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Abstract

We present a method for isogeometric analysis on triangulation of a domain bounded by NURBS curves. In this method, both the
geometry and the physical field are represented by bivariate splines in Bernstein Bézier form over the triangulation. We describe a
set of procedures to construct a parametric domain and its triangulation from a given physical domain, construct Cr-smooth basis
functions over the domain, and establish a rational Triangular Bézier Spline (rTBS) based geometric mapping that Cr-smoothly
maps the parametric domain to the physical domain and exactly recovers the NURBS boundaries at the domain boundary. As
a result, this approach can achieve automated meshing of objects with complex topologies and allow highly localized refinement.
Isogeometric analysis of problems from linear elasticity and advection-diffusion analysis is demonstrated.
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1. Introduction

Isogeometric analysis is a technique of numerical anal-
ysis that uses basis functions commonly found in CAD
geometries to represent both geometry and physical fields
in the solution of problems governed by partial differential
equations (PDE) [1][2]. Non-uniform rational B-splines
(NURBS) are the de facto standard for geometric represen-
tation in CAD systems. The use of a NURBS-compatible
basis in the solution of physical problems therefore leads to
the elimination of geometric-approximation error in even
the coarsest mesh. The increased continuity of the NURBS
basis has led to significant numerical advantages over tra-
ditional Lagrange polynomials and other C0 inter-element
continuity based finite element analysis, e.g. improved
convergence rate on a per degree-of-freedom (DOF) ba-
sis [2]. However, NURBS-based isogeometric analysis also
faces challenges. For example, it is challenging to automat-
ically construct NURBS-based volumetric representation
of a complex physical domain since CAD geometries only
contain boundary representation of the domain; Further,
the tensor-product structure of NURBS makes it harder
to perform local mesh refinement as is commonly desired
during analysis.
Recently, significant progress has been made in address-

ing these challenges. For example, the swept volume [3],
harmonic functions [4], multi-block [5], and Coons patch
[6] techniques have recently been developed to construct

NURBS representations of volumetric domains. To extend
NURBS representation to complex topologies while also al-
lowing for adaptive refinement, T-splines [7] have been used
in isogeometric analysis [8][9][10]. Methods for construct-
ing T-spline based parametrization of the domain are being
developed [11][12]. Among alternate isogeometric represen-
tation and analysis techniques under development, a tech-
nique based on subdivision solids has recently been pro-
posed [13]. Further, boundary-integral based isogeometric
analysis techniques [14][15] seek to effectively bypass the
need for volumetric parametrization.
We present an alternative approach to isogeometric anal-

ysis with the goal of achieving automatic discretization of
the physical domain while eliminating geometric approx-
imation error, allowing local refinement of the discretiza-
tion and making it applicable to complex topologies. Our
approach is based on triangulations of physical domains
where both the geometry and physical field are represented
by Cr-continuous multivariate splines in their Bernstein-
Bézier form. In this paper, we restrict our attention to two-
dimensional problems and bivariate splines. In our method,
we first construct a polygonal parametric domain Ω̂ that
mimics the NURBS-bounded physical domain Ω. We then
obtain a triangulation T of Ω̂, on which a Bernstein-Bézier
form of a Cr bivariate spline basis is constructed. We use
this basis to construct globally Cr-smooth geometric map-
ping that maps the parametric domain Ω̂ to the physi-
cal domain Ω with exact recovery of the NURBS bound-
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Fig. 1. Isogeometric analysis on triangulations.

ary. When exceptional vertices/edges are allowed, this ap-
proach also ensures global bijectivity of the mapping. We
demonstrate our analysis results for linear elasticity and
advection-diffusion problems on problems which are char-
acteristically non-trivial to mesh by other methods. Since
robust technologies for automatic triangulation with local
refinement are currently available, our approach is fully au-
tomated, is applicable to objects of complex topologies and
allows for local refinement during in the course of analysis.
Our work differs from prior work on multivariate-spline

based analysis [16][17] in that we explicitly construct Cr-
smooth bases and use rational Triangular Bézier Splines
(rTBS) to ensure the exact recovery of the NURBS bound-
ary. Our work also differs from the recent developed non-
uniform rational Powell-Sabin splines for isogeometric anal-
ysis [18][19]. Our approach is more general since general
Cr spline spaces are considered. Further, we use Bézier or-
dinates and the corresponding basis functions to represent
PDE solutions. Therefore, our Béizer ordinates based rep-
resentation has direct geometric interpretation. In contrast,
the approach [18][19] uses Powell-Sabin triangles and the
corresponding normalized Powell-Sabin B-splines to rep-
resent the solutions. However, Powell-Sabin triangles are
not unique for a given triangulation although the normal-
ized Powell-Sabin B-splines have nice computational prop-
erties such as negativity. Further, our approach is applica-
ble to macroelements or non-macroelements alike and the
approach in [18][19] is an macroelement based approach.
Figure 1 gives a schematic overview of our proposed ap-

proach. A Cr continuous basis ψ(ξ) is constructed over the

parameteric domain Ω̂. The basis is used to construct an
rTBS based geometric map G(ξ) so that it maps a point

ξ ∈ R
2 in parametric domain Ω̂ to a point x ∈ R

2 in the
physical domain Ω. The same basis is also used to approxi-
mate physical field u(ξ). Composing the inverse of geomet-
ric map and the field approximation, u ◦ G−1, defines a
field on the physical domain. Quadrature in analysis inte-
gration is performed via local barycentric coordinates on
the parent triangle.
The remainder of this paper is organized as follows: Sec-

tion 2 introduces necessary background concepts; Section
3 presents our discretization method - smooth rTBS-based
discretization of the physical domain; Section 4 discusses
the details of smooth rTBS-based isogeometric analysis;
Section 5 contains our numerical results; In Section 6 we

present our conclusions.

2. Background

In this section we briefly introduce the Bézier curve,
non-uniform rational B-splines (NURBS) and triangular
Béziers.We then discuss the splines over triangulations and
the Clough-Tocher and Powell-Sabin splits. This introduc-
tion aims to make the paper self-contained and to clarify
notation for subsequent sections. For further reading on
Bézier curves, B-splines, and Bézier triangles, see [20], for
splines on triangulations see [21], and for isogeometric anal-
ysis, see [2].

