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Abstract

Feature points are used to capture geometric characteristics of an

object and are usually associated with certain anatomical signi�cance

or geometric meaning. The selection of feature points is a fundamental

problem with various applications, for example, in shape registration,

cross-parameterization, sparse shape reconstruction, parametric shape

design, and dimension construction.

In the literature, feature points are usually selected on a single shape

by their di�erential property or saliency, and the information of similar

shapes in the population are not considered. Though carefully chosen

feature points can represent the corresponding shape well, the variations

among di�erent shapes within the population are overlooked.

In this paper, through statistical shape modeling, we evaluate the

feature points by the amount of variance they capture of the shape

population, which leads to an algorithm that sequentially selects and

ranks the feature points. In this way, the selected feature points ex-

plicitly incorporate the population information of the shapes. Then,

we demonstrate how the proposed feature point selection approach can

be integrated in the applications of sparse shape reconstruction, con-

struction of new dimensions and shape classi�cation through sparse

measurements.

The numerical examples have validated the e�ectiveness and e�-

ciency of the proposed approach.

Keywords: statistical shape modeling, feature point selection, shape vari-
ance, shape reconstruction, dimension construction
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1 INTRODUCTION

Feature points are used to capture geometric characteristics of an object
and are usually associated with certain anatomical signi�cance or geometric
meaning. For example, the left and right lateral malleolus points on the
human body model in the CAESAR project [1] are among the anatomical
feature points. The high curvature points and the extremity points are often
used as geometric feature points. In [2], the heel point is de�ned as "the
vertex having the smallest x-coordinate value".

The selection of feature points is a fundamental problem in computer
graphics [3] and in CAD based custom data [4, 5] with various applications.
For example, feature points are used as landmarks to guide the deforma-
tion in shape registration [6, 7, 8]. In motion tracking and 3D animation,
feature points are used as marker points based on which the 3D shape is
reconstructed [9, 10]. In parametric shape design, the selected feature points
are used to generate semantic features [4, 5] and are used as reference points
for constructing meaningful sizing dimensions[2, 11]. The selection of fea-
ture points has many more applications, including shape approximation [12]
where a shape is approximated by a few points that respecting the key fea-
tures, mesh segmentation [13] where each computed segment represents at
least one feature point, and cross-parameterization [14, 15] where the user
de�ned vertices for correspondence are usually selected among meaningful
feature points.

In the literature, feature point is selected on a single shape by its dif-
ferential property or the saliency. For example, in [6] the feature points are
automatically calculated on a shape by scale saliency [16]. In [17] a center-
surround operator on Gaussian-weighted mean curvatures is used to calculate
the saliency map on the shape. In [13], the vertices on the convex hull of
the multi-dimensional scaling (MDS) transform of the 3D mesh are selected
as the feature points. In [9, 4] the landmarks on human body models were
chosen by the anthropometry. In [7] 14 feature points are chosen from among
local protrusion points, high-curvature points, and anatomically meaningful
points.

Being carefully designed, feature points selected by the above approaches
can represent the corresponding shape well. However, the population infor-
mation of similar shapes are not considered and the variations among dif-
ferent shapes in the population are overlooked. Often, capturing the shape
variations in the population is important, especially in sparse shape recon-
struction and parametric shape design.

Shape reconstruction from sparse data is popular in motion tracking [9],
shape completion and animation [18]. The inputs are the coordinates of the
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(a) Feature points on a
shape

(b) Feature points on 40
shapes

(c) Shape reconstruc-
tion

(d) Feature points on a
shape

(e) Feature points on 40
shapes

(f) Shape reconstruc-
tion

Figure 1: The e�ects of di�erent feature points on sparse shape reconstruc-
tion: (a) feature points on the �nger tips; (c) the variations captured by
the feature points over the shape population; (c) shape reconstruction based
on the feature points on the �nger tips by regularized linear regression; (d)
feature points on the �nger valleys; (e) the variations captured by the fea-
ture points over the shape population; (f) shape reconstruction based on the
feature points on the �nger valleys by regularized linear regression.

feature points (sparse markers), and the output is the reconstructed shape.
The mapping from feature points to a complete shape is learned by the re-
gression analysis of the shape examples in the training set on the coordinates
of the feature points [10]. If there exist variations in the population that are
not captured by the feature points, then no matter how sophisticated the
regression method is, the reconstructed shape would be very di�erent from
the real shape, since a part of the population information is missing.

Figure 1 shows the e�ects of di�erent feature points on sparse shape
reconstruction. The feature points in the top row are located at the tips of
the �ngers, the feature points in the bottom row are located at the valleys
of the �ngers. From the perspective of saliency, both of them are prominent
points at high curvature areas. However, as could be seen in Figure 1(b) and
1(e), the feature points in the top row have captured the swings of the �ngers
while the feature points in the bottom row have not. Since swings of �ngers
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are the major variations in the population (compared to size and local shape
changes), failing to capture them would lead to major loss of the population
information. As shown in Figure 1(c) and 1(e), the shape reconstructed by
the feature points in the top row is closer to the real shape than that of the
bottom row.

Similarly for parametric shape design, where the inputs are sizing di-
mensions, the output is the synthesized shape. The mapping from sizing
dimensions to a complete shape is learned by the regression analysis of the
shape examples in the training set on the measured sizing dimensions [5, 4].
The obtained parametric shape model can then be used in, for example,
mass-customization of foot wear [2] and personalized item design (eyeglass)
[11]. As pointed out in [11], there is no standardized method to determine
what suitable dimensions are and how to choose them. In [2], 24-foot dimen-
sions (including heel length and midfoot width) are manually chosen among
the lengths and angles constructed from 14 geometric feature points. In [11],
12 dimensions that are related to facial anatomy are chosen by referring to
the anatomical landmarks. Since capturing population information is helpful
for shape reconstruction and synthesis, we hypothesize that the chosen sizing
dimensions must capture the shape variations in the training set.

In the foregoing, for the purposes of shape reconstruction and synthesis it
is desirable to have the chosen dimensions capture all the major variations in
the shape population. There also exist applications that need the dimensions
to capture speci�c variations in the population. Shape classi�cation is among
such applications. The ability of rapid shape classi�cation is critical in clinic
settings. For example, it can help diagnose healthy and unhealthy anatomical
structures [19] and study the e�ects of surgeries [20]. It is ideal to have
complete 3D shapes for classi�cation. However, due to the tedious and error-
prone process [5] of obtaining neat 3D shape models from images and scanned
point clouds, its applications have been limited. Since the abnormality in
unhealthy and post-surgical structures are often related to some particular
shape variations, it would be helpful to have a few sizing dimensions that are
tightly correlated to such shape variations.

In this paper, statistical shape modeling (SSM) [21, 22] is used to learn
the modes of shape variations within a population. The total variance is
used to measure the amount of variations in the shape population, which is
the squared sums of the projections of the shapes along the variation modes.
Then, a metric is developed to quantify the amount of variance in the shape
population captured by the feature points. The set of feature points that
captures the highest amount of variance in the population is considered the
best and is selected. Based on the selected feature points, a large pool of siz-
ing dimensions are automatically constructed by combinatorially measuring
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the distances and angles composed by the feature points. Then, depending
on the applications, a subset of dimensions are selected from the pool by
either maximizing the variance captured of the total population or of some
particular variation modes.

