min(J0) and min(Js)
are the minimum values of the Jacobian determinant in Eq. (25) evaluated at quadrature
points and Jacobian coefficients in Eq. (26) respectively. Note in Figure 11c that, after
the optimization converges, min(Js) is still negative, meaning there are still negative
values for the Jacobian coefficient, resulting the minimum value min(J0) of only 0.038.

(a) Initial tangled C1 physical
mesh.

(b) Parametric mesh. (c) Jacobian determinant of the initial
C1 physical mesh.

Figure 10: Initial quartic C1 physical and parametric mesh. The red and white points
represent free and dependent control points respectively. The initial physical mesh is
tangled with a minimum Jacobian determinant value around −2.8.

(a) Optimized C1 mesh after 450
iterations.

(b) Jacobian determinant of the opti-
mized mesh.
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Figure 11: Optimization of the C1 mesh in Figure 10 without explicit constraints on the
Jacobian determinant. min(J0) and min(Js) are the minimum values of the Jacobian
determinant in Eq. (25) evaluated at quadrature points and Jacobian coefficients in Eq.
(26) respectively.

Next we optimize the mesh using the formulation in Eq. (39) with explicit constraints
on the Jacobian determinant. As shown in Figure 12, this time it takes only 122 iterations
for the optimization to converge, with all Jacobian coefficients positive. Particularly, it
only takes about 50 iterations for the minimum Jacobian determinant to be above zero,
while it takes about 380 iterations if no constraints are imposed. The minimum value
of the evaluated Jacobian determinant is 0.109, about three folds of the value obtained
without the constraints.
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(a) Optimized C1 mesh after 122
iterations.

(b) Jacobian determinant of the opti-
mized mesh.
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(c) Iteration history.

Figure 12: Optimization of the C1 mesh in Figure 10 with explicit constraints on the
Jacobian determinant.

It should be noted that, generally the more complex the geometry is, the more impor-
tant the constraints on Js play a role in improving the optimization efficiency. The reason
is that the regularized distortion measure in Eq. (18) itself has the ability to untangle
invalid meshes. For complex geometries, however, the explicit constraints on Js enable
the optimization to recover much quicker from invalid meshes. In addition, without the
explicit constraints, some Jacobian coefficients Js may still be negative after optimization
even if all Jacobian determinant evaluated are positive. While with the constraints, all Js
are enforced to be positive after optimization, leading to a larger value of the minimum
Jacobian determinant min(J0) than without the constraints. In all of the following 2D
and 3D examples, explicit constraints on Js are always imposed.

In the second example, we demonstrate the advantages of optimized parameterization
in producing stiffness matrices with smaller condition number and achieving more accu-
rate analysis results. A linear elasticity problem is solved using cubic C1 elements with
CT split.

As explained in [16], a pre-smooth C1 geometric map is needed in order to obtain
optimal convergence rate. To demonstrate the advantage of using optimized parameteri-
zation, three different pre-smooth C1 geometric map are constructed. The first C1 map
is constructed using the initial parametric and physical mesh T̂ini and Tini, as shown in
the first column in Figure 13. Then we fix the parametric mesh T̂ini and optimize the
physical mesh Tini by minimizing its distortion with respect to T̂ini. The optimized phys-
ical mesh Topt and initial parametric mesh T̂ini is used in the second C1 map, as shown
in the second column in Figure 13. To construct the third C1 map, we first optimize the
parametric mesh T̂ini by minimizing the element distortion with respect to the equilateral
triangle. Since the boundary points are fixed, only the location of the control point inside
of the domain is changed. The optimized parametric mesh is denoted as T̂opt, as shown

in Figure 13c. Then the physical mesh corresponding to T̂opt is also optimized. The final

optimized mesh Topt2 together with T̂opt are used to construct the third C1 geometric
map, as shown in the third column in Figure 13.

The Jacobian determinant of the three physical meshes are also shown in Figure 14.
As can be seen, the unoptimized physical mesh Tini has the least overall Jacobian deter-
minant, and the optimized physical mesh Topt2 corresponding to the optimized parametric
mesh has the largest overall Jacobian determinant.
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(a) Initial parametric mesh T̂ini. (b) Initial parametric mesh T̂ini. (c) Optimized parametric mesh

T̂opt.

(d) Initial physical mesh Tini for

T̂ini.

(e) Optimized physical mesh

Topt for T̂ini.