2.1. Bézier and NURBS curves

CAD geometry is usually defined by a NURBS repre-
sented boundary. Each knot span of a NURBS curve corre-
sponds to a Bézier curve. A Bézier curve is defined through
Bernstein basis functions. A degree-dBernstein polynomial
is defined explicitly by

Bi,d(ξ) =

(
d

i

)
ξi(1 − ξ)d−i, ξ ∈ [0, 1], (1)

where ξ is the parameter. A degree-d Bézier curve is de-
fined in terms of d + 1 Bernstein basis functions and the
corresponding control points pi = (x1i, x2i) as

c(ξ) =

d∑
i=0

piBi,d(ξ). (2)

A NURBS curve of degree-d is defined as follows

c(ξ) =

∑n
i=0Ni,d(ξ)wipi∑n
j=0Nj,d(ξ)wj

, (3)

where {pi} = (xi1 , xi2) represents the coordinate positions
of a set of i = 0, . . . , n control points, {wi} is the corre-
sponding weight, and {Ni,d} is the degree-d B-spline basis
function, defined by a knot vector Ξ = {ξ0, ξ1, . . . , ξn+d+1}.
Through repeated knot insertion, the Bézier representation
for each knot span of a NURBS curve can be obtained.

2.2. Bézier Triangles

Bézier triangles are based on bivariate Bernstein polyno-
mials. Let a triangle τ with vertices v1,v2,v3 ∈ R

2 and the
barycentric coordinate of a point ξ ∈ R

2 with respect to
the triangle be {γ1, γ2, γ3}. A degree-d bivariate Bernstein
polynomial is defined as

Bi,d(ξ) =
d!

i!j!k!
γi1γ

j
2γ

k
3 ; |i| = d, (4)

where i represents a triple index (i, j, k). A triangular Bézier
patch is defined as

b(ξ) =
∑

i+j+k=d

Bi,d(ξ)pi, (5)
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Fig. 2. Triangular Bézier patches and C1 continuity.

with pi represents a triangular array of control points. A
rational Bézier triangle can be defined as

b(ξ) =

∑
|i|=dwipiBi,d(ξ)∑
|i|=dwiBi,d(ξ)

, (6)

where wi are the weights associated with the control points
pi.
The bivariate Bernstein polynomials can be used to de-

fine a polynomial function f(ξ) of degree-d over the triangle
{v1,v2,v3} as:

f(ξ) =
∑

i+j+k=d

bijkBijk,d(γ) (7)

where bijk are Bézier ordinates of f(ξ) and the points

qijk =
iv1 + jv2 + kv3

d
(8)

are domain points. The points (qijk , bijk) are control points
of the Bernstein-Bézier form of the polynomial function
f(ξ). By setting one barycentric coordinate to zero and
varying the other two, ξ intersects a triangular edge and
the bivariate basis reduces to the Bernstein functions (1).
The evaluation of a Bézier triangle can be done by the de
Casteljau algorithm [20]

bri (ξ) = γ1b
r−1
i+e1(ξ) + γ2b

r−1
i+e2(ξ) + γ3b

r−1
i+e3(ξ), (9)

where r = 1, · · · , d and |i| = d − r, e1 = (1, 0, 0), e2 =
(0, 1, 0), and e3 = (0, 0, 1).
Two polynomials f(ξ) and f̃(ξ) join r times differen-

tiably across the common edge of two triangles τ and τ̃ if
and only if the following is true [21]

b̃ρ,j,k −
∑

μ+ν+κ=ρ

ρ!

μ!ν!κ!
bμ,j+ν,k+κγ

μ
1 γ

ν
2 γ

κ
3 = 0 (10)

for all ρ ≤ r and j + k + ρ = d.
Figure 2 gives an illustration of triangular Bézier patches

and continuity constraints. Here the control points pi ∈
R

3. Figure 2a and Figure 2b show two adjacent domain
triangles where the two triangles share one edge v1v2 and
the corresponding surface patches. Figure 2c and Figure 2d
show the C1-continuity constraints imposed on the Bézier
ordinates and the resulting C1 patches.

2.3. Splines on triangulations

Consider a parametric domain Ω̂ and its triangula-
tion T , the spline space of piecewise polynomials of
degree-d over T is denote as S

r
d(T ) = {f ∈ Cr(Ω̂) :

f |τ is a polynomial of degree d, ∀τ ∈ T }, where τ is an
arbitrary triangle in T .
To obtain Cr smoothness for any spline, one may sim-

ply assert (10) repeatedly and solve the continuity con-
straints or through macroelement techniques with polyno-
mials of degrees much higher than r or lower degree poly-
nomials based on a split scheme where each triangle in T
is split into several micro-triangles. The original triangle
is then called a macro-triangle. Splines with higher-order
polynomials over each triangle include d ≥ 4r + 1[22] and
d ≥ 3r + 2 [23] for general triangulation. However, due to
their efficiency Cr-smooth polynomials of lower degree over
macro-triangulations are often preferred. These include the
Clough-Tocher split [24][25] where one triangle is subdi-
vided into three micro-triangles with polynomials of degree
d = 3r for continuity r-odd and d = 3r + 1 for r-even,
the Powell-Sabin split [26] with polynomials of degree d =
� 9r+1

4 for r-odd, and of degree d = � 9r+4
4 for r-even, and nu-

merous others [21]. Convenient B-spline-like bases for PS-6
split [27], recently for PS-12 split [28], normalized Clough-
Tocher split [29], Quintic PS-splines [30], and a family of
PS splines [31] have been proposed.

(a) Clough-Tocher split (b) Powell-Sabin split

Fig. 3. The Clough-Tocher and Powell-Sabin splits of macro-triangles.
Domain points corresponding to free Bézier ordinates are highlighted.