The selected feature points and dimensions are compared with the ones
chosen by expert. In this paper, the expert system is not referring to any
speci�c expert, it represents the knowledge of groups of people. For exam-
ple, the 67 landmarks on the human body model are chosen by the experts
working on the Cesar project [1]. The landmarks are either anatomical or
geometrical meaningful points that are agreed in common by the commu-
nity. Similarly, the dimensions for measuring the human body shape (height,
waist, breadth girth and the height of the crotch) are evaluated by the public
over a long time.

The remainder of this paper is organized as follows. Section 2 brie�y
overviews the proposed approach. Section 3 introduces the statistical shape
modeling. Section 4 demonstrates how to quantify the amount of variance in
the shape population captured by the feature points and develops the algo-
rithm for feature point selection. Section 5 illustrates how to incorporate the
feature point selection approach in the applications of sparse shape recon-
struction, construction of new dimensions, and shape classi�cation by sparse
measurements. Section 6 presents and analyzes the numerical results. This
paper is concluded in Section 7.

2 Method overview

The proposed feature point selection approach takes two steps as shown in
Figure 2: 1) statistical shape modeling to learn the shape variations in the
population; 2) selecting the feature points by the amount of variance they
capture of the shape population.

Given the training shapes, �rstly, statistical shape modeling [21, 22] is
conducted to learn the mean shape S̄ and the modes of shape variations
Ψ = [ψ1,ψ2, · · · ,ψns−1] of the population, where ns is the number of training
shapes. The modes of shape variations span a linear shape space. Since we
only have ns number of training shapes, the shape space spanned by them is
at most ns−1 dimensional. The mean shape and the variation modes span a
linear shape space, any instance in the shape space can be represented as the
linear combination of the mean shape and the variation modes as shown in
Figure 2. The weights w = [w1, w2, · · · , wns−1]T of the variation modes are
called the shape parameters, whose probability distribution p(w) is learned
from statistical shape modeling of the shape population. Since the variation
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Inputs: training
shapes: {S1 · · ·Sns}

SSM: S = S +
∑
ψiwi

Variance based
feature point selec-
tion: maxf %S(f)

Figure 2: Total variance based feature points selection.

modes are unit vectors, the total variance of the shape population equals the
total variance of the shape parameters var(w)p(w). The foregoing notation
means the variance of w under the distribution of p(w).

Then, given the vector of feature points f =
{

vi1 · · ·vinf

}
, where nf is

the total number of feature points, the conditional probability distribution
of the shape parameters p(w|f) is calculated, the corresponding conditional
variance var(w)p(w|f) is obtained. The amount of variance of the shape pa-
rameters w explained (captured) by the feature points f is simply the dif-
ference between the total variance var(w)p(w) and the conditional variance
var(w)p(w|f) of the shape parameters. The percentage of the total variance
in the shape population captured by the feature points is then:

%w(f) =
var(w)p(w) − var(w)p(w|f)

var(w)p(w)

. (1)

Thus, from the population perspective, the best set of feature points is the
set that captures the highest percentage of the shape variance (1) in the
population. This leads to a forward selection algorithm that sequentially
selects and ranks the feature points.

Then, the selected feature points are incorporated in the applications of:
1) sparse shape reconstruction, 2) construction and selection of new dimen-
sions, and 3) shape classi�cation by sparse measurements.

3 Statistical shape modeling

Statistical shape modeling (SSM) [21, 22] is used to learn the variation modes
of a shape population and the variances along the variation modes. In SSM
each shape is represented by a set of labeled points and is treated as a vector

6



3 STATISTICAL SHAPE MODELING

in the high dimensional space. Principal component analysis (PCA) is con-
ducted to obtain the mean shape and the modes of shape variations. A linear
shape space is spanned by the mean shape and the modes of shape variations.
Through statistical shape modeling, a shape instance is parameterized in the
linear shape space by a few shape parameters, the probabilistic distribution
of the shapes in the linear space is modeled by the probabilistic distribu-
tion of the shape parameters. Statistical shape modeling usually contains
three steps: shape registration, shape alignment, and principal component
analysis.

Given the training set of ns number of shapes S =
{
Sraw

1 ,Sraw
2 , · · · ,Sraw

ns

}
,

in order to correctly calculate the population mean and model the shape vari-
ations, accurate correspondences between the shapes must be built. Other-
wise unrealistic artifacts will be incorporated into the shape variations and
the obtained shape variances will be larger than the actual shape variances
since variances of the artifacts are included.

The goal of shape registration is to �nd the correspondences between two
shapes, which associate a point in one shape to a point in another shape.
Some well established shape registration methods include the rigid ICP (it-
erative closest point) algorithm [23], the non-rigid ICP algorithm [24, 7],
the free-form deformation based approach [25, 26], cross-parameterization
[14, 15] and reparameterization [27, 28]. In this paper, we assume that the
shape models are all complete and discard incomplete shapes in the training
set. For correspondences of incomplete shapes, the method in [29] that com-
putes partial functional correspondence between two shapes can be applied.

In this work, the deformation based approach is used for shape regis-
tration. A reference shape Sref is chosen from among the training shapes{
Sraw

1 , · · · ,Sraw
ns

}
and is deformed to each training shape to �nd the correct

shape correspondences. Ideally, the reference shape should be close to the
mean shape of the population. In practice, the mean shape is unknown ini-
tially, the reference shape is chosen by avoiding the extreme cases that it is
far away from most of the other shapes in the population, since large shape
deformations are usually not robust [8]. The shape registration process takes
three steps: �rstly, the reference shape is rigidly aligned (through rotations
and translations) to the training shape by the rigid ICP algorithm [23]; Then
the reference shape is further deformed to the training shape through itera-
tive free-form deformations [8, 25, 26]; Finally, the vertices of the deformed
reference shape are projected onto the training shape along the directions of
normal vectors. For more details of the registration process please refer to
the paper [8]. Based on the obtained correspondences, the training shapes
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are re-sampled by the same number of points in correspondence

Sk = [v
(k)
1 , · · · ,v(k)

nv
]t, k = 1, · · · , ns, (2)

where Sk is the kth re-sampled training shape, nv is the number of sam-
pling points on each shape, ns is the number of training shapes, and v

(k)
i =

[x
(k)
i , y

(k)
i , z

(k)
i ] are the coordinates of the ith vertex on the kth shape.

Generalized Procrustes analysis [30] is then conducted to align the regis-
tered shapes {S1, · · · ,Sns} to the same coordinate frame and to eliminate the
e�ects of translation and rotation. In the following context, training shapes
{S1, · · · ,Sns} will denote the "re-sampled training shapes in the same coor-
dinate frame" without ambiguity.

Principal component analysis (PCA) is conducted for capturing shape
variations and dimensional reduction. In PCA, each shape is treated as a
vector in R3nv by concatenating the coordinates of the points. The mean
shape of the population is

S =
1

ns

ns∑
k=1

Sk, (3)

the shape covariance matrix is

Σ =
1

ns − 1
ΦΦT , (4)

where Φ = [S1− S, · · · ,Sns − S]. Just as all the covariance matrices do, the
shape covariance matrix Σ describes the patterns and ranges of variations
from the mean S. Through eigen-decomposition, we have

Σψk = λkψk, k = 1, · · · , ns − 1, (5)

where ψ1, · · · ,ψns−1 are the principal components of the covariance matrix
Σ, λ1, · · · , λns−1 are the corresponding eigenvalues. The principal compo-
nents capture the modes of shape variations (also called eigen-shapes). The
eigenvalues are the amount of variances in those components.

