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Abstract

Subject-specific modeling is increasingly important in biomechanics simulation. However, how to automatically create high-
quality finite element (FE) mesh and how to automatically impose boundary conditionare challenging.

This paper presents a statistical atlas based approach for automatic meshing of subject-specific shapes. In our approach, shape
variations among a shape population are explicitly modeled and the correspondence between a given subject-specific shape and
the statistical atlas is sought within the “legal” shape variations. This approach involves three parts: 1) constructing a statistical
atlas from a shape population, including the statistical shape model and the FE model of the mean shape; 2) establishing the
correspondence between a given subject shape and the atlas; and 3) deforming the atlas to the subject shape based on the shape
correspondence. Numerical results on 2D hands, 3D femur bones and 3D aorta demonstrate the effectiveness of the proposed
approach.
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1. Introduction

Biomechanical simulation often involves finite element
(FE) modeling of subject-specific anatomic structures.
However, the task of creating FE meshes such as hex mesh
for each subject usually requires manual intervention and
can be tedious and time consuming. Such lack of automa-
tion in FE modeling and its lengthy laborious process pose
substantial challenges for applications where FE modeling
and analysis need to be done in a short period of time,
for example, in clinical setting such as providing surgical
guidance during surgery. The ability to automate FE mod-
eling of subject-specific shapes would lead to a population
of subject-specific models with applications in surgical
planning and implant design. The goal of this paper is to
present an approach that can automatically build subject-
specific FE models from a given subject-specific shape.

In the literature, a common approach to efficient shape
modeling or FE modeling of subject-specific shapes is
through template-based deformation. For example, mor-
phing template meshes to subject-specific shapes has been
explored in [1, 2, 3]. A mesh morphing approach to conduct
statistical models of femurs was studied in[4]. However, it
has not been used to generate subject-specific FE models.
Recently, an atlas based geometry pipeline for construct-
ing three-dimensional cubic Hermite finite element meshes

from tomographic patient image data and deforming the
atlas to a second patient has been studied in [5].

The above approaches usually contain two steps: 1) reg-
istration of the subject shape [1, 2, 3, 4] or image [5] to the
template; 2) FE mesh morphing of the template to the sub-
ject with the correspondence obtained in the registration.
However, these approaches are unaware of the specificity of
the subject shapes and usually need to involve a large num-
ber of registration parameters and manual specification of
a large number of landmarks to ensure proper correspon-
dence between a given shape and the template shape. For
example, in the free-form deformation, as pointed out by [3],
the resolution of the deformation should be approximately
the size of the smallest anatomical structures to be regis-
tered, so it requires a large number of degrees of freedom
(thousands) for the accurate registration of fine structures.
This makes the problem complex, inefficient and more im-
portantly, not robust. When a subject shape deviates sig-
nificantly from the template shape, a simple deformation
based approach, without manual specification of correspon-
dence between the template shape and the given shape,
would fail to generate proper correspondence between the
two shapes. Therefore, the FE mesh and boundary con-
ditions cannot be properly transferred from the template
shape to the given shape.

For a certain class of shapes, the shape variations fol-



low some particular patterns, and the deformations within
the class are constrained by a limited number of degrees
of freedom. Thus, for the FE mesh construction of a spe-
cific class of subject shapes, we first learn a prior knowl-
edge of the population through statistical shape modeling
[6] and build a linear space of shapes. Then, instead of ap-
plying a ”free style deformation” in the registration, the
mean shape of the population is deformed in the “shape
space” to match the subject-specific shape. In this way the
deformation could be parameterized by just a few number
of variables and becomes simple and robust. The generic
FE mesh is built upon the mean shape of the population.
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Fig. 1. A schematic diagram of the statistical atlas based subjec-
t-specific FE modeling.

Figure 1 gives an overview of our approach: the input is
the subject specific shape, the output is the FE mesh of
the subject shape. This mesh construction process is based
on the statistical atlas and contains two steps: 1) boundary
correspondence identification through shape instantiation
and projection; 2) FE mesh morphing by the boundary
correspondence.

The statistical atlas contains two parts: the statistical
shape model which determines a linear shape space and the
FE mesh of the mean shape. The statistical shape model is
learned from a population of shapes by principal component
analysis, and includes the mean shape S̄ of the population
and the eigen-modes {Ψi} that capture the variations of
the population. Originated at the mean shape, the eigen-
modes together span a linear space of the shapes and any
instance in that space can be instantiated by:

S̃ = S̄ +
∑
i

wiΨi,

where {wi} are the shape parameters.
In the step of correspondence identification, the mean

shape is deformed to the subject shape along a path in the
shape space by optimizing the shape parameters {wi} and
is then projected onto the subject shape to establish the
boundary correspondence between the mean shape and the
subject shape.

Based on the obtained boundary correspondence, the FE
mesh of the mean shape is then morphed to the subject
shape through free-form deformation.

The contribution of this paper is a new approach that can
automatically, efficiently and robustly produce high quality
FE meshes for a given subject-specific shape. To examine

the quality of the proposed approach, we use three mea-
sures: the distance between the instantiated shape and the
given shape, the correlation coefficient of normal vectors
between the mean shape and the given shape, and the mesh
quality. Numerical examples on 2D hands, 3D femur bones
and 3D aorta demonstrate that the proposed approach out-
performs the simple deformation based approach.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the construction of statistical atlas, sec-
tion 3 and 4 cover the two steps of the proposed approach,
section 5 introduces the three measures for our approach.
Numerical results are presented in Section 6. This paper is
concluded in section 7.