Figure 3 shows the Clough-Tocher (CT) and Powell-
Sabin (PS) splits and correspondingC1 cubic and quadratic
free domain points respectively. Cr spaces can be achieved
on these splits at elevated degrees [21]. In the Clough-
Tocher split, it connects each vertex of a triangle with its
incenter to form three micro-triangles. Each micro-triangle
is represented by a cubic polynomial. In the Powell-Sabin
split, each macro-triangle is split into six micro-triangles
with incenter as the interior split point. Edges are then split
by joining incenters of adjacent triangles. In practice and
in our implementation, the centroid point, instead of the
incenter, of each triangle is used in both CT and PS splits
and boundary edges are bisected in the PS splits. Besides
the CT and PS splits, we perform uniform h-refinement by
connecting edge midpoints to subdivide each triangle into
four parts. Adaptive refinement is accomplished by the Ri-
vara method [32]. Each subdivision in the Rivara method
is an element bisection across one of its edges.
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3. Automatic Cr rTBS Domain Parameterization

This section details our method for discretizing a phys-
ical domain Ω into a collection of rational Bézier triangles
without any geometric-approximation error. Given an arbi-
trary 2D domain Ω and its NURBS-represented boundary
Γ = ∪ici(ξ) of degree-d, we seek a geometric mapG(ξ), ξ ∈
Ω̂ such that:
– the physical domain Ω is the image of the geometric map
G(ξ) over a parametric domain Ω̂, i.e. Ω = {(x1, x2) ∈
R

2 : (x1, x2) = G(ξ), ξ ∈ Ω̂},
– the boundary of the domain Γ is exactly reproduced by
the map G(ξ) at the boundary Γ̂ of the parametric do-

main Ω̂, i.e. Γ = {(x1, x2) ∈ R
2 : (x1, x2) = G(ξ), ξ ∈

Γ̂}, and
– themap is continuous and differentiable up to any desired
degree of continuity Cr.

We show how this domain can be decomposed into a set of
rational Triangular Bézier patches withCr inter-patch con-
tinuity and exact recovery of domain boundary. We achieve
this result in three main steps:
(i) Construct a geometric map G0 based on C0 Bézier

triangles where the input NURBS boundary curves
are exactly reproduced. As a by-product of this step,
we obtain a polygonal approximation Ω0 of the phys-
ical domain Ω that topologically has the same genus
as the physical domain Ω and geometrically approx-
imates the boundary of the domain Γ.

(ii) Form a polygonal parametric domain Ω̂ from Ω0 and

a triangulation T of Ω̂.
(iii) Form a Cr basis, ψ(ξ), on T and obtain a globally Cr

geometric mapG from the parametric domain Ω̂ onto
the physical domain Ω, which exactly reproduces the
domain boundary.

3.1. Step 1 - Construct a C0 map G0

Our approach to construct an rTBS mesh with exact
domain boundary is to approximate the curved domain Ω
by a polygon Ω0, triangulate Ω0 → T , and then replace the
boundary segments of T by segments of the exact NURBS
boundary. This process for obtaining a C0 rTBS mapping
G0 is accomplished by the following sub-steps (see Fig. 4):
(a) Boundary subdivision and Bézier extraction: Subdivide

each NURBS curve ci(ξ) of degree-d into a set of Bézier
curves via knot insertions. The linear segments con-
necting the resulting Bézier end-points should form a
good approximation of the NURBS boundary.

(b) Triangulation of the polygonal domain: The Bézier end-
points from Step 1a are connected to form a polygonal
domain Ω0. The polygonal domain Ω0 is then triangu-
lated to obtain T0.

(c) Domain points : Domain points of degree-d (and coinci-
dent control points) for each triangle in T0 from Step 1b
are created based on (8). In this sub-step, the weights

C2

C1

(a) Input NURBS bound-
ary curves {ci(ξ)} of do-
main Ω

(b) Step 1a: Boundary
subdivision and Bézier ex-
traction

(c) Step 1b: Triangulation
of Ω0

(d) Step 1c: Domain
points generation for T0

(e) Step 1d: Boundary replacement

Fig. 4. Constructing boundary conformal C0 Bézier triangles.

of all Bézier control points are chosen to be unity.
Note that each degree-dBézier curve segment in Step

1a corresponds to one boundary edge in T0, which in
turn has d+1 domain points after Step 1c. Thus, each
Bézier control point for the domain boundary now cor-
responds to one domain point on the boundary edge of
T0.

(d) Boundary replacement : Replacing boundary control
points of T0 with corresponding control points on
the Bézier curves in Step 1a to obtain the triangular
meshG0. In this substep, the weights of the boundary
Bézier control points are replaced by the weights from
the corresponding Bézier points in Step 1a.

Figure 4 illustrates how a domain bounded by NURBS
curves ci(ξ) is decomposed into a collection of C0 triangu-
lar Bézier patches with exact geometry as in ci(ξ). Figure
4a shows a domain bounded by two sets of cubic, clamped
NURBS curves, one an external contour and the other an
internal contour. The circular points are control points.
The end-points of each NURBS curve are shown in empty
circles. Also shown are two sets of ticks that represent in-
ternal knots with C2 and C1 smoothness on the curves.
The first substep shown in Figure 4b is the subdivision
of NURBS boundary curves via repeated knot insertions
to obtain its Bézier representation. The inserted knots in-
clude all of the internal knots from the NURBS boundary
as well as additional knots that are inserted so that the re-
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sulting polygons connecting the Bézier end points form a
good approximation of the given domain Ω bounded by the
NURBS curves. Figure 4c shows the resulting polygon Ω0

and its triangulation T0. Figure 4d shows the creation of
domain/control points on T0 so that each triangle becomes
a degree-3 Bézier triangle. Figure 4e highlights one triangle
in T0 in Fig. 4d with its boundary control points replaced
by boundary Bézier control points from Figure 4b.