Figure 3 shows the training shapes of the human body model and the
corresponding mean shape. Figure 3 shows the �rst three eigen-shapes of
the population. The �rst eigen-shape is related to the change in height, the
second eigen-shape is related to the change in width, and the third eigen-
shape is related to some local shape changes. The obtained mean shape S
and eigen-shapes ψ1, · · · ,ψns−1 span a linear shape space. An instance in
the shape space can be represented by:

S = S +
ns−1∑
k=1

wkψk, (6)
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(a) Training Shapes (b) Mean shape

Figure 3: Shape population of human body: (a) training shapes in the same
coordinate frame; (b) the mean shape. Unit is millimeter.

(a) +Mode 1 (b) +Mode 2 (c) +Mode 3

(d) -Mode 1: height (e) -Mode 2: width (f) -Mode 3: body shape

Figure 4: The �rst three eigen-shapes. Color shows the surface deviation
from the mean shape, unit is millimeter.

9



3 STATISTICAL SHAPE MODELING

where w1 · · ·wns−1 are the weights on each mode and are called the shape
parameters. The shape parameters uniquely determine an instance in the
shape space. For a training shape Si, its shape parameters can be obtained
by projecting it into the shape space:

wi,k = (Si − S)Tψk, i = 1, · · · , ns, k = 1, · · · , ns − 1, (7)

where wi,k means the kth shape parameter for the ith shape.
Practically, we do not incorporate all the eigen-shapes into the model as

in equation (6), for the sake of compactness and noise removal. The noises
are usually come from the errors in shape retrieving processes such as image
segmentation, shape reconstruction and surface recti�cation.

A truncated statistical shape model would be

S = S +
m∑
k=1

wkψk + ε, (8)

where m is the number of modes chosen and can be determined, e.g. from
m∑
k=1

λk/
ns−1∑
k=1

λk ≥ 99%, which means that the �rst m modes should cap-

ture more than 99% of the total shape variances in the training set, where
ε = [ε1, · · · , ε3nv ]T is the random vector that captures the remaining shape
variances in the population, and w = [w1, w2, · · · , wm]T is the truncated
vector of shape parameters.

Assuming that the shapes are normally distributed, the probability den-
sity of the vector of the shape parameters w is:

p(w) = |2πΛ|−
1
2 e−

1
2
wT Λ−1w, ,Λ = diag(λ1, · · · , λm) (9)

where λi is the ith eigenvalue of the principal component analysis, and "diag"
means diagonal matrix.

Figure 5: The distributions of the shape parameters. Unit is millimeter.

Figure 5 shows the distributions of the �rst six shape parameters obtained
by projecting the shapes on the eigen-modes by equation (7). It can be seen
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(a) Cumulative variance (b) Cumulative variance

Figure 6: The percentage variance of the training shapes captured by the
increasing number of (a) eigenvectors; (b) feature points.

that the shapes of the distributions are similar to discs with denser points in
the center and sparser points at the outer area. Thus the normal distribution
would be a good approximation to the true distribution. Figure 6 shows
the cumulative variance of the shape population captured by the increasing
number of eigen-modes (shape parameters).

While most researches leverage the synthesis power of the statistical shape
model and focus on shape synthesis by the mean shape and the eigen-shapes,
we view equations (8) and (9) as the probabilistic description of the shape
space and build our method on it.

4 Feature point identi�cation

Through statistical shape modeling, the eigen-modes of the shape population
are learned and are ranked by the amount of percentage variance they capture
of the shape population, as shown in Figure 6(a). Since the goal of feature
point selection is to capture as much information as possible of the shape
population, in this section, the feature points are selected and ranked by
the amount of percentage variance they capture of the shape population, as
shown in Figure 6(b).

With the statistical shape model (8), a shape in the population is param-
eterized by a few shape parameters {w1, · · · , wm}, and the major amount
of variance (i.e. 99.5%) in the population is captured by the variances of
the shape parameters {λ1, · · · , λm}, which are the eigenvalues of the shape
covariance matrix Σ. The remaining variance is captured by the residual
vector ε in (8). Since it is not meaningful to capture the variance in the
residual vector, the selected feature points are targeted to capture as much
variance in the shape parameters as possible.
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4 FEATURE POINT IDENTIFICATION

The inputs of the feature point selection are the statistical shape model
and the number of points to be selected: nf . The outputs are the vertex
indices of the selected feature points I =

{
i1, · · · , inf

}
⊂ {1, · · · , nv}, where

nv is the total number of vertices. The feature points on the shape vectors
can then be sampled by the indices, for example, the vectors of feature points
on the ns number of training shapes are:

F = [f1, f2, · · · , fns ], (10)

where fk = [v
(k)
i1
,v

(k)
i2
, · · · ,v(k)

inf
]T is the vector of feature points sampled on

the kth training shape, which is abbreviated as the feature vector in the
latter context.

Truncating the rows of equation (8) according to the indices of the feature
points, we have:

f = Sf + Ψfw + εf , (11)

where f is the corresponding rows of the shape vector S, Sf is the corre-
sponding rows of the mean shape S, Ψf is the corresponding rows of the
matrix of eigenvectors Ψ = [ψ1 · · ·ψm], and εf is the corresponding rows of
the residual vector ε.

The covariance matrix of the shape parameters are known from the prin-
cipal component analysis Λ = diag(λ1, · · · , λm). Assuming that the elements
εi, i = 1, · · · , 3nv of the residual vector ε are independent and identically dis-
tributed, the covariance matrix of the residual vector is diagonal and can be
modeled by

Cov(ε) = εI, Cov(εf ) = εIf

where I is the identity matrix and If is the corresponding truncation, ε is
the variance of each element εi in the residual vector and is modeled by

ε =
ns−1∑

k=m+1

λk/3nv + c, (12)

where
ns−1∑

k=m+1

λk/3nv captures the remaining variances in the discarded eigen-

modes and c accounts for the variances brought by the errors in the shape
retrieving process such as laser scanning or image segmentation.

Since the covariance matrices of the shape parameters and the residual
vector are now known, the covariance matrix of the feature vector f and
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4 FEATURE POINT IDENTIFICATION

the covariances between the feature vector and the shape parameters can be
calculate from equation (11) as

Cov(f , f) = ΨfΛΨT
f + εI, Cov(f ,w) = ΨfΛ, Cov(w, f) = ΛΨT

f , (13)

where Cov represents the covariance matrix.
In statistical shape modeling, it is assumed that the shape parameters

are normally distributed. Since equation (11) represents a linear relationship
between f and w, so their joint distribution is also normal distribution:

p(f ,w) ∼ N(

[
Sf

0

]
,

[
ΨfΛΨT

f + εI ΨfΛ
ΛΨT

f Λ

]
), (14)

where N(·, ·) stands for the normal distribution with the �rst parameter
its mean and the second parameter its covariance matrix. The conditional
distribution of the shape parameters w given the feature vector f is:

p(w|f) ∼ N
(
ΛΨT

f (ΨfΛΨT
f + εI)−1(f − Sf ), Λ− ΛΨT

f (ΨfΛΨT
f + εI)−1ΨfΛ

)
.(15)

The �rst term inside N(·, ·) is the conditional mean, and the second term is
the conditional covariance matrix. Originally, the shape parameters are dis-
tributed in a relatively larger area shaped by its covariance matrix Λ. Given
the observation of the feature points f , the shape becomes less free since it
has to conform with the observed feature points. So the shape parameters
are also less free and are distributed in a smaller area shaped by the condi-
tional covariance matrix Λ− ΛΨT

f (ΨfΛΨT
f + εI)−1)ΨfΛ, which tells us the

remaining covariance structure of the shape parameters given the observa-
tion of the feature points. The remaining variance in the shape parameters
is trace(Λ − ΛΨT

f (ΨfΛΨT
f + εI)−1ΨfΛ), thus the total amount of variance

in the shape parameters explained by the feature points is

rw(f) = trace(Λ)− trace(Λ− ΛΨT
f (ΨfΛΨT

f + εI)−1ΨfΛ) (16)