2. Constructing statistical atlas

The statistical atlas is constructed to incorporate the
prior knowledge of a specific class of shapes and provide a
generic FE mesh for mesh morphing. The prior knowledge
are learned by the statistical shape modeling of a popula-
tion of training shapes. The generic FE mesh is constructed
on the population mean whose overall distance to other in-
stances in the population is minimized.

In this section we briefly introduce the process of statis-
tical atlas construction. A set of training shapes are regis-
tered together in a non-rigid fashion through free-form de-
formation. In order to ensure good correspondence across
the shape population, landmarks are specified. A mean
shape model and shape variations across a population of
shapes are then obtained through generalized Procrustes
alignment (GPA) [7] and principal component analysis of
the shape population. The mean shape is then discretized
into FE meshes (triangular or hexagonal).

In the following subsections we will use the 40 hand
shapes in [6] as examples to demonstrate our method.

2.1. Pairwise Shape registration by free-form deformation

Given the training set of ns number of shapes S =
{S1,S2, · · · ,Sns}, in order to correctly calculate the pop-
ulation mean and model the shape variations, correspon-
dences between these shapes must be built. Based on such
correspondences, we sample the same number of points on
each shape and conduct the statistical shape modeling.

In our work, we use the free-form deformation (FFD)
method to establish the correspondences between the train-
ing shapes, which had been successfully applied in the shape
registrations by [8, 9, 10].

Among the ns number of training shapes, one shape is
chosen as the template shape, note it as S1. It is deformed
to the other shapes Sk, k = 2, · · · , ns in the training set
respectively and is then projected onto them to build the
correspondences.

The deformation of a shape S ⊂ Rd in the d dimensional
Euclidean space d = 2, 3 is done by the deformation of its
underlying domain Ω ⊂ Rd, here we use the B-spline FFD:
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f(u) =
∑
i∈I

PiBi(u), u ∈ [0, 1]d, (1)

{Pi : i ∈ I} is the set of control points, {Bi : i ∈ I} is the
set of B-bases, u is the parameter value.

landmark on S
1

landmark on S
2

Fig. 2. Shapes in discrete points: the template shape is in red, the

target shape is in blue, we have 56 landmarks on each shape.

As shown by Figure 2, in this paper, the shapes are repre-

sented by discrete points: Sk = {v(k)
1 ,v

(k)
2 , · · · ,v(k)

Nk
}, k =

1, · · · , ns. The registration of the template shape S1 to a
target shape (note it as S2 for simplicity) is done by mini-
mizing:

min
{Pi}

Edeviation + αEsmooth + βElandmarks. (2)

The first term in (2)

Edeviation =

N1∑
j=1

‖f(v
(1)
j )− v

(2,c)
j ‖2,

is the sum of square of deviations between the deformed
template f(S1) and the target S2, f is the deformation field

as defined in (1), and v
(2,c)
j is the closest point of v

(1)
j in S2.

The second term in (2)

Esmooth =

∫
Ω

‖(
d∑

i=1

∂

∂xi
)2f‖2dx,

is the smoothing term and penalizes large deformations.
The smoothing coefficient α in (2) is chosen to be large at
the initial deformation steps and reduced gradually.

To guide the deformation, we manually assign a set of
landmarks to each shape with presumed correspondences.
The third term in (2)

Elandmarks =

l∑
i=1

‖f(v̄
(1)
i )− v̄

(2)
i ‖

2,

captures the mismatch error of the landmarks.

{(v̄(1)
1 , v̄

(2)
1 ), · · · , (v̄(1)

l , v̄
(2)
l )} are the pair of landmarks

on S1 and S2. The landmark weight β in (2) is decided so
that αEdeviation and βElandmarks are in the same order of
magnitude.

Formula (2) is a formulation that has been widely used
in the pairwise shape registrations[9, 10, 11, 12, 13, 14, 8,
15], to minimize it we adopt the typical iterative algorithm
[9, 8, 12] in non-rigid shape registration.

After we have found the desired deformation f , we project
the deformed template f(S1) onto the target S2 along the
vertex normal and establish a point-wise correspondence
between S1 and S2. The normal on the vertex is calculated
by averaging the normals of its surrounding elements (line
segments in 2D and triangle facets in 3D).

2.2. Generalized Procrustes analysis

Once we have established the point-wise correspondences
between the train shapes and the template, we re-sample
each shape with the correspondences and obtain

Sc = {Sc
1,S

c
2, · · · ,Sc

ns
},

The shapes in Sc are represented by the same number
of points that are in correspondences, on which we con-
duct the generalized Procrustes analysis [7] and obtain
the mean shape S̄ and the set of aligned shapes Sa ={
Sa

1 ,S
a
2 , · · · ,Sa

ns

}
that had been projected to the tangent

space [6] of the mean shape, where S̄ = {p1, · · · ,pN}, Sa
k =

{p(k)
1 , · · · ,p(k)

N }, k = 1, · · · , ns, N is the number of sample
points, and

S̄ =
1

ns

ns∑
k=1

Sa
k, (3)

(a) Input shapes (b) Shapes aligned (c) Mean shape: S̄

Fig. 3. By conducting the generalized Procrustes analysis, we obtain

a set of aligned shapes and the mean shape.