Remark 1. Bézier triangles G0 exactly reproduce the
NURBS represented domain boundary Γ.
With the substeps outlined above, the boundary of the

Bézier discretizationG0 of the domain Ω retains all control
points of the Bézier-subdivided NURBS boundary ci(ξ).
That is, we have obtained a triangular discretization of the
domain Ω with no approximation error. The C0 mesh G0

of Ω can thus be directly used for analysis where mesh re-
finement of each Bézier triangle can be conducted without
introducing any discretization error from the original ge-
ometry. We note that G0 alone is sufficient to perform iso-
geometric analysis with C0 smoothness between elements.
In such analysis, each Bézier patch can be mapped to a
canonical triangular domain for integration with the corre-
sponding basis function φ(ξ) defined as the bivariate Bern-
stein polynomials (4).

3.2. Step 2 - Form a global parametric domain Ω̂ and its
triangulation T

A by-product of the above C0 rTBS discretization of Ω
is its polygonal approximation Ω0 and triangulation T0. In
this second step, we present a procedure to form a suit-
able parametric domain Ω̂ and triangulation T on which
a globally-Cr polynomial basis can reproduce the exact
NURBS boundary.

v0
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Fig. 5. Adjusting smooth boundary vertices in T0 to form T .

We obtain the parametric domain Ω̂ and its triangulation
T by adjusting those vertices in T0 that correspond to knot-
points of Ck (k ≥ r) smoothness in the boundary curves.
We move each such boundary vertex to the line segment
connecting the adjacent vertices of Cq (0 ≤ q < r) smooth-
ness. Figure 5 illustrates this process starting from T0 in
Figure 4. Smooth boundary vertices such as v1,v3, ...,v11

in Figure 5a must be positioned so that a Cr boundary
trace can reproduce the original Cr NURBS segment, as
shown in Figure 5b. This implies that the adjusted vertices
must be positioned so that the length-ratio of consecutive
edges a = |v0v1| and b = |v1v2| is the same as the ratio of

the corresponding knot intervals |t1 − t0| : |t2 − t1| in the
boundary NURBS curve.

t0 t1 t2

· · · tk
tk+1

(a) Knot points ti on Γ

v0 v1v2 · · ·vk

vk+1

(b) Boundary vi on T

Fig. 6. Smooth knot points in the boundary of Γ may be mapped from
a corner vertex vk in the parametric domain Ω̂ to ensure mapping
quality.

If too few Cq (0 ≤ q < r) knot points occur in the

boundary to form a suitable domain Ω̂, additional smooth
knot points are used as corner vertices instead. Figure 6
illustrates the formation of a suitable parametric domain
from one NURBS curve. In this case, the smooth knot point
c(tk) is mapped from a corner vertex vk, and boundary
vertices vi with corresponding knot values ti are arranged
to satisfy (11).

|v0v1| : |v1v2| : · · · : |vk−1vk|
= (t1 − t0) : (t2 − t1) : · · · : (tk − tk−1)

(11)

Note, if a degree-d NURBS curve has knots with multiplic-
itym such that d−m < r, i.e. the smoothness at the knots
is lower than Cr, the basis functions at the corresponding
parametric locations thus cannot be Cr smooth if exact
recovery of NURBS boundary is to be enforced. Knots of
lower-order continuity are therefore mapped from corner
vertices with non-collinear adjacent boundary edges in the
parametric domain.
We further assume that a stable local spline space [21]

S
r
d(T ) can be defined on T . That is, apart from assertingC0

continuity at parametric domain corners, we can assume
that basis functions with support intersecting one edge of Ω̂
are independent of those intersecting another. The bound-
ary of the triangulation now has the following property:
Theorem 1 For spline space Srd(T ), the space of boundary

traces along the domain boundary Γ̂ is a set of closed univari-
ate degree-d B-splines with Cr smoothness at each straight
boundary vertex and C0 for corner boundary vertices. Each
knot span of the univariate B-splines has its length propor-
tional to the length of corresponding linear segment in Γ̂.

3.3. Step 3 - Form a Cr spline basis ψ(ξ) on T

Let Dd,T denote the set of domain points of degree-d
for triangulation T , v ∈ Dd,T a domain point and bv its
ordinate. The Cr smoothness conditions (10) among Bézier
ordinates imply the existence of a reduced set of domain
points Md,T ⊂ Dd,T whose Bézier ordinates, when freely
specified, uniquely determine the remaining ordinates. This
reduced set of free-nodes is called aMinimum Determining

5



Set (MDS) [21][33]. We define a basis ψ(T ) for the spline
space Srd(T ) in terms of these free-nodes as:

ψ(T ) = {ψv ∈ S
r
d(T ) : v ∈ Md,T , bv = 1,

bu = 0, ∀ u �= v ∈ Md,T}
We describe below how to construct ψ from a given trian-
gulation T and how a free-node distribution can be chosen
to allow us to directly specify a NURBS boundary.

3.3.1. Boundary minimum determining set M
d,Γ̂

To facilitate later discussion we extend the MDS concept
from above to define the Boundary MDS M

d,Γ̂
for the do-

main boundary Γ̂ as a minimum set of domain points along
the boundary whose ordinates uniquely specify its trace.
Among the set of all the domain points Dd,Γ along the

boundary of Γ̂ subject to the localization condition of §3.2,
every Cr-smooth vertex is subject to r linear equations
(10). Thus for every Cr-smooth vertex, exactly r Bézier
ordinates must be determined from the other ordinates.
Following the MDS concept in [21][33], we refer to these
free ordinates as a minimal determining set for the domain
boundary.
A Boundary MDS for the domain in Figure 4 is indicated

for the triangulation T in Figure 8(a).

3.3.2. Cr spline basis ψ(ξ) via MDS Md,T

The continuity constraints (10) essentially amount to a
homogeneous linear system

AbD = 0 (12)

where A is a coefficient matrix depending on the geometry
of the domain triangles and bD are n Bézier ordinates for
the corresponding domain points Dd,T . The i-th row of A
corresponds to the coefficients in the Bézier ordinates of
the i-th constraint and the j-th column in A corresponds
to the Bézier ordinate bj. The dimension of the space Srd(T )
is dimS

r
d(T ) = dim S

0
d(T )− rank(A).