= trace(ΛΨT
f (ΨfΛΨT

f + εI)−1ΨfΛ), (17)

and the percentage of the variance in the training shapes explained by the
feature points is

%S(f) = trace(ΛΨT
f (ΨfΛΨT

f + εI)−1ΨfΛ)/
ns−1∑
k=1

λk. (18)

By equation (18), we have De�nition 1 for the selection of feature points.
De�nition 1: The most important feature points on the shapes are

the ones that capture the highest percentage of the variance of the shape
population.
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4 FEATURE POINT IDENTIFICATION

By De�nition 1, the optimization formula for feature point selection is:

max
{i1···inf

}⊂{1···nv}
%S(f). (19)

Assuming that the set of training shapes well represent the underlying
shape population and the subject-shapes that will be encountered in future
follow the same distribution p(f ,w), we have the expectation of the squared
error of shape reconstructions by the chosen feature points is:

Ese =

∫
(wtest − w̃)T (wtest − w̃)p(wtest|f)

= trace(Λ− ΛΨT
f (ΨfΛΨT

f + εI)−1ΨfΛ), (20)

where w̃ = ΛΨT
f (ΨfΛΨT

f + εI)−1(f − Sf ) is the conditional mean in (15)
and is used to estimate the shape parameters from the positions of the fea-
ture points. If the feature points are selected according to (19), then Ese is
minimized.

However, the optimization problem in (19) is NP hard [31] whose global
optimal can only be achieved by exhaustive search, which is very time con-
suming. For example, selecting 30 feature points from the human body shape
with 6000 vertices will evaluate equation (18) for C30

6000 = 7.75e + 80 times,
which is computationally prohibitive. Instead of optimizing globally, here
a forward selection algorithm is developed for two reasons: 1) it e�ciently
�nds a suboptimal solution that is good enough; 2) it gives a ranking of the
selected feature points that tells which points are more important and which
are less.

Algorithm 1 Forward selection for feature point identi�cation

1. Initialize the set of vertex indices for the feature points to be empty:
I = {}, and the number of feature points nf = 0.

2. Update nf = nf + 1 and I = I ∪ {i} if i ∈ {1, · · · , nv} maximizes
%S(vI∪{i}), where vI∪{i} = [vT

I ,vi]
T .

3. Exit if %S(vI) < %∗ (e.g. %∗ = 0.98); else go to step 2.

It should be noted that in each step in Algorithm 1, the best point is
found by exhaustively searching all the candidate points. For example, the
�rst point is found by evaluating equation (18) with respect to all the vertices.
The time complexity of Algorithm 1 is O(nvnf ), where nv is the number of
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4 FEATURE POINT IDENTIFICATION

(a) The �rst point (b) The second
point

(c) The third point (d) The fourth point

(e) %S(vi) (f) %S(vI1 ,vi) (g) %S(vI2 ,vi) (h) %S(vI3 ,vi)

Figure 7: Feature points (yellow balls) on the human body model selected by
Algorithm 1. The color shows the percentage variance %S(vI,vi) captured by
moving the corresponding feature point on the shape surface. The warmest
color corresponds to the highest percentage of variance. Unit is millimeter.

vertices and nf is the number of feature points, which is much smaller than
the combinatorial number C

nf
nv .

Similar greedy algorithms have been applied in [32, 33] to select the most
powerful feature points for pairwise shape registration by iterative closest
point algorithm. For example in [33] a two-phase feature point selection
algorithm is developed. In the forward selection, at each step the point that
has the maximum projection onto the �rst eigenvector is selected. In the
backward elimination, the points that are least signi�cant in the current
eigenvectors are removed. The forward selection and backward elimination
are nested so to avoid bad local minimums.

Figure 7 shows the �rst four feature points selected by Algorithm 1. The
color shows the percentage variance %S(vI,vi) captured by moving the cor-
responding feature point on the surface of the shape. The warmest color
corresponds to the highest percentage of variance, and is where the next
feature point is put.
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5 APPLICATIONS

5 Applications

In this section, we demonstrate how to incorporate the feature point identi-
�cation approach in the below applications: 1) sparse shape reconstruction;
2) dimensions construction and selection; 3) shape classi�cation by sparse
measurements.

5.1 Sparse shape reconstruction

The feature points are selected by maximizing the amount of variance they
capture of the shape population, which makes them powerful for being the
marker points in sparse shape reconstruction.

The shape reconstruction is based on the statistical shape model and
takes two steps:

1) Estimate the corresponding shape parameters w = [w1, w2, · · · , wm]T

by the coordinates of the observed feature points

w̃ = ΛΨT
f (ΨfΛΨT

f + εI)−1(f − Sf ), (21)

note that w̃ is the conditional mean in (15). Equation (21) represents a linear
relationship between the feature points and the shape parameters and could
be viewed as a type of regularized linear regression.

2) Reconstruct the shape by the estimated shape parameters S̃ = S+Ψw̃.
Through statistical shape modeling, the probabilistic distribution p(w) of

the shape parameters is obtained as in (9). Without any other information,
the maximum likelihood estimation of the shape parameters will be w = 0,
which is just the mean shape. Given the information of the feature vector
f , the conditional distribution p(w|f) of the shape parameters is obtained
as in equation (15). The maximum likelihood estimation of w is then the
corresponding conditional expectation as in equation (21).

5.2 Dimension construction and selection

As pointed out in [11], there is no standardized method to determine what
the suitable dimensions are and how to choose them for the parametric shape
design. In their study, twelve dimensions that are related to facial anatomy
are chosen. In [7], 24 dimensions were manually constructed from the 14
geometrical feature points chosen by experts in anthropometry. Here, a way
to automatically construct and select sizing dimensions is given. It takes two
steps: �rstly, a dimension pool that contains a large number of dimensions is
automatically constructed. Secondly, a subset of the dimensions in the pool
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is selected and ranked by the amount of variance they capture of the shape
population.

The dimension pool is composed of lengths and angles obtained by mea-
suring the feature points combinatorially. For example, given the feature
points vi1 ,vi2 , · · · ,vinf

, C2
nf

= nf (nf − 1)/2 number of length dimensions
are constructed: {

l1, l2, · · · , lnf (nf−1)/2

}
. (22)

Similarly, 3C3
nf

= nf (nf − 1)(nf − 2)/2 number of angle dimensions are
constructed by each time choosing three feature points and measuring the
angles of the composed triangle:{

θ1, θ2, · · · , θnf (nf−1)(nf−2)/2

}
. (23)

Combined with the list of traditional measurements [1], a big pool of
dimensions is constructed:

P = {l1, l2, · · · , lN} . (24)

A subset of dimensions L = [lj1 , lj2 , ljnl
] is selected from the pool P by maxi-

mizing the variance they capture of the shape population.
It is helpful to exploit the existing human knowledge when possible. In

such cases the dimensions that are automatically derived and constructed
from our algorithm act as a complementary for the traditional measurements
and are aimed to capture the shape variations that are not captured by the
traditional measurements.

It is worth noting that P usually contains hundreds or even thousands of
dimensions (e.g. C2

12 = 66, 3C3
12 = 660). Some of the dimensions in P may be

correlated or even dependent on each other. However, the goal of dimension
construction is to create enough number of candidates for the dimension
selection. It doesn't matter whether the dimensions in P are dependent or
not, since the selected dimensions will be as independent as possible. Any
dimension that is dependent on the dimensions in L will not be selected since
it has no contribution to capturing the population variance.