Figure 3 shows the results of the generalized Procrustes
analysis of 40 hand shapes.

2.3. Principal component analysis

In the generalized procrustes analysis, we have aligned
all the training shapes to the mean shape and projected
them into the tangent space of the mean shape, by do-
ing these we obtain a linear space of shapes. Here, we
vectorize each shape by rearranging the coordinates and
have: S̄ = [x1,1, · · · , x1,d, x2,1, · · · , xN,d]T , and Sa

k =

[x
(k)
1,1, · · · , x

(k)
1,d, x

(k)
2,1, · · · , x

(k)
N,d]T , k = 1, · · · , ns.

We can view those vectorized shapes Sg
1,S

g
2, · · · ,Sg

ns
as

points in the N × d dimensional space, and center them
with respect to the mean shape, by that we obtain the
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shape variation matrix Φ = {Φ1,Φ2, · · · ,Φns
}, where Φk =

Sa
k − S̄, k = 1, · · · , ns. The variations {Φk} together span

a linear shape space Θ centered at S̄.
By calculating the eigen-values λ1, λ2, · · · , λns−1 and the

corresponding eigen-modes Ψ1,Ψ2, · · · ,Ψns−1 of the co-
variance matrix Σ = 1

ns−1ΨΨT , we obtain a set of or-
thonormal bases Ψk, k = 1, · · · , ns − 1 for Θ, these bases
are the principal directions that maximizes the shape vari-
ations, and λk, k = 1, · · · , ns − 1 are the variances in these
directions ordered from large to small.

Usually a good statistical shape model should have the
first several eigen-values to capture a majority of the pop-
ulation variations and in this case the shape variations can
be efficiently modeled by the first several eigen-modes. We
call the space spanned by the set of eigen-modes Ψk, k =
1, · · · ,m,m < ns − 1 the eigen-space Θ of the statistical
shape model, which is a subspace of the whole shape space
Θ. We can instantiate new shape instances in Θ by:

S̃ = S̄ +
m∑

k=1

wkΨk, (4)

Usually, we choose m by letting
∑m

i=1 λi/
∑ns

i λi ≥ p,
where p is the percentage of variances we want the first m
eigen-modes to capture. For the 40 hands we choose p =
98.5%, which corresponds to the first 11 eigen-modes.

(a) S̄± 2σ1V1 (b) S̄± 2σ2V2 (c) S̄± 2σ3V3

Fig. 4. The first three eigen-modes of the shapes. Green one is the

mean shape, red is the +2σ deviation and blue is the −2σ deviation.

In Figure 4 we show the first three eigen-modes of the
hand shapes obtained by the principal component analysis.
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Fig. 5. The cumulative shape variances captured by the increasing
number of shape modes.

In Figure 5 we show the cumulative shape variances. In
which the first 8 modes have captured 98.14% of the shape
variances and the first 11 modes have captured 99.01% of
the shape variances.

2.4. Meshing the mean shape

After the statistical shape modeling, we obtain the mean
shape S̄ of the training populations, on which we create a
generic FE mesh. This generic FE mesh will be used as a
template to create subject-specific FE meshes.
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Fig. 6. The quadrilateral mesh of the mean shape S̄ and the Jaco-

bians.

Figure 6 shows the quadrilateral mesh of the mean shape
of the 40 hands in section 2.3, the color shows the value of
Jacobians, which are all positive.

3. Shape instantiation and projection

By the statistical shape modeling, we obtain the mean
shape S̄ and the eigen-modes Ψ1,Ψ2, · · · ,Ψns−1 of the
training populations. The eigen-modes capture the shape
variations and together span a linear shape space. By choos-
ing the first m eigen-modes corresponding to the major
shape variations as described in 2.3, we obtain the eigen-
space Θ, and an instance in it can be instantiated by S̃ =
S̄ +

∑m
k=1 wkΨk, where w = [w1, w2, · · · , wm]T are the

shape parameters.
Given a new shape Ŝ, we search in the eigen-space to

find the optimal shape parameters w that best synthesize
it and obtain the optimal shape instance S̃ in Θ for Ŝ.
Then we project S̃ onto Ŝ along the normal so to obtain
the finally synthesized shape S̃P , from which the point-wise
correspondences between the given shape and the atlas can
be established.

During the eigen-space search, the instantiated shape S̃
is in the reference frame of Θ, while Ŝ locates in the image
frame or physical frame, depends on how it was obtained,
and we note the transformation from the reference frame to
the physical frame as tR,T,s with parameters R, T, s, where
R is the rotation, T is the translation and s is the scaling.
For a point p, tR,T,s(p) = sRp+T . In our later expression,
we use tR,T,s ◦ S to denote the transformation of a shape
under tR,T,s point-wisely.