With the linear continuity constraints among the Bézier
ordinates, only a subset of these ordinates can be free while
the others are determined. For the given linear system
AbD = 0, through Gauss-Jordan elimination with pivot-
ing (eg: row-wise partial pivoting) to match ordinates with
their governing constraints, where both items below and
above diagonal terms are zeroed, we obtain the following
equation⎡
⎣I(n−m)×(n−m) R(n−m)×m

0m×(n−m) 0m×m

⎤
⎦
⎡
⎣bd(n−m)×1

bfm×1

⎤
⎦ = AbDd,T

= 0.

(13)
In the above equation, we obtain n−m Bézier ordinates bd

that can be expressed as functions of m free ordinates bf :

bd(n−m)×1 = −R(n−m)×mb
f
m×1. (14)

The m free Bézier ordinates bf correspond to the domain
points inMd,T . We denote these ordinates as bMd,T

. Defin-

(a) Non-BMDS Distribution (b) BMDS Distribution

Fig. 7. Adjusting free nodes to form a boundary MDS. Free nodes
are shown with solid markers, and constrained nodes by small circles.
Free nodes with influence on the boundary are further darkened. In
(a) the two internal free nodes shown as diamonds have influence on
the boundary. A boundary MDS is formed in (b) by moving one of
these free nodes to the boundary.

ing the augmentedmatrixC =
[
−R(n−m)×m In−m×n−m

]
,

we have
bDd,T

= CTbMd,T
, (15)

where the C matrix transforms the Bézier ordinates in
Md,T to ordinates in Dd,T .
In order to apply Dirichlet conditions and to specify a

NURBS boundary, we could use a set of Lagrange multipli-
ers as used in [16][17] to enforce boundary conditions. How-
ever, by requiring our MDS to contain a valid Boundary
MDS (16) we are able to explicitly impose these conditions.

M
d,Γ̂

⊂ Md,T . (16)

A Boundary MDS can be enforced by shifting columns
Md,T ofA to the end during initial pivoting, or after Guass-
Jordan elimination, by exchanging any free-node with in-
fluence on the boundary with a constrained boundary node.
A free-node appears in C as a column with a single 1 that
is otherwise all zeros. If a constrained boundary node is de-
pendent on a free internal node, then by scaling this free
basis row, and adding multiples of it to zero the boundary
node’s column, we replace the internal free-node by one on
the boundary (Figure 7). If all such cases are adjusted, then
the complete boundary will be uniquely determined by its
boundary free-nodes so giving us a boundary MDS.
An arbitrary piecewise polynomial function f(ξ) : ξ ∈ T

can be expressed in terms of the C0 Bernstein Basis φi and
corresponding nodal ordinates bD as:

f(ξ) =
∑
i

biφi(ξ) = b
T
Dφ(ξ) (17)

If f is further Cr-continuous, by (15), it can be expressed
equivalently in terms of its free nodal ordinates bM as:

f(ξ) = bTDφ(ξ) = bM
TCφ(ξ) = bMTψ(ξ). (18)

That is, we have constructed the globallyCr basis functions
ψ(ξ) = Cφ(ξ) as a linear combination of the C0 Bernstein
basis φ(ξ).

3.3.3. Exceptional vertices
It may occur that a NURBS knot-point on the domain

boundary is no more than Ck smooth for some k < r. In
this case, by the method of §3.2 a corner of the parametric
domain must be aligned with the knot point to ensure exact
boundary representation. However, if the point is at least
G1 smooth this results in a loss of bijectivity at that point.
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When global bijectivity is desired we amend our method
as follows: In §3.2 we align corners of our polygon only with
C0 knot-points and any others needed to form a suitable
polygonal domain. Around each of these latter vertices and
those aligned with Ck knot-points for k < r we further se-
lect an internal macro-element edge across which to reduce
continuity. We do this by removing constraints fromA that
bridge the edge, involve the vertex node, and are required
to assure Ck+1, ..., Cr continuity. We call these exceptional
vertices and exceptional edges. An example is shown in Fig-
ure 16c and Figure 18 where four exceptional vertices and
respectively four exceptional edges are used to reduce con-
tinuity around the vertices/edges to avoid singularity in ge-
ometric mapping. As the model is refined, the exceptional
edges become shorter. Such trading the local reduction of
continuity for improvement of mesh quality can be espe-
cially beneficial in analysis, as demonstrated in Figure 18.
Proposition 1 A globally bijective map G can be obtained
for any domain Ω after exceptional vertex insertion and
uniform refinement.

3.4. Geometric map G(ξ)

We now have a coarse boundary-conformal Bézier mesh
G0 and parametric triangulation T of the corresponding
domain Ω̂. While mesh refinements may be performed by
inserting knot-points into the boundary before Step 1, or
after Step 1, they can be performed as late as after gener-
ating T . Whatever optional mesh refinements take place,
in order to form a Cr spline basis on our mesh (in partic-
ular the Clough-Tocher or Powell-Sabin splines), the final
stage of refinement after forming T must be its correspond-
ing split. The subdivision of rTBS elements are topologi-
cally similar to the split as performed in the barycentric
domain of each element [34] (See Figure 12). On the bound-
ary, parametric equivalence between the rTBS subdivision
and domain subdivision are strictly maintained. The inte-
rior control points for rTBS elements are overridden by a
subset of free control points under Cr constraints, and they
provide a reference for Cr mesh quality (see Section 5.1.1).
Any refinements after forming T must be applied in paral-
lel to G and T to maintain index correspondence between
domain points in T and control points for G0.
With the Cr basis ψ(ξ) and domain points in the MDS

Md,T , we can now obtain the geometric mapG(ξ) in terms

of the constructed Cr basis functions ψj : Ω̂ → R, or equiv-

alently, the C0 Bernstein basis functions φi : Ω̂ → R, in the
form

G(ξ) =

∑m
i wipiψi(ξ)∑m
i wiψi(ξ)

. (19)

where pi = (x1, x2)i are control points corresponding to
domain points qi in Md,T , and wi are the weights for the
corresponding control points. Combining pi and wi in the
homogeneous form as (wix1i, wix2i, wi), we can obtain the
map in homogeneous coordinates as

G(W )(ξ) = P
(W )T

M ψ(ξ) = P
(W )T

M Cφ(ξ) = P
(W )T

D φ(ξ).
(20)

Then,

CTP
(W )
M = P

(W )
D . (21)

That is, we can obtain control points of all the domain

points P
(W )
D from those (P

(W )
M ) of MDS.