In order to compute the amount of variance of the shape population cap-
tured by the selected dimensions, the joint probability p(w,L) of the shape
parameters w and the sizing dimensions L is learned from the training shapes.
The covariance matrix Λ of the shape parameters is already known by sta-
tistical shape modeling. The covariance matrix Σl of the selected dimensions
L is obtained by measuring on the training shapes:

Σl =
ns∑
k=1

(Lk − L)(Lk − L)T/(ns − 1), (25)
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where Lk are the measurements on the kth training shape, and L =
ns∑
k=1

Lk/ns

is the mean dimension vector over the training shapes. The covariance matrix
between the shape parameters and the sizing dimensions is obtained by:

Σlw =
ns∑
k=1

(Lk − L)wT
k /(ns − 1), (26)

where wk is the vector of shape parameters for the kth training shape. Under
the assumption of normal distribution, we have the joint probability

p(L,w) ∼ N(

(
L
0

)
,

(
Σl Σlw

Σwl Λ

)
), (27)

where N(·, ·) stands for the normal distribution. The corresponding condi-
tional probability distribution is:

p(w|L) ∼ N(ΣwlΣ
−1
l (L− L), Λ− ΣwlΣ

−1
l Σlw), (28)

where the �rst term inside N(·, ·) is the conditional mean, and the second
term is the conditional covariance. The variance in the shape parameters
captured by the selected dimensions is:

var(w)p(w) − var(w)p(w|L) = trace(Λ)− trace(Λ− ΣwlΣ
−1
l Σlw)

= trace(ΣwlΣ
−1
l Σlw) (29)

The percentage of the variance in the training shapes explained by the se-
lected dimensions is:

%S(L) = trace(ΣwlΣ
−1
l Σlw)/

ns−1∑
k=1

λk. (30)

Based on the foregoing deducing, we have De�nition 2 for the dimension
selection.

De�nition 2: the best set L = [lj1 , lj2 , · · · , ljnl
] ⊂ P of dimensions is

the one that captures the highest percentage of the variance of the shape
population:

max
{lj1 ···ljnl

}⊂P
%S(L). (31)

Assuming that the set of training shapes well represent the underlying
shape population, the shape parameters and sizing dimensions are normally
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distributed, and the subject-shapes that will be encountered in future follow
the same distribution p(L,w), we have the expectation of the squared error
of parametric shape synthesis by the selected dimensions is:

Ese =

∫
(wtest − w̃)T (wtest − w̃)p(wtest|L)

= trace(Λ− ΣwlΣ
−1
l Σlw), (32)

where w̃ = ΣwlΣ
−1
l (L−L) is the conditional mean in (28) and is used to syn-

thesize the shape parameters from the sizing dimensions. If the dimensions
are selected according to (31), then Ese is minimized.

Similar as in formula (19), the optimization problem in (31) is NP hard
[31]. A forward selection algorithm is developed for 1) e�cient dimension
selection, and 2) ranking the selected dimenions.

Algorithm 2 Forward selection for dimension identi�cation

1. Initialize the set of dimensions to be empty: L = {}, and the number
of dimensions nl = 0.

2. Update nl = nl + 1 and L = [LT , lj]
T if lj ∈ {l1, · · · , lN} maximizes

%S([LT , lj]
T ).

3. Exit if %S(L) < %∗ (e.g. %∗ = 0.98); else go to step 2.

The selected dimensions can be applied in the parametric shape design
[4], the mass-customization [7] and the personalized item design [11], since
a faithful 3D shape model of the given subject can be e�ciently synthesized
by the conditional mean in (28).

5.3 Shape classi�cation by key dimensions

Shape classi�cation is of critical importance in clinics. It can help diagnosis
healthy and unhealthy anatomical structures [19] and study the e�ects of
surgeries [20]. It is ideal to have complete shape models for classi�cation
and comparing. However, due to the tedious and error-prone process [5]
of obtaining neat shape models from images and scanned point clouds, its
applications have been limited.

In this section an approach is proposed to construct and select dimensions
that can e�ectively distinguish two di�erent groups of shapes, it takes two
steps:
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1) Identify the shape parameters ŵ = [wi1 , · · · , wid ]T ⊂ [w1, · · · , wm] that
are related to group di�erences. Since the shape parameters are uncorrelated
to each other due to principal component analysis, the student-t-test is con-
ducted for each shape parameter separately to decide whether that shape
parameter shows di�erences across the two groups.

2) The dimensions are selected to capture the variances in the selected
shape parameters ŵ = [wi1 , · · · , wid ]T :

max
{lj1 ···ljnl

}⊂P
%ŵ(L) = trace(ΣŵlΣ

−1
l Σlŵ)/

d∑
k=1

λik . (33)

6 Numerical examples

The numerical examples are used to test the proposed feature point identi�-
cation approach and to demonstrate its applications in sparse shape recon-
struction, construction of new dimensions and shape classi�cation by sparse
measurements.

6.1 The Caesar human body models

The Caesar human body database [1] is used to demonstrate the feature point
identi�cation and its applications in sparse shape reconstruction and con-
struction of new dimensions. The human body shape models are represented
by boundary triangulations, and the 4308 �tted meshes {S1,S2, · · · ,S4308}
in [34] are used in this paper. The meshes in [34] are already sampled by the
same number of points in correspondence thus non-rigid shape registration
is not needed as a pre-processing step. Only the last two steps of statisti-
cal shape modeling are performed (general Procrustes analysis and principal
component analysis). Among the 4308 shape models, 4092 shapes are used
as the training shapes to learn the statistical shape model, select the feature
points, and construct new dimensions, 216 shapes are used as the testing
shapes for validation. Ideally, to eliminate the sampling bias, the training
shapes and testing shapes should be sampled randomly from the database,
however, for the repeatability of the results, the testing shapes are sampled
by an interval of 20:

Stest = {S1,S21,S41, · · ·S4301} . (34)

The remaining shapes are used as the training shapes:

Strain = {S2,S3, · · · ,S20,S22,S23, · · · ,S40, · · · ,S4308} . (35)
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6.1.1 Feature point identi�cation

At the previous section in Figure 7 we show the �rst four feature points
selected from the 6449 vertices by Algorithm 1. Figure 8 shows more inter-
mediate results as Algorithm 1 goes from nf = 5 to nf = 30, where nf is the
number of feature points. The top and bottom rows in Figure 8 show the
front and back views of the human body model. The corresponding statistical
shape model is as shown in Section 2.

(a) nf = 5 (b) nf = 10 (c) nf = 20 (d) nf = 30

Figure 8: The selected feature points (yellow sphere) on the human body
model: (a) 5 feature points; (b) 10 feature points; (c) 20 feature points; (d)
30 feature points. The upper and lower rows show the front and back views.
Unit is millimeter.

As shown in Figure 7 and Figure 8(a), the �rst point is placed at the
armpit, whose position is highly correlated with the �rst two variation modes
(height and width); the second point is placed near the ear (the real ear is
missing due to smoothing), which captures the variations above the shoul-
der; the third and fourth points are placed at the wrists, which capture the
variations in the arm length and poses, the �fth point is at the waist, which
tell us something about the lower body (i.e. waist height and width).

Checking the other sub-�gures in Figure 8, it can be seen that the selected
feature points distribute evenly on the human body and many of them are

21



6.1 The Caesar human body models 6 NUMERICAL EXAMPLES

at the anatomically meaningful places. For example, the point at the belly
button, the points at the toes and heels, and the points at the joints (knee
joints, arm joints), which shows the reasonability of Algorithm 1.