Similar with the free-form deformation, we search for the
optimal shape parameters and transformation by minimiz-
ing the distances between the new shape Ŝ and the instan-
tiated shape S̃ follows by a regularization term. We have
the total energy function:

4



min
R,T,s,w

E = Ed + γEr, (5)

where Ed is the distance term and Er is the regularization
term just asEsmooth in the free-form deformation, and large
regularization coefficient γ will give strong penalizations to
large shape parameters w when compared with the square
roots of the eigen-values σk =

√
λk, k = 1, · · · ,m. We have

Ed = ‖Ŝc − tR,T,s ◦ (S̄ + Ψw)‖2, (6)

captures the discrepancies between given shape Ŝ and the
shape instance S̃ = S̄ + Ψw, where Ψ = [Ψ1,Ψ2, · · · ,Ψm],

and Ŝc is the re-sampling of Ŝ based on the correspondence.
We have

Er = wT Λ−1w, (7)

as the regularization term, where Λ = diag(σ2
1 , · · · , σ2

m) is
the diagonal matrix of the eigen-values.

Similar to the non-rigid registration algorithm in [8, 9,
12], we choose large initial regularization coefficient γ and
reduce it gradually. So at the beginning, more global trans-
formations are recovered byR, T, s and as γ is reduced, ma-
jor shape variations are recovered by the parameters cor-
responding to larger eigen-values, and as γ keep reducing,
local fine shape variations are recovered as the parameters
corresponding to smaller eigen-values being effective in (5).

(a) Searching: red S̃, blue Ŝ (b) re-sampling: Ŝc

(c) Instantiation: S̃ (d) Searching

Fig. 7. The iterative shape instantiation from a given shape: (a) the

correspondence between the instantiated shape tR,T,s ◦ S̃ and the

given shape Ŝ is obtained by searching the closest point; (b) the

re-sampling Ŝc of Ŝ is obtained with the current correspondence; (c) a

newly instantiated and transformed shape is obtained by minimizing
(5) with the current Ŝc; (d) updating the correspondence by the

newly instantiated shape and iterate.

The shape instantiation is done through an iterative pro-
cess as shown in Figure 7, in which the correspondence and
the parameters w, R, T, s are optimized iteratively.

Starting from the mean shape S̄, we build the correspon-
dence between S̄ and the given shape Ŝ by searching the
closest point. Based on the correspondence, we re-sample Ŝ

and obtain Ŝc, with which we search for the optimal shape
parameters w and transformation R, T, s by minimize (5).

After that we instantiate a shape instance by S̃ = S̄ + Ψw
and transform it to the frame of Ŝ by tR,T,s◦S̃. Then we up-
date the correspondence with the newly instantiated shape
and iterate until convergence.

With known correspondence and the re-sampled points
Ŝc, formula (5) is minimized through iteratively optimizing
the shape parameters w and the transformation R, T, s by
applying the Protocol 1 (Matching model points to target
points) of the active shape algorithm in [16], which was
originally used for image segmentation in [16, 17]. The only
difference is the way we update the shape parameters w.
Due to the regularization term added, by letting ∂E

∂w = 0,
we have

w = (I +
γ

s2
Λ−1)−1ΨT (t−1

R,T,s ◦ Ŝc − S), (8)

where t−1
R,T,s is the inverse transformation of tR,T,s, I is

the m × m identity matrix. When γ = 0, we have w =
ΨT (t−1

R,T,s ◦ Ŝc − S̄) as in [16].
The below Algorithm gives a detailed description of our

approach:

Algorithm 1 Automatic shape synthesis by SSM

– Initialize: S̃ = S̄, R = I, T = 0, s = 1, I is the m × m
identity matrix.

– For each regularization coefficient γ ∈ {γ1, · · · , γn}, γi >
γi+1.
· Until ‖∆w‖ < ε

(i) Find the correspondence by the closest points of

tR,T,s ◦ S̃ in Ŝ;
(ii) Determine the parameters w, R, T, s by (5) for

the current correspondence and γ;
(iii) Instantiate the shape by S̃ = S̄ + Ψw and trans-

form it to the subject frame by tR,T,s.
· If the correspondence does not change, exit the main

loop.
– Project the final instance tR,T,s ◦ S̃ onto Ŝ along the

normal and obtain S̃P , exit.

The inputs for Algorithm 1 are the mean shape S̄, the
eigen-modes Ψ and the given shape Ŝ for synthesis; the
output is the finally synthesized shape S̃P . With the ini-
tialization, we start from the mean shape and deform it to
the given shape through successive shape instantiations.

In the outer loop, under the current regularization coef-
ficient γ, we found the optimal correspondence, shape pa-
rameters w and transformations R, T, s for the given shape
Ŝ which respect to (5). Then we reduce the regularization
coefficient γ, and use the current parameters as the initial
input and optimize. If the correspondence does not change
any more, we exit the outer loop otherwise we go to γn.

In the inner loop, we find the optimal parameters for
the current γ by iteratively optimize the correspondence
and the parameters w, R, T, s. The convergence criteria for
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the inner loop is that the change of the shape parameters
should be smaller than ε = 10−6.

Once the correspondence is not changing, we project
tR,T,s ◦ S̃ onto Ŝ along the normal and obtain the optimal

shape synthesis S̃P for Ŝ, by which we obtain the one-to-
one correspondences between the mean shape S̄ and the
given shape Ŝ as a by product.