The control points corresponding to boundary MDS
Md,Γ in the geometric map G(ξ) are a subset of Bézier
control points of the input NURBS curves. These control
points can then be used to explicitly determine the bound-

ary ordinates ofP
(W )
M and so PM. Subject to the conditions

of Theorem 1 we thus have the following proposition:
Proposition 2 The NURBS curves ci(ξ) in the boundary
Γ can be exactly reproduced by the geometric mapG(ξ) with
the smooth basis ψ(ξ) in S

r
d(T ).

Figure 8 shows an rTBS discretization of the domain
from Figure 4 with Clough-Tocher split and one composed
C1 basis function ψ(x) = ψ(ξ) ◦G−1(x).

(a) TCT and M3,T (b) G

(c) Basis function ψi(ξ) (d) Basis function ψi(x)

Fig. 8. rTBS discretization of the domain in Figure 4 with CT split,
free boundary (darkened) and internal (light) nodes (a), and basis
functions ψi(ξ) and ψi(x).

4. Isogeometric Analysis through rTBS Elements

In this section, we describe the basic procedure for iso-
geometric analysis with C0 and Cr triangular Bézier ele-
ments. Our approach is based on the Bézier meshG0 forC

0

elements and G and T triangulation for Cr analysis. The
Cr basis functions ψ(ξ) and C0 basis functions φ(ξ) are
respectively used for Cr and C0 elements. However, using
the linear relationshipψ(ξ) = CTφ(ξ) and (9), integration
can be done over the finest level of triangles τ ∈ T .
In this paper, we solve several linear partial differential

equations including linear elasticity and advection-diffusion
analysis. For linear elasticity, the strong form is

∇T
s σ + b = 0, (22)

with displacement boundary condition u = gD on ΓD and
traction τn = gN on ΓN . In advection-diffusion analysis,
the following boundary-value problem is solved to deter-
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mine the steady-state distribution of a substance propa-
gated by a moving fluid

−∇κ∇u+ a · ∇u = 0 in Ω (23)

with Dirichlet conditions on ΓD and Neumann conditions
on ΓN . Here, κ is the diffusion coefficient of the substance
and a is the local fluid velocity.
Converting the above strong forms of PDEs into their

weak forms, and discretizing these weak forms lead to a set
of linear algebraic equations. For more details on such fi-
nite element methods, we refer the reader to any introduc-
tory textbook on finite element methods [35][36]. In this
paper, we apply the Galerkin formulation where test func-
tions and the approximate solution are built from the basis
constructed in the previous section. That is, we approxi-
mate the solution in the parametric domain as

û(ξ) ≈
∑
i

uiψi(ξ) = u
Tψ (24)

where ui corresponds to the approximate solution’s Bézier
ordinate at the domain point i in parametric domain Ω̂’s
triangulation T . We can obtain the solution u(x) in the
physical space by composing its representation û(ξ) in the
parametric domain with the inverse of the geometricalmap-
ping G−1 so that u : Ω → R is obtained by

u(x) = û ◦G−1(x)

where G can be G0 or G1 for C0 and Cr elements respec-
tively. Figure 9 illustrates the distribution of free-nodes
governing a shaded C0, C1 Powell-Sabin and C1 Clough-
Tocher element. Figure 9a highlights the domain points
with non-vanishing basis functions over the shaded C0

triangular element. Figures 9b and c respectively high-
light free-nodes with non-vanishing basis functions over a
Powell-Sabin and Clough-Tocher micro-element. Notably,
the same local basis governs all micro-elements of one
stable macro-element.
Inserting the basis functions φ and the approximate so-

lution (24) into the weak forms and assembling the linear
system leads to the following integrals, respectively for stiff-
ness, mass, and advection matrices

(∇φj ,∇φi)Ω, (φj , φi)Ω, (a · ∇φj , φi)Ω (25)

forC0 elements where j and i correspond to domain control
points in C0 Bézier elements as shown in Figure 9a. Note
(a, b)Ω =

∫
Ω ab dΩ. For C

r elements, we have

(∇ψj ,∇ψi)Ω, (ψj , ψi)Ω, (a · ∇ψj , ψi)Ω (26)

where j and i correspond to free domain points in Cr ele-
ments as shown in Figure 9b and Figure 9c.
The numerical integrations of (25) and (26) are per-

formed via quadrature over each domain triangle or bound-
ary edge. For example, element (j, i) of the stiffness matrix
is obtained as

(∇ψj ,∇ψi)Ω ≈
∑
τ∈T

∑
k

wk

∣∣JG(ξk)∣∣ (∇ψi(ξk) · ∇ψj(ξk))

(27)

(a) S
0
2(T ) (b) S

1
2(TPS) (c) S

1
3(TCT )

Fig. 9. Free nodes of one element in C0 rTBS, Powell-Sabin and
Clough-Tocher splines.

L = 4

R = 1

E = 105

ν = 0.3
τ = 1

symmetric

exact traction

sy
m
m
et
ri
c

ex
a
ct

tra
ctio

n

Fig. 10. The plate-hole problem statement.

where τ is a micro-triangle within a macro triangle in T , wk

is the quadrature weight, and JG is the Jacobian of the ge-
ometric mapping. Due to the local support of our spline ba-
sis, this stiffness matrix is sparse. For example, withO(103)
dof the quadratic and cubic basis functions of Example 1
showed on average 10 and 16 interactions respectively in
the C0 case and 18 and 23 interactions in the C1 case. Note,
however, that these results will vary depending on the spe-
cific triangulation and method of pivoting and basis used
in §3.3.2. Basis functions with support at a given node ν
can be identified as rows μ of the continuity matrix C with
non-zero entries in column ν.
The Dirichlet boundary conditions can be imposed in a

similar way as in NURBS-based isogeometric analysis [2]

since the trace of the parametric domain Ω̂ is a just a degree-
d B-spline curve with C0 smoothness at corner vertices and
Cr at smooth vertices. That is, one simply projects the
Dirichlet conditions into the degree-d B-spline space with
knots as per on Theorem 1, and then extracts the Bézier
ordinates corresponding to the free-nodes in the Boundary
MDS Md,Γ.