(a) Front view (b) Back view (c) Front view (d) Back view

Figure 9: The 67 feature points selected by (a) and (b) Algorithm 1, (c) and
(d) well de�ned anatomical landmarks from CAESAR. Unit is millimeter.

Figure 9 compares the 67 feature points selected by Algorithm 1 and the
67 well de�ned anatomical landmarks in CAESAR project [1]. It can be seen
that the feature points selected by Algorithm 1 are distributed more evenly.
For example, the anatomical landmarks from CAESAR database do not have
points on the hip, however the shape variation of hip is non-negligible across
the population.

In the foregoing, the feature points are selected from all the 6449 vertices
on the human body model by Algorithm 1. However, the precise positions
of some of the selected feature points are hard to locate (e.g. the points in
the vast middle area of the belly). Instead of selecting from all the vertices,
Algorithm 1 can be applied to select feature points from pre-de�ned anatom-
ical landmarks, whose positions can be measured on the given subject with-
out ambiguity. Figure 10 shows the most informative feature points (with
nf = 5, 10, 20, 30 respectively) selected from the 67 well-de�ned anatomic
landmarks by Algorithm 1.

6.1.2 Sparse shape reconstruction

In this section, the selected feature points are used as the markers in sparse
shape reconstruction. The positions of the feature points f on the testing
shapes are measured and a new shape S̃test

i = S + Ψw̃(f) is constructed
by the statistical shape model. The shape parameters w̃ are estimated by
equation (21) by the feature points f . The surface deviation between the
reconstructed shape and the original shape is used to evaluate the quality of
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(a) nf = 5 (b) nf = 10 (c) nf = 20 (d) nf = 30

Figure 10: Feature points selected from the anatomic landmarks: (a) 5 fea-
ture points; (b) 10 feature points; (c) 15 feature points; (d) 20 feature points.
The upper and lower rows show the front and back views. Unit is millimeter.
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the reconstruction. The mean surface deviation is calculated as below:

di =
1

nv

nv∑
j=1

‖vtesti
j − ṽtesti

j ‖, i = 1, · · · , 216, (36)

where vtesti
j is the position of a vertex on the ith testing shape, ṽtesti

j is the
position of the vertex on the reconstructed shape.

(a) Stest
1 (b) Stest

25 (c) Stest
50 (d) Stest

75

(e) Algo. 1:

S̃test
1 (fv)

(f) Algo. 1:

S̃test
25 (fv)

(g) Algo. 1:

S̃test
50 (fv)

(h) Algo. 1:

S̃test
75 (fv)

(i) Anatomy:

S̃test
1 (fa)

(j) Anatomy:

S̃test
25 (fa)

(k) Anatomy:

S̃test
50 (fa)

(l) Anatomy:

S̃test
75 (fa)

Figure 11: Sparse shape reconstruction by the selected feature points. Top
row: the test shapes; middle row: the shapes reconstructed by the 67 feature
points fv selected by Algorithm 1 from the 6449 vertices; bottom row: the
shapes reconstructed by the 67 anatomical landmarks fa. The color shows
the value of surface deviation. Unit is millimeter.

Figure 11 shows the results of sparse shape reconstruction by the 67
feature points selected from the 6449 vertices (middle row) and by the 67
anatomical landmakrs (bottom row). It can be seen that the maximum
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surface deviations in the middle row are smaller than that of the bottom
row.

Figure 12: The mean surface deviations of the shape reconstructions with
di�erent number of feature points. Red curve: shape reconstructions by
the feature points fv selected from the 6449 vertices; Blue curve: shape
reconstructions by the feature points fa selected from the 67 anatomical
landmarks. Unit is millimeter.

As shown in Figure 12 are the mean surface deviations (36) of the shape
reconstructions with di�erent number of feature points. The red color cor-
responds to the shape reconstructions by the feature points fv selected from
the 6449 vertices; the blue color corresponds to the shape reconstructions by
the feature points fa selected from the 67 anatomical landmarks. The red
and blue curve in Figure 12 show the average of the mean surface deviations

of the reconstructions over the 216 testing shapes: d =
216∑
i=1

di/216 with re-

spect to the feature points selected from the 6449 vertices and from the 67
anatomical landmarks. The error bar shows the standard deviation of the

mean surface deviation over the 216 testing shapes:

√
1

215

216∑
i=1

(di − d)2. It

could be seen that as the number of feature points increases, the mean sur-
face deviation decreases. At last, the average of the mean surface deviation
is 2.47mm for the red curve and is 2.86mm for the blue curve in Figure 12,
which shows the accuracy of the reconstruction.

Table 1 shows the values of the mean surface deviations, where nf is the

number of feature points, d
(1)

is the mean surface deviation of the recon-

struction by the feature points selected from all the vertices, d
(2)

is the mean
surface deviation of the reconstruction by the feature points selected from
the anatomical landmarks.
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Table 1: Reconstruction error by di�erent number of feature points: mm

nf 5 10 15 20 30 40 50 67

d
(1)

10.81 6.08 4.26 3.51 2.95 2.73 2.59 2.47

d
(2)

10.60 6.37 4.50 3.73 3.20 3.02 2.93 2.86

It can be seen that the mean surface deviations in the �rst row are all
smaller than that in the second row except for the case of nf = 5. That's be-
cause the feature points of the �rst row are selected from a much larger pool
than that that of the second row. This also demonstrates the e�ectiveness of
Algorithm 1, since the selected feature points in the �rst row are more pow-
erful than the expert de�ned anatomical landmarks. For the case of nf = 5,
the mean surface deviation in the �rst row is slightly larger (10.81mm vs
10.60mm) than that in the second row, this is because �rstly Algorithm 1
is a greedy algorithm and is sensitive to initialization, and secondly, the 67
anatomical landmarks are also meaningful and informative points that well
represent the human body shape and are obtained by experts in anthropome-
try. When selecting just a few feature points (e.g. nf = 5), the 67 anatomical
landmarks may be good candidates to select from.

(a) Randomly gener-
ated from the 6449
vertices

(b) Randomly gen-
erated from the
anatomical landmarks

Figure 13: The 20 feature points randomly generated from (a) the 6449
vertices, (b) the 67 anatomical landmarks. Unit is millimeter.

To further validate the capability of the feature points selected from the
6449 vertices and from the 67 anatomical landmarks, their performances in
sparse shape reconstruction are compared with 100 sets of points randomly
generated from the 6449 vertices and from the 67 anatomical landmarks
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respectively. Figure 13 shows two examples of randomly generated feature
points.

(a) nf = 5 (b) nf = 10

(c) nf = 15 (d) Di�erence in the mean surface
deviation

Figure 14: Mean surface deviations of the reconstructions of the 216 testing
shapes by the selected feature points (Algorithm 1) and by the 100 sets of
randomly generated points: (a) 5 feature points; (b) 10 feature points; (c) 15
feature points; (d) di�erence in the mean surface deviations (the reference is
Algorithm 1). Both of the points are selected from the 6449 vertices.