4. Meshing subject-specific shape by morphing

In section 3 we have shown how to automatically register
the subject shape Ŝ to the mean shape S̄ by the shape
instantiation and projection. As a byproduct, we obtain the
transformation tR,T,s from the reference frame to the frame

of Ŝ, by its inverse t−1
R,T,s we transform the subject shape Ŝ

to the reference frame where the mean shape locates. Then
with the explicit correspondences between the boundaries
of Ŝ and S̄, we obtain a smooth deformation field that
morphs the mesh of S̄ to Ŝ by

min
{Pi}

N∑
j=1

‖f(pj)− p̂j‖2 + αEsmooth, (9)

where f is the B-spline field defined in (1), Pi, i ∈ I are its
control points. pj , j ∈ 1, · · · , N is the point on the mean

shape S̄, and p̂j is its corresponding point on Ŝ obtained
by the shape instantiation and projection. The smoothing
term Esmooth is the same as in section 2.1 and α is the
smoothing coefficient. Here since we know the right corre-
spondences, a small α is enough. e.g., in the pairwise regis-
tration by FFD of the 2D hand, we begin with α = 30, 000,
here α = 50 would be enough.

With the obtained deformation field f , we morph the FE
mesh of S̄ to Ŝ.

(a) Correspondence
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(b) Morphed FE mesh

Fig. 8. Meshing subject-specific shape by morphing: (a) The corre-
spondence between S̄ and Ŝ; (b) results of FE mesh morphing.

In Figure 8 we show the correspondence obtained by the
method of section 3 and the resulting FE mesh from mesh
morphing with the correspondence. The Jacobians in Fig-
ure 8(b) are all positive which means the mesh is valid.

5. Evaluation

To examine the quality of the proposed approach, we
use three measures: the distance between the instantiated

shape and the given shape, and correlation of normal vec-
tors between the mean shape and the given shape, and the
Jacobians of the subject-specific mesh obtained.

5.1. Shape deviations

The distance between the instantiated shape and the
given shape is calculated by (6) at the end of the instan-
tiation to evaluate the quality of the shape instantiation.
Small distance means that we find an instance in the eigen-
space that is very close to the given shape, thus by the
projection we can build a reliable correspondence between
them. Large distance means either the given shape is far
from the eigen-space or the method has failed to instantiate
the correct shape instance.

5.2. Correlation of normal vectors

The correlation of the normal vectors at the correspond-
ing points between the mean shape and the given shape is
calculated to quantize the quality of the correspondence.

For two random variables x and y, their correlation co-
efficient

ρ(x, y) =
Cov(x, y)

Cov(x, x)
1
2 Cov(y, y)

1
2

, (10)

measures the similarity in behavior between x and y, here
Cov(x, y) is the covariance between x and y. The square of
the correlation coefficient ρ2(x, y) is the proportion of the
total variation in x that is explained by the variable y in a
simple linear regression model and visa versa [18].

For a random variable x and a d dimension random vec-
tor Y, the multiple correlation coefficient %(x,Y) ∈ [0, 1]
between them is defined as [19]

sup
A

%2(x,Y) = ρ2(x,AY), (11)

where ρ is defined in (10). It turns out that A = Σ12Σ−1
22

is the vector of regression coefficients of x on Y, where Σ12

is the covariance between x and Y whose dimensions are
1×d, Σ22 is the covariance of Y itself and is a d×d matrix.
So by (10) and (11) we have [19]

%(x,Y) =

√
Σ12Σ−1

22 Σ21/
√
σ11, (12)

where σ11 is the variance of x, Σ21 = ΣT
12. Similarly,

%2(x,Y) is the proportion of the variation in x that is ex-
plained by the variables in Y by linear regression with the
regression coefficients A = Σ12Σ−1

22 .
For two random vectors Xd1×1 and Yd2×1, for each in-

dividual component xi, i = 1, · · · , d1 of X, we calculate its
multiple correlation with Y and obtain r = [%1, · · · , %d1

]T

by (12), while %2
i is the proportion of variation in xi that

is explained by Y by linear regression. Thus the total pro-
portion of variation in X that is explained by Y can be cal-

culated by
d1∑
i=1

%2
iσii/

d1∑
i=1

σii, where σii is the variance of xi,
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and
d1∑
i=1

σii is the total variation in X, and
d1∑
i=1

%2
iσii is the

variation of X being explained by Y by linear regression.
We define

%(X,Y) =

√√√√ d1∑
i=1

%2
iσii/

d1∑
i=1

σii, (13)

be the correlation between X and Y and use it to cal-
culate the correlation of normal vectors of two registered
shapes. Note that %(X,Y) ∈ [0, 1], which achieves 1 if and
only if r = [1, 1, · · · , 1]T , and achieves 0 if and only if r =
[0, 0, · · · , 0]T . Below is the definition of what is a good cor-
respondence when judged by this metric:

Definition: we say ca : S1 → S2 is a better correspon-
dence than cb : S1 → S2 if

%(n1(x),n2(ca(x))) > %(n1(x),n2(cb(x))), x ∈ S1, (14)

where n1(x) is the normal vector at the point x on S1,
n2(ca(x)) the normal vector at the corresponding point of
x on S2, and %(n1,n2) is defined in (13). The inequality
(14) says that ca is a better correspondence than cb if it
gives larger correlation between the normal vectors on S1

and S2.