5. Applied Problems

In this section, we demonstrate rTBS-based isogeomet-
ric analysis of linear elasticity and advection-diffusion
problems. We demonstrate the effect of incorporating both
Cr continuity and adaptive refinement in the analysis of
the well-known linear elastic plate-hole problem and the
advection-diffusion problem of complex topologies.

5.1. Example 1: Linear elasticity

We apply our approach to a well-known linear elasticity
problem: an infinite plate with a hole of radius 1 is subject
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to constant in-plane tension at infinity [2]. The problem
definition is in Figure 10. The exact solution for this prob-
lem is known from [37] and is used to quantify our analy-
sis error. For an error measure we use the L2 measure of
strain energy error, Δ(σ · ε)(x). We also use this measure
on an element-wise basis to guide adaptive refinement by
the Rivara method [32].

5.1.1. rTBS discretization and mesh smoothing
For a given element type, the analysis accuracy and con-

vergence rate depend on element quality. In this paper,
thus far, we have focused on presenting a set of steps for
establishing an rTBS-based geometric map G(ξ) that can
exactly recover the given NURBS boundary. However, the
interior of the geometric map that directly affects the rTBS
element quality has not been explicitly addressed. We here
briefly describe how we use smoothing to improve the mesh
quality. A formal study of mesh quality and convergence
rate is outside of the scope of this paper.

θ
(G)
1 θ

(G)
2

θ
(G)
3θ

(G)
4

θ
(G)
5

(a) Physical domain

θ
(T )
1 θ

(T )
2

θ
(T )
3θ

(T )
4

θ
(T )
5

(b) Unsmoothed T

θ
(T )
1

θ
(T )
2

θ
(T )
3

θ
(T )
4

θ
(T )
5

(c) Smoothed T

(d) Unsmoothed G (e) Smoothed G

Fig. 11. The smoothing technique is used for the Plate-hole mesh
(Example 1). By adjusting the triangulation T (before PS-refine-
ment), we can improve the element shape quality of the output G.

The factors that can be adjusted to affect mesh quality
include the internal control points ofG0 in Step 1, the free
internal control points for G, and the internal and corner
boundary vertex positions of T in Step 2. For the internal
control points P0I ofG0 we apply Laplacian smoothing on
the Bézier control net ofG0. The free internal control points
PI corresponding to internal domain points in the MDS
Md,T can be freely chosen to improve the mapping quality.
Note PM = PB ∪ PI . Here we simply choose these free
internal control points PI so that the Bézier control points
CTPW

M for G(ξ) are as close as possible to the control
points PW

0 for G0 in the least-squares sense, i.e.

min
PI

∣∣PW
0 −CTPW

M
∣∣ . (28)

As for internal and corner boundary vertices, we have ob-
served that the smoothness of the geometric map G is im-

proved if the internal corner angles θ
(T )
i of T (see Figures

11b and d) approximate the corresponding boundary an-

gles θ
(G)
i of G (see Figure 11a). This is achieved by freely

varying the corner vertex positions vi of T (shown in Fig-
ures 11b and d) to minimize the angle difference.

min
vi

f(Ω̂) =
∑
i

|θ(T )
i − θ

(G)
i |. (29)

Remaining boundary vertices in T are then determined
based on (11), and internal vertices in T are determined by
Laplacian smoothing. This process is performed immedi-
ately after Step 2 but before mesh refinement. The result is
illustrated in Figure 11e. Figure 12 shows the entire process
of obtaining rTBS discretization of the plate-hole domain
with Powell-Sabin split and one C1 basis ψ(x).

(a) Input G0 mesh (b) Triangulation T (c) C0 basis φ(x)

(d) TPS and D2,TPS
(e) G0 from TPS

(f) TPS and M2,TPS
(g) G from TPS (h) C1 basis ψ(x)

Fig. 12. rTBS discretization with PS split and C1 basis ψ(x).

5.1.2. Example 1: Convergence study
In our convergence study, we use the parametric domain

T shown in Figure 11c as produced by our mesh smoothing
algorithm. Since this domain has five corners, a NURBS
parameterization of this domain either requires the domain
to be split by a C0 knot curve, or requires two control
points to lie atop each other, resulting in a singularity in
the mapping. In contrast, by using an rTBS mesh with a
polygonal parametric domain, we can form a globally C1-
smooth basis on this domain.
By performing uniform or adaptive h-refinement and p-

refinement, we can increase the number of degrees of free-
dom (DOF) used for analysis. Figure 13 shows the C0 rTBS
elements in spline space S

0
2(T ) and C

1 rTBS elements via
Powell-Sabin splits in S

1
2(TPS) under uniform and adaptive

h-refinement. The corresponding convergence data for uni-
form and adaptive refinement are shown in Figure 15a. The
convergence rate of the L2 norm of the energy error over
the DOF is shown in the legend of each curve.
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(a) S02(T ) mesh 1 (b) S02(T ) mesh 2 (c) S02(T ) adaptive

(d) S12(TPS) mesh 1 (e) S12(TPS) mesh 2 (f) S12(TPS) adaptive

Fig. 13. Quadratic rTBS mesh under uniform and adaptive refine-
ment. Highlighted red points are free nodes.

(a) S
0
3(T ) (b) S

1
3(TCT ) (c) S

1
3(TPS)

(d) S
0
5(T ) (e) S

1
5(T ) (f) S

2
5(TPS)

Fig. 14. Cubic and quintic elements. Highlighted points are free
nodes.