Figure 14 shows the mean surface deviations of the human shape recon-
structions obtained by the selected feature points (Algorithm 1) and by the
100 sets of randomly generated feature points. Both of the feature points
are selected from the 6449 vertices. It can be seen that the errors of the
human shape reconstructions obtained by the selected feature points (Algo-
rithm 1) are smaller than that by the randomly generated feature points.
The error curves (red) of the feature points selected by Algorithm 1 stay at
the bottom of all the errors curves in Figure 14(a), 14(b) and 14(c). Fig-
ure 14(d) shows the di�erences in the mean surface deviations of the human
shape reconstructions obtained by the selected feature points (Algorithm 1)
and by the randomly generated points. The curve shows the average di�er-
ence over the 216 testing shapes and over the 100 set of randomly generated
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points: 1
100

100∑
j

1
216

216∑
i=1

(d
randomj

i − di), the error bar shows the standard devia-

tion of d
randomj

i −di, where di is the mean surface deviation of the ith testing
shape reconstructed based on the feature points selected by Algorithm 1 and
d
randomj

i is the mean surface deviation of the ith testing shape reconstructed
based on the jth set of randomly generated feature points. It can be seen
that the shape reconstructions obtained by the feature points selected by
Algorithm 1 are more precise than that by the randomly generated feature
points. However, as the number of feature points increases, the di�erence
becomes smaller. That is due to the compactness of the statistical shape
model (the �rst 39 eigen-modes captures more than 99% of the total shape
variance), so we don't need too many feature points to capture the major
shape variance in the population. Some of the feature points will become
redundant as the number of feature points increases.

(a) nf = 5 (b) nf = 10

(c) nf = 15 (d) Di�erence in the mean surface de-
viation

Figure 15: Mean surface deviations of the reconstructions of the 216 testing
shapes by the selected feature points (Algorithm 1) and by the 100 sets of
randomly generated points: (a) 5 feature points; (b) 10 feature points; (c) 15
feature points; (d) di�erence in the mean surface deviations (the reference is
Algorithm 1). Both of the points are selected from the anatomical landmarks.
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Figure 15 shows the mean surface deviations of the human shape recon-
structions obtained by the selected feature points (Algorithm 1) and by the
100 sets of randomly generated feature points. Both of the feature points are
selected from the 67 anatomical landmarks. It can be seen that the errors of
the human shape reconstructions obtained by the selected feature points (Al-
gorithm 1) are smaller than that by the randomly generated feature points.
The error curves (red) of the feature points selected by Algorithm 1 stay at
the bottom of all the errors curves in Figure 15(a), 15(b) and 15(c). Fig-
ure 15(d) shows the di�erences in the mean surface deviations of the human
shape reconstructions obtained by the selected feature points (Algorithm 1)
and by the randomly generated points. The curve shows the average di�er-
ence over the 216 testing shapes and over the 100 sets of randomly generated
points, the error bar shows the standard deviation of the di�erences. It can
be seen that the shape reconstructions obtained by the feature points se-
lected by Algorithm 1 are more precise than that by the randomly generated
points.

6.1.3 Dimension construction and selection

The 12 most important feature points (the percentage variance captured =
96.8%) selected from the 67 anatomical landmarks are used for dimension
construction. Based on which C2

12 = 66 lengths and 3C3
12 = 660 angles are

constructed. Combined with the 25 dimensions from the traditional mea-
surement list:

• Circumferences: ankle circ, chest girth, chest circ under bust, head
circ, waist circ, vertical trunk circ, hand circ, neck base circ, hip circ
maximum, thigh circ maximum, hip circ maximum height.

• Lengths: stature, foot length, arm length (spine-shoulder), arm length
(spine-elbow), arm length (spine-wrist), head length, bizygomatic breadth,
head breadth, waist height preferred, shoulder (bideltoid) breadth,
crotch height, buttock-knee length, face length, hip breadth.

We have a pool of 751 dimensions: P = {l1 · · · l751}. Figure 16 shows the 25
dimensions from the traditional measurement list.

In this section, the dimensions that are selected by expert and by Algo-
rithm 2 are compared. The 4092 training shapes are used to select mean-
ingful dimensions among the population. The 216 testing shapes are used
to test the selected dimensions in shape synthesis (28). The dimensions are
�rstly selected from just the traditional measurement list, whose results are
then compared with the selections from the big pool P = {l1 · · · l751}, which
includes the constructed dimensions.
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(a) Circumferences (b) Lengths

Figure 16: Dimensions from the traditional measurement list: (a) the 11
circumferences; (b) the 14 lengths. Unit is millimeter.

(a) Algo. 2: 4 dimensions (b) Algo. 2: 8 dimensions (c) Algo. 2: 12 dimensions

(d) Expert: 4 dimensions (e) Expert: 8 dimensions (f) Expert: 12 dimensions

Figure 17: Dimension selection from the traditional measurement list. Unit
is millimeter.

Figure 17 shows the results of dimension selection from the traditional
measurement list. Two selection approaches are used: dimension selection
by Algorithm 2 and dimension selection by expert.

The �rst column shows the most important 4 dimensions selected by the
two approaches. The dimensions selected by Algorithm 2 are: the height
of the body, the waist, the circumference of the buttock, and the height of
the waist. The dimensions selected by expert are: the height of the body,
the waist, the circumference of the chest, and the height of the crotch. The
second and third columns show the most important 8 dimensions and 12
dimensions selected by the two approaches.

Figure 18 shows the errors of shape reconstructions of the 216 testing
shapes by the dimensions selected from the traditional list. Figure 18(a)
shows the errors of shape reconstructions by the dimensions selected by Al-
gorithm 2. Figure 18(b) shows the di�erences in the shape reconstructions by
the expert selected dimensions and by the dimensions selected by Algorithm
2. It could be seen that Algorithm 2 gives slightly smaller mean surface
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(a) Mean surface deviation (b) Di�erence in the mean surface de-
viation

Figure 18: Reconstruction errors with di�erent numbers of dimensions se-
lected from the traditional list: (a) mean surface deviations of the recon-
structions by the dimensions selected by Algorithm 2; (b) di�erences in the
mean surface deviations of the reconstructions by the dimensions selected
by Algorithm 2 and by expert (the reference is Algorithm 2). The unit is
millimeter.

deviations, in a di�erence of about 0.5mm. Though such a di�erence is not
signi�cant, it shows that at least the proposed algorithm can �nd as good
dimensions as found by the expert, especially considered that the dimension
pool only has 25 dimensions. One thing observed is that the reconstruction
error doesn't decrease much as we increase the number of dimensions in Fig-
ure 18(a). This means that some of shape variations in the population are
not captured by the list of traditional measurements and new dimensions
need to be constructed, which is better illustrated by Figure 19.

Figure 19 shows the con�dence region of the conditional distributions of
the shape parameters in the training set, which is obtained from equation
(27). The red point shows the true shape parameter of the testing shape be-
ing investigated. It can be seen that as the number of dimensions increases,
the area of the con�dence region of p(w1, w2|L) decrease obviously, which
means that the information provided by the additional dimensions can e�ec-
tively localize the �rst two shape parameters of the unknown testing shape.
However, the area of the con�dence region of p(w3, w4|L) barely decreases,
which means that the information provided by the additional dimensions are
not relevant.

Figure 20 shows the results of dimension selection from the combined
pool P, which contains 751 dimensions (25 from the traditional measurement
list and 726 constructed from the selected feature points). The �rst column
shows the most important 4 dimensions. It can be seen that the lengths from
the nose to both hands are selected from the list of constructed dimensions.
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(a) 4 dimensions (b) 8 dimensions (c) 12 dimensions

(d) 4 dimensions (e) 8 dimensions (f) 12 dimensions

Figure 19: Con�dence regions (66%, 90%, 99%) of the conditional distribu-
tions p(w1, w2|L) (upper row) and p(w3, w4|L) (bottom row). The red point
shows the true shape parameter of the testing shape being investigated. Unit
is millimeter.