5.3. Mesh quality metric

To check the quality of the morphed mesh for the subject-
specific shape, we calculate the Jacobians at the vertices of
each element. It can be shown that the Jacobians over a lin-
ear Bézier element (which degenerates to a linear Lagrange
element) are bounded by the Jacobians at it’s corners [20].
So, for the mesh of bi-linear 2D finite elements and tri-linear
3D finite elements, it is sufficient to check the Jacobians at
the vertices of each element. For further discussions on the
Jacobians of higher order elements, please refer to [21, 22].

6. Numerical results

In the proposed approach in section 2 , 3, and 4, we build
the statistical atlas from the population of training shapes
and use it to aid the automatic construction of the subject-
specific FE mesh. Then we evaluate the approach by the
metrics proposed in section 5. Here we show the numerical
results of the examples of the 2D hand shapes, 3D femur
proximals and 3D aortas.

6.1. 2D hand shapes

In this section we apply our method on the subject-
specific FE modeling of the 2D hand shapes [6]. We have
40 hand shapes in total and they are scaled and moved into
the [0, 1] × [0, 1] bounding box. Each shape is represented
by 2001 uniformly sampled points.

In the FFD registration, the shape S23 is chosen as the
template shape and has been registered to the other train-
ing shapes by FFD. Then we re-sample all the other train-
ing shapes by the points on S23 with the correspondences
obtained. The size of the B-spline control grid in this ex-
ample is 20 × 20, the smoothing coefficient α is chosen to
be 30000 at the start of the deformation and is halved per 8
iterations until α < 10. We choose the weight of landmarks
β = 5.

In Figure 3 and 4 we show the mean shape and eigen-
modes calculated from the training set of all the 40 re-
sampled shapes. Here we design a leave-one-out experi-
ment. For k = 1, · · · , 40, each time the kth shape is selected
as the subject shape and the remaining 39 shapes are used
as the training shapes. The statistical shape model is built
from the re-samplings of the 39 training shapes. In this way,
the training set will not contain the exact subject shape.

In the shape instantiation, we use the first 11 eigen-modes
(captures more than 99% of the variation) to instantiate
the new shape. The regularization coefficient γ is chosen
to be 0.3 initially and multiplied by 1

4 each outer iteration
in Algorithm 1 until it is less than 0.008. In the FE mesh
morphing, we choose the smoothing coefficient α = 50.

The results of shape instantiation and FE mesh construc-
tion of shapes S1,S26,S37 are shown in Figure 9. Left col-
umn shows the results of shape instantiation and right col-
umn shows the results of FE mesh construction. In the FE
mesh construction, the subject shapes were transformed to
the reference frame by t−1

R,T,s.
Among the 40 shapes, only the instantiation of the shape

S38 has failed, as shown in Figure 10(a). As mentioned in
[6], S38 belongs to one of the two outliers (S38,S40) in the
training set, which means it is much farther from the mean
shape than other shapes, and is more likely to be trapped
in the local minimum. We say that it is trapped in the local
minimum because there does exist an instance S̃38 in the
eigen-space built from S(38) = {Sc

1, · · · ,Sc
37, S

c
39, S

c
40} that

is closer to S38 than the one we found, as shown in 10(b).
The best match of S38 is obtained by projecting Sc

38 into
the eigen-space by

S̃38 = S̄ + ΨΨT (Sc
38 − S̄),

where Sc
38 is the re-sampling of S38 with the correspondence

obtained by FFD with 56 landmarks, S̄ is the mean shape
of S(38).

In all other examples of 3D femur and aorta there are no
failure cases because the shapes are similar with each other.

Figure 11 shows the distance of the instantiated shape
(Ed in section 3) to the given shape at each iterations.
We could see most of the instantiations succeed in finding
an instance close to the given shape except for S38, which
deviates too much from the mean shape. The running time
is from 1.507530 seconds (S13, 168 iteration) to 5.910679
seconds (S38, 581 iterations) on Matlab with processor:
Intel Core i7, 3.50GHz.

In Figure 12 we plot the correlation coefficients of nor-
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(a) Instantiation of S1
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(b) Subject FE mesh of S1

(c) Instantiation of S26
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(d) Subject FE mesh of S26

(e) Instantiation of S37
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(f) Subject FE mesh of S37

Fig. 9. The results of shape instantiation and subject FE mesh
construction. In the left column, the red contour is the mean shape,

the blue contour is the subject shape, the green contours are the

locus of shape instantiation. The right column shows the subject
FE mesh and the Jacobians. We could see that all the meshes have

positive Jacobians.