(f) Optimized physical mesh

Topt2 for T̂opt.

Figure 13: Construction of three different pre-smooth C1 geometric maps. The first
column shows the first C1 map using the initial parametric and physical meshes. The
second column shows the second C1 map using the initial parametric mesh and the
optimized physical mesh. The third column shows the third C1 map using the optimized
parametric mesh and physical mesh.

(a) Jacobian determinant of
mesh Tini in Figure 13d.

(b) Jacobian determinant of
mesh Topt in Figure 13e.

(c) Jacobian determinant of
mesh Topt2 in Figure 13f.

Figure 14: Jacobian determinant of the C1 meshes in Figure 13.
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After constructing the C1 pre-smooth geometric maps, we construct cubic C1 basis
with CT split for the three maps. Figure 15 shows the physical meshes for the three
different parameterizations. The condition number of stiffness matrices and the L2 error
are shown in Figure 16. While the three parameterizations exhibit the same optimal
convergence rates as expected, the first parameterization with unoptimized parametric
and physical meshes gives the largest condition number of stiffness matrices and L2 error,
the third parameterization with both optimized parametric and physical mesh gives the
smallest condition number and L2 error.

(a) Physical mesh in the first pa-
rameterization.

(b) Physical mesh in the second
parameterization.

(c) Physical mesh in the third
parameterization.

Figure 15: Cubic C1 physical meshes with CT split for the three different parameteriza-
tions in Figure 13.
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(a) Condition number of stiffness matrices.
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Figure 16: Comparison of condition number and L2 error for the three different param-
eterizations. While the three parameterizations exhibit the same optimal convergence
rates as expected, the first parameterization with unoptimized parametric and physical
meshes gives the largest condition number of stiffness matrices and L2 error, the third
parameterization with both optimized parametric and physical mesh gives the smallest
condition number and L2 error.

In the third example, we demonstrate that our method not only untangles mesh with
local self-intersections but also improves its quality for both C0 and Cr meshes. Figure 17
shows the initial physical and parametric meshes. In the physical mesh, there are some
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local self-intersections around the round boundaries represented by B-splines. In order
to demonstrate our method is robust to severe distortions, we perturbed the physical
mesh by randomly moving the interior control points, as shown in Figure 18a. The
corresponding Jacobian determinant is also shown in Figure 18b.

(a) Physical mesh. (b) Parametric mesh

Figure 17: Initial cubic physical and parametric meshes.

(a) Perturbed mesh. (b) Jacobian of the perturbed mesh.

Figure 18: Perturbed C0 mesh and its Jacobian determinant.

Figure 19 shows the optimized mesh with its Jacobian determinant. The optimization
history is also shown in Figure 20. min(Js) and min(J0) are the minimum values of the
Jacobian coefficients in Eq. (26) and evaluated Jacobian determinant at Gaussian points
respectively. As can be seen, min(Js) is positive in the optimized mesh. Due to the convex
hull property, Js > 0 is a conservative condition for |J| > 0, this implies all elements are
guaranteed to be valid.

To demonstrate our method can handle Cr parameterizations, we perturbed the cu-
bic C1 mesh with CT split, as shown in Figure 21. After optimization, the Jacobian

23



(a) Optimized C0 mesh. (b) Jacobian determinant.

Figure 19: Optimized C0 mesh and its Jacobian determinant.
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Figure 20: Optimization history for C0 parameterization. min(Js) becomes positive in
the optimized mesh, meaning all elements are guaranteed to be valid.
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determinant all become positive except at some singular points on the round boundary,
as shown in Figure 22. This is expected as explained in [16], degeneracy occurs when
points are mapped from C0 corner points in the parametric domain to C1 points on the
physical boundary. Nonetheless the optimization can still untangle the mesh and im-
prove its quality. Note that the Jacobian determinant is smooth over the domain since
the parameterization is C1 continuous. The optimization history is also shown in Figure
23.

(a) Perturbed C1 mesh. (b) Jacobian determinant.

Figure 21: Perturbed C1 mesh and its Jacobian determinant.

(a) Optimized C1 mesh. (b) Jacobian determinant.