The second and third columns show the most important 8 dimensions and
12 dimensions selected from the combined pool P. It can be seen that some
angles are selected, which are constructed by the line segments connecting
the feature points. The angles can be computed by the edge lengths of
the corresponding triangles. The edge lengths can be precisely measured
by vernier caliper, since the feature points are selected from well-de�ned
anatomical landmarks.

Figure 21 shows the reconstructions by the selected dimensions. The �rst
row shows the shapes reconstructed by the expert selected dimensions, the
second row shows the shapes reconstructed by the dimensions selected from
the combined pool. It can be seen that the shapes reconstructed by the
dimensions selected from the combined pool by Algorithm 2 have smaller
surface deviations.

Figure 22 shows the errors of shape reconstructions of the 216 testing
shapes by the dimensions selected from the combined pool P by Algorithm 2.
It could be seen that the reconstruction error deceases linearly as the number
of dimensions increases, and is much smaller than the errors in Figure 18,
where the dimensions are only selected from the traditional list.

Figure 23 shows the con�dence region of the conditional distributions
of the shape parameters. It can be seen that as the number of dimen-
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(d) 4 dimensions (e) 8 dimensions (f) 12 dimensions

Figure 20: Dimensions selected from the combined pool P by Algorithm 2:
(a) the 4 most important dimensions, (b) the 8 most important dimensions,
(c) the 12 most important dimensions. The dimensions in the upper row are
the constructed lengths and angles, the dimensions in the lower row are the
traditional measurements. Unit is millimeter.

sions increases, the areas of the con�dence regions of both p(w1, w2|L) and
p(w3, w4|L) decrease obviously, which means that the information provided
by the additional dimensions can e�ectively localize the shape parameters, in-
cluding the third and fourth shape parameter, of the unknown testing shape.
That demonstrates the necessity and e�ectiveness of the new dimensions
constructed by the feature points.

6.2 The rabbit tibia example

The rabbit tibia models are used to demonstrate shape classi�cation by sparse
measurements. The database is come from [20]. As show in Figure 24(a)
there are 64 rabbit tibias, among which 32 are normal tibias and 32 had
surgery on the proximal part. The tibias are scanned 8 weeks after the
surgery. It is know from [20] that the surgery do a�ect the growth of the
rabbit tibias. In this study we want to extract the dimensions on the tibia
shape that can e�ectively distinguish the surgical tibias and the normal tibias.
The selected dimensions will be used in future studies of surgical e�ects since
it can e�ectively capture the shape di�erences caused by the surgery.

6.2.1 Statistical shape modeling

Statistical shape modeling is used to extract the population information of
the rabbit tibias. The iterative free form deformation approach [26, 8, 35]
is applied in the shape registration of the rabbit tibias. Since the shapes of
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(a) S̃test
1 (Lt) (b) S̃test

25 (Lt) (c) S̃test
50 (Lt) (d) S̃test

75 (Lt)

(e) S̃test
1 (Lp) (f) S̃test

25 (Lp) (g) S̃test
50 (Lp) (h) S̃test

75 (Lp)

Figure 21: Shape reconstructions by the selected dimensions. The �rst row
shows the shapes reconstructed by the expert selected dimensions Lt, the
second row shows the shapes reconstructed by the dimensions selected from
the combined pool Lp. Unit is millimeter.

the rabbit tibias are all close to each other (as shown in Figure 24(b)), no
landmarks are used to guide the registration process.

Figure 24(b) shows the aligned shapes and Figure 24(c) shows the mean
shape of the population. Figure 25 shows the results of principal component
analysis. It can be seen that the �rst mode is about the overall size change,
the second mode is related to the thicken and elongation of the back of the
tibia head, and the third mode is focused on some local shape changes.

The paired student t-test is conducted for each shape parameter between
the surgical and the normal tibias. The null hypothesis is that there's no
di�erence between the surgical and normal tibias in terms of the shape pa-
rameters. The signi�cance level is chosen at 0.05, and a p-value less than
0.05 means that the probability of the null hypothesis being true is less then
0.05.

By calculating the p-values of the 27 shape parameters we have p1 =
0.0045, p2 = 0, p3 · · · p27 > 0.05, which means that the surgical and normal
tibias di�er along the �rst and second eigen-modes, which is in accordance
with [20].

Figure 26(a) shows the variance of the shape population captured by the
increasing number of eigenmodes. Figure 26(b) shows the distribution of the
�rst two shape parameters. It can be seen that the �rst two shape parameters
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(a) Mean surface deviation (b) Cumulative variance

Figure 22: Dimension selection from the combined pool by Algorithm 2: (a)
the mean surface deviations of shape reconstructions with di�erent number
of dimensions, (b) the percentage variance in the training shapes captured
by the increasing number of dimensions.

nicely distinguish the surgical and the normal tibias. However, in real clinical
situations, it is very time consuming to obtain the full 3D shapes. Instead,
we'd like to extract the dimensions related to the �rst two eigen-modes that
can be measured e�ciently in clinical settings.

6.2.2 Feature point identi�cation

Firstly, the feature points that can capture the total variance in the shape
population are extracted. Figure 27 shows the results of the feature point
selection and the variance of the shape population captured by the increasing
number of feature points. In this example, due to the lack of anatomical
information, the feature points are selected from all the vertices on the model.
This is one limitation of this method since the positions of some of the feature
points are hard to precisely measure (e.g. the ones in smooth regions).

6.2.3 Dimension construction and selection

Based on the selected feature points, C2
15 = 105 lengths and 3C3

15 = 1365
angles are constructed. The dimension pool contains 1470 dimensions

P = {l1, l2, · · · , l1470} .

The conditional variance of the distribution p(w1, w2|L) is used to select
the dimensions as in equation (33), since we only care about how much
variance in w1, w2 are captured by the selected dimensions, where w1, w2 are
the shape parameters that are relevant to the surgical e�ects.
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(a) 4 dimensions (b) 8 dimensions (c) 12 dimensions

(d) 4 dimensions (e) 8 dimensions (f) 12 dimensions

Figure 23: Con�dence regions (66%, 90%, 99%) of the conditional distribu-
tions p(w1, w2|L) (upper row) and p(w3, w4|L) (bottom row). The red point
shows the true shape parameter of the testing shape being investigated. Unit
is millimeter.

The selected dimensions are shown in Figure 28. The rank of the selected
dimensions is shown by the number in Figure 28(a). The percentage variance
of the shape parameters w1, w2 captured by the increasing number of dimen-
sions is shown in Figure 28(b). The distribution of the selected dimensions
over the groups is shown in Figure 28(c). It can be seen that the selected
dimensions are powerful in distinguish the control and surgical tibias com-
pared with merely using the overall length as in [20]. The surgical shapes
have smaller head angles (l2) compared with the control shapes. The selected
angle has successfully captured the variation of the second mode, which is
very important in distinguishing the two groups of shapes.

Figure 29 shows the dimensions on one control shape and on the corre-
sponding surgical shape. It can be seen that the back of the head of the
surgical shape has been thickened and elongated, so the corresponding tri-
angle is also elongated and thus the head angle becomes smaller.

7 Conclusion

This paper proposes a statistical shape model based pipeline to select features
points on 3D shapes. Unlike traditional approaches that focus on capturing
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(a) 64 rabbbit tibias (b) Aligned shapes (c) Mean shape

Figure 24: Rabbit tibias: (a) the 64 traning shapes; (b) the aligned shapes;
(c) the mean shape. Unit is millimeter.

the geometric information of a single shape, we focus on capturing the pop-
ulation information