(a) Instantiation of S38

S38eS38

(b) The best match S̃38

Fig. 10. The algorithm has failed to correctly instantiate S38: (a)
the locus of the instantiation, the mean shape is in red, S38 blue;
(b) the best match for S38 in the eigen-space.

mals between the template shape and all other registered
shapes before and after the free-form deformation, which
are in triangles and squares, and the correlation coefficients
obtained by the shape instantiation, which is in circle. We
could see that the proposed correlation metric has nicely
distinguished the registered shapes and unregistered shapes
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Fig. 11. The value of Ed at each iteration. The bold green curve

corresponds to S38.
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Fig. 12. The correlation coefficient of normals. Here, we only calculate

the correlation coefficients for the 39 successfully registered shapes.

while show no major differences between the FFD and the
shape instantiation, which indicates that the automatic
shape registration by eigen-space search without manually
intervene gives as good correspondence as the free form de-
formation method with carefully chosen landmarks. Actu-
ally, the 56 landmarks we used in the FFD based registra-
tion are the same landmarks used by [6].

6.2. 3D femur proximals

Here we apply our method with the femur bones to
demonstrate its success in 3D shape synthesis and FE
mesh generation.

6.2.1. Constructing statistical atlas
We have a set of 29 femur proximals as shown in Fig-

ure 13. These femurs are represented by boundary trian-
gulations and are scaled into the unite bounding box. The
number of vertex of each femur varies from 2912 to 3567.
We find the correspondences between those shapes by FFD
with the chosen landmarks in Figure 13. Then we re-sample
each shape based on the correspondences and conduct the
statistical shape modeling.

Figure 14 shows the shapes before GPA, after GPA and
the mean shape S̄ of the femurs. Figure 15 has shown the
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Fig. 13. Overlay of 29 femur proximals plotted in different colors.
The red, blue and green points are, respectively, landmarks on the

protrude, lower laterals, and femur heads.

(a) (b) (c)

Fig. 14. (a) 29 shapes before GPA; (b) 29 shapes after GPA; (c)

mean shape S̄.

first three eigen-modes out of the 28 and Figure 16 shows
the cumulative shape variances captured by the increasing
number of shape modes from one mode to the whole 28
modes.

(a) S̄± 2σ1Ψ1 (b) S̄± 2σ2Ψ2 (c) S̄± 2σ3Ψ3

Fig. 15. The first three eigen-modes of the fenurs: green one is the
mean shape, red is the +2σ deviation and blue is the −2σ deviation.
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Fig. 16. The cumulative shape variances captured by the increasing
number of shape modes.

After we obtained the statistical shape model, we create
finite element mesh for the mean shape as shown in Figure
17.

6.2.2. Shape instantiation and projection
With the obtained statistical shape model, we can con-

duct eigen-space search for a given subject-specific shape.

Fig. 17. Hex-mesh of the mean shape and the Jacobians.

Here we did the same leave-one-out experiment for the
femur-proximal as in the 2D hand example. In the exper-
iment we use 15 eigen-modes (captures more than 96% of
the variation) to instantiate the new shape.

(a) S̄ red, Ŝ blue (b) S̄→ Ŝ

(c) S̃ red, Ŝ blue (d) Projected S̃P red and Ŝ blue

Fig. 18. (a) The mean shape S̄ (the inner red one) and the given
shape Ŝ (blue); (b) the locus of each vertex in the eigen-space search;

(c) the result S̃ of eigen-space search; (d) normal projection.

Figure 18 shows one example of shape instantiation and
projection. Figure 18(c) shows the instantiated shape S̃ and

Figure 18(d) shows its projection S̃P onto the given shape
Ŝ. It is clear that the deviation between the synthesized
shape S̃P and the given shapeŜ is random, indicting a good
accuracy of the synthesis process.

Figure 19 shows the distance of the instantiated shape
(Ed in section 3) to the given shape at each iterations. The
average edge length of each triangle mesh is around 0.02,
and all the instantiations have given an average surface
deviation just about half of the average edge length, which
shows the success of the instantiation. The average surface
deviation is calculated by

√
Ed/nv, where Ed is the square

distance defined in (6) and nv is the number of vertex. The
running time is from 0.939999 seconds (S2, 65 iteration)
to 3.337465 seconds (S8, 218 iterations) on Matlab with
processor: Intel Core i7, 3.50GHz.

In Figure 20 we compare the correlation coefficients of
normals among the ICP, FFD and SSM based methods. In

9



Iterations
0 50 100 150 200 250

E
d

0

0.5

1

1.5

2

2.5

Fig. 19. The value of Ed at each iteration.
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Fig. 20. The correlation coefficient of normals.

ICP and FFD, shape 2 is chosen as the template, so the
correlation with itself is 1. For SSM based shape synthesis,
we conducted a leave-one-out test and thus obtained cor-
relation for 29 shapes. The correlations obtained by SSM
synthesized shapes (circle) is slightly better than the cor-
relations obtained by FFD (square) and show obvious im-
provement than the correlations (triangles) obtained by
ICP. This suggests that both FFD and SSM based approach
leads to comparable shape correspondence. However, FFD
requires 3 landmark points for guidance during the defor-
mation process.

In Figure 21 we have removed the top of the given shapes
Ŝ1, Ŝ2, Ŝ3 and repeated the same process as we did in Fig-
ure 18. The results show that our method is very robust
even when the shapes are incomplete. In Figure 22 we have
compared the shape parameters we obtained from the given
complete shapes and the given incomplete shapes by the
shape instantiation, the two sets of parameters only have
minor differences and are in good accordance with each
other. This suggests that the automatic shape instantiation
is robust with incomplete data.