Figure 22: Optimized C1 mesh and its Jacobian determinant. The zero value of Jacobian
only occurs at the singular points on the round boundary. The Jacobian determinant is
smooth over the domain since the parameterization is C1 continuous.
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Figure 23: Optimization history for C1 parameterization.
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6.2 Optimizing Bézier tetrahedra

In this section, we present the numerical results of optimizing the parameterization of two
3D objects. The first example demonstrates the optimization of C1 parameterization with
Alfeld split. The geometry is shown in Figure 24. The initial C1 mesh has several invalid
elements around the cut-out area, with smallest Jacobian value of −0.416. Figure 24c
shows an enlarged view of the invalid elements viewing from the back in Figure 24b. Now
we show a valid parameterization can be obtained automatically through optimization.

(a) Initial C1 mesh. (b) A transparent view showing the interior invalid
elements.

(c) Invalid elements viewed from the back
in Figure 24b.

Figure 24: Initial C1 mesh with invalid interior elements. The dark blue area are where
negative Jacobian occurs.

Using the formulation presented in Section 5, a valid C1 parameterization is obtained
with smallest Jacobian value of 0.462, as shown in Figure 25. A plot of the optimization
history is also shown in Figure 25b.

In the second 3D example, we present the results of optimizing a complex geometry.
As shown in Figure 26, the initial mesh consists of 1965 degree 6 Bézier tetrahedral
elements and 82682 control points. There are 457 invalid elements, as shown in blue
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(a) Jacobian determinant after optimiza-
tion.
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(b) Optimization history.

Figure 25: Jacobian determinant after optimization and iteration history.

color in Figure 26a. The optimized mesh is shown in Figure 27. Comparing the zoom-in
view of Figure 26c and 27b, we can see that the element edges after optimization are
straighter than before, indicating the distortion has been reduced. The optimization
history is also shown in Figure 28.
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(a) Initial mesh with invalid elements (blue color). (b) View of the interior elements.

(c) A zoom-in view of the interior elements in
the white box in (b) showing the curved element
edges.

Figure 26: Initial mesh of the piston head model. The mesh consists of 1965 degree
6 Bézier tetrahedral elements and 82682 control points, out of which 457 elements are
invalid.
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(a) Optimized mesh. (b) A zoom-in view of the interior elements in the
white box in (a).

Figure 27: Optimized mesh with view of interior elements. Figure 27b shows the element
edges are much straighter than shown in Figure 26c, indicating the distortion has been
reduced.
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Figure 28: Optimization history.
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7 Conclusion

In this paper, we present an optimization based approach to automatically generate high-
quality high-order parameterization for isogeometric analysis on triangulations. The pa-
rameterization is based on triangular Bézier splines, where a B-spline represented bound-
ary geometry is parameterized into a collection of either Bézier triangles for a 2D geometry
or Bézier tetrahedra for a 3D geometry. Continuity constraints can be imposed on the
Bézier ordinates of the elements to achieve Cr smoothness parameterizations. To ob-
tain a high-quality parameterization, we developed an approach to optimize both the
parametric and physical meshes to minimize the shape distortion of the elements with
respect to well-defined elements. The shape distortion measured is defined based on the
Jacobian of the parameterization, and its sensitivity is derived analytically and evalu-
ated efficiently. Moreover, based on the convex hull property of triangular Bézier splines,
we derive a sufficient condition to guarantee the optimized parameterization is free of
local self-intersection. We show that improved parameterization led to better analysis
results, in terms of smaller condition number of stiffness matrix and smaller error per
same degree-of-freedoms. Various 2D and 3D numerical examples are presented. They
demonstrate that our approach is able to simultaneously untangle and smooth the mesh
and lead to high-quality high-order parameterization, even if the initial mesh has folded
elements.

We note that in this work, the parametric and physical meshes are optimized sequen-
tially, we first optimize the parametric mesh and then optimize the physical mesh. A
better approach would be to optimize both meshes simultaneously. Another possible di-
rection for future research is to optimize the boundary points of the parametric domain
as well, in addition to the interior points. This will allow the optimization algorithm to
search in a larger optimization space and possibly lead to better parameterization and
mesh quality. One further possibility for future work would be to isolate the problematic
elements (e.g. those with negative Jacobian) and their affected neighboring elements so
that optimization is only conducted for these elements to improve overall efficiency.
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volume parameterization of multi-block computational domain in isogeometric ap-
plications. Computer-Aided Design, 45(2):395–404, 2013.

[11] Xilu Wang and Xiaoping Qian. An optimization approach for constructing trivariate
B-spline solids. Computer-Aided Design, 46:179–191, 2014.
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