After degree-elevating G0 to a cubic mesh, we can form
a C1 basis using either the Clough-Tocher or the Powell-
Sabin splits. Free-node distributions for these meshes as
compared with the simple C0 rTBS case are shown in Fig-
ures 14a through c, and convergence data are shown in 15b.
By degree-elevating G0 to a quintic mesh (Figure 14d) we
can achieve a stable C1 basis without performing any fur-
ther macro-element splits (Figure 14e). Alternatively, by
using a Powell-Sabin split we can achieve a C2 rTBS ba-
sis for our domain. Convergence data comparing quintic
C0, C1 and C2 bases are shown in Figure 15c. The con-
dition numbers for the stiffness matrix for splines in Fig.
13(b) and (c) and in Fig. 14 are respectively 5.12e3, 1.91e4,
5.42e3,1.37e4, 7.06e3, 5.66e3, 1.25e4 and 2.76e4.
These convergence results demonstrate that first, when

C0 continuity is used, our method of automatic and adap-
tiveC0 rTBSmeshing leads to nice convergence behaviours.
Second, when C1 continuity is required, we have shown
that the quadratic Powell-Sabin, cubic Clough-Tocher, and
quintic unstructured splines all converge nicely. Third, al-
though preliminary results show that C2 rTBS-based anal-
ysis does not perform as well compared with C0 and C1

rTBS-based IgA by our method, we have shown that C2

rTBS-based analysis is viable. Future work will investi-
gate the optimal convergence rate of high-order continuous
rTBS-based analysis.
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(c) Quintic elements

Fig. 15. Convergence rates for elements in Figure 13 and 14 for the
plate-hole problem.

5.2. Example 2: Advection-diffusion

In this example (see Figures 16 and 19) we demonstrate
the automatic C1 meshing and analysis of a genus-1 and a
genus-4 domain by applying the stabilized Streamline Up-
wind Petrov-Galerkin (SUPG) method to solve advection-
diffusion problems. The inner boundary is held at u = 1 and
the outer boundary at u = 0. The domain is then subject
to a constant flow a to the right, and a low diffusion coeffi-
cient κ. The anticipated shear boundary layers are shown
as red-dashed lines in this figure.
Figures 16 details the process of obtaining C0 and C1

rTBS discretization of the genus 1 domain. The inner circle
is mapped to a quadrilateral corresponding to four rational
Bézier curves in Figures 16c. Figures 16d and Figures 16e
highlight the local refinement along the flow boundaries.
The Powell-Sabin split is used to obtain a quadratic C1
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symmetric

2

8

a=(1 0)T

κ=10−6

8

(a) Problem Definition (b) Coarse C0 Mesh

(c) Ω̂ and Coarse T (d) Locally Refined C0 Mesh

(e) S
1
2(TPS) Mesh (f) Analysis result

Fig. 16. Isogeometric analysis of the advection-diffusion problem.

(a) C0 Stream Cross-section

(b) C1 Stream Cross-section

Fig. 17. Solution cross-sections at x = 2.

basis, and to avoid singularity in the C1 mapping G, four
exceptional edges are introduced (shown as red in Figures
16e) in the resulting triangulation T . Figure 17 shows the
solution at cross-sections (x = 2) from equivalent C0 and
C1 macroelement meshes. It can be seen that C0 solution
has sharp features while C1 solution is smooth and is free
from high frequency noise. Figure 18 compares the analysis
result from globallyC1 mesh without (Figure 18a) and with
exceptional edges (Figure 18b). As shown in the inset in
Figure 18a, without exceptional edges there is singularity
in the geometric mapping and more visible oscillation in
the solution. The analysis mesh is obtained from uniform
refinement as shown in Figure 18c, Figure 18d and Figure
18e. It can be seen that exceptional edges are receding and
becoming shorter during the refinement.

(a) Knotpoint Singularities (b) Exceptional Vertices

(c) Uniform 1 (d) Uniform 2 (e) Uniform 3

Fig. 18. Uniformly refined analysis results show the effects of knot-
point singularities (a), and exceptional vertices/edges (b) (edges in-
dicated in red). Exceptional edges recede on refinement (c,d,e).

4

4

2

a=[cos(π/6), sin(π/6)]
κ=10−6

2

16

16

(a) Problem Description (b) Locally Refined C0 mesh
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8
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(c) C1 mesh (d) C1 Analysis Result

Fig. 19. Isogeometric meshing and analysis for a genus 4 domain.

The isogeometric meshing and analysis of the genus-4
domain are shown in Figure 19. After local refinement of
G0 to resolve shear boundary layers (Figure 19b), uniform
refinement by the Powell-Sabin split, and performing the
projections of Step 3, then the rTBS mesh (shown in Figure
19c) is constructed. In Figure 19c, 16 exceptional vertices
with 4 for each circle are introduced. The resulting analysis
field is again globally bijective and C1 smooth except in
the immediate vicinity of each exceptional vertex.

6. Conclusions

We have presented a new isogeometric analysis approach
based on rational Triangular Bézier Splines (rTBS). The
rTBS parametrization of a NURBS-bounded domain can
be fully automated. This approach is applicable to complex
topologies. Various local refinement schemes can be read-

11



ily implemented. We have presented a set of procedures for
constructing a globally Cr-continuous basis for represent-
ing both physical field and the domain geometry with exact
recovery of its NURBS boundary. We have also introduced
the concept of exceptional vertices/edges where a reduced
set of continuity constraints is imposed at boundary ver-
tices. The reduced continuity at exceptional vertices and
edges leads to global bijectivity and improved mesh quality
and analysis results. Unlike tensor-product NURBS, such
reduced continuity becomes highly localized with mesh re-
finement. This rTBS-based isogeometric analysis has been
shown to be convergent with mesh refinement on linear
elasticity and advection-diffusion problems.
Future work will focus on improving rTBS element

quality to achieve optimal convergence rate, studying the
nestedness of spline space, and extending this approach to
three-dimensional problems.

References

[1] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric
analysis: CAD, finite elements, NURBS, exact geometry and
mesh refinement. Computer Methods in Applied Mechanics and
Engineering, 194(39):4135–4195, 2005.

[2] J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs. Isogeometric
analysis: Toward integration of CAD and FEA. 2009. John
Wiley & Sons.
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