6.2.3. Automatic FE model generation
As shown in Figure 23, with the boundary correspon-

dences obtained in the previous section, we morph the FE
mesh of the mean shape in Figure 17 to the given shapes
Ŝ1, Ŝ2, Ŝ3 and obtain the subject-specific FE meshes, whose

(a) Ŝ1 (b) Ŝ2 (c) Ŝ3

(d) S̄1 red, Ŝ1 blue (e) S̄2 red, Ŝ2 blue (f) S̄3 red, Ŝ3 blue

(g) S̃1 red, Ŝ1 blue (h) S̃2 red, Ŝ2 blue (i) S̃3 red, Ŝ3 blue

Fig. 21. (a), (b), and (c) are the shapes with missing top; (d), (e),

and (f) are the overlappings of the mean shapes (red) and their
respective target shapes (blue); (g), (h), and (i) shows the results

S̃1, S̃2, S̃3 of eigen-space search (synthesizing). Here we didn’t do

normal projection because the given shape is incomplete.

2 4 6 8 10 12 14
-2

0

2
Ŝ1

incomplete
complete

2 4 6 8 10 12 14
-2

0

2
Ŝ2

2 4 6 8 10 12 14
-2

0

2
Ŝ3

Fig. 22. A comparison of the shape parameters wi
σi
, i = 1, · · · , 15

found for the complete shapes in Figure 18 and the incomplete shapes

in Figure 21. On the x-axis are the index of the eigen-modes, on the
y-axis is the value of the shape parameter.

Jacobians are non-negative.

6.3. Aorta

Due to the complex structures (two inlets on the main
body and three leaflets inside), the mesh generation of aorta
is very time consuming and the automatic FE mesh genera-
tion for aorta would be very appealing and have important
potential practical applications.
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(a) FE mesh of Ŝ1 (b) FE mesh of Ŝ2 (c) FE mesh of Ŝ3

Fig. 23. The automatic generated FE mesh for the three given shapes
in Figure 21.

6.3.1. Constructing statistical atlas
We have five aortic models, four of them were used for

constructing statistical atlas and one was used as the given
target shape for shape synthesis.

(a) S1 (b) S2 (c) S3 (d) S5

Fig. 24. Four aortas in the training set to build the statistical atlas.

As shown in Figure 24, we have four shapes in the training
set. On each shape we have marked 13 landmarks, based
on which we conducted the FFD based shape registration.
Figure 25 shows the obtained mean shape model and eigen-
modes of the statistical shape model.

(a) S̄ (b) S̄± 2σ1Ψ1 (c) S̄± 2σ2Ψ2 (d) S̄±2σ3Psi3

Fig. 25. Mean shape and the eigen-shapes.

6.3.2. Shape instantiation and projection
With the obtained mean shape S̄ and three eigen-modes

Ψ1,Ψ2,Ψ3, given a new shape Ŝ, we automatically instan-
tiate it with the shape instances in the eigen-space and find
the correspondences between the given shape Ŝ and the
mean shape S̄. In Figure 26 we show the process of shape
instantiation and projection.

6.3.3. Automatic FE mesh generation
With the correspondences obtained in the projection

step, we automatically morph the hexahedral mesh of the
mean shape to the given shape Ŝ (Fig. 26(a)) by the free-
form deformation in section 4. The resulting hexahedral
mesh is shown in Figure 27.

(a) Ŝ (b) S̄→ Ŝ (c) S̃ and Ŝ (d) S̃P

Fig. 26. (a) The given shape Ŝ; (b) the overlay of the mean shape S̄

(red) and Ŝ (blue); (c); shape instance S̃ optimized in the eigen-space;

(d) projection to obtain the synthesized shape S̃P .

(a) T (b) T̂

Fig. 27. (a) Hexahedral mesh of the mean shape, (b) generated

Hexahedral mesh (green) of the given shape Ŝ (red).

7. Conclusion

This paper presents a statistical atlas based approach for
subject-specific FE modeling and involves three parts: 1)
constructing a statistical atlas, including the mean shape
and eigen-modes of a shape population which span a lin-
ear shape space, and the generic FE mesh built on the
mean shape. 2) establishing the correspondence between a
given subject shape and the atlas by shape instantiation
and projection; and 3) deforming the atlas to the subject
shape based on the shape correspondence. The approach
has been successfully applied in automatic FE modeling of
2D hands, 3D femur bones and 3D aorta.

Numerical examples demonstrate that the statistical
atlas based approach allows automatic FE modeling of
subject-specific shapes, even when a given subject-specific
shape deviates significantly from the mean shape. This
is advantageous over the template deformation based ap-
proach in that large deviations between the template and
the given shape usually require manual specification of
shape correspondence for it to work.

One potential limitation of our approach is that the
instantiated shape is only a local optimal solution to the
optimization formula (5). However, the examples show
that in most cases we can find the correct shape instance
even when the subject shape deviates significantly from
the mean shape.

Our current approach to statistical shape modeling re-
lies on manual specification of landmarks to establish cor-
respondence among the shape population. For automatic
correspondence, approaches such as [23, 24] can be used.

11



Future work would extend this approach to FE model-
ing from subject-specific medical images such as computed
tomography or magnetic resonance images. This would by-
pass the need for segmentation of these images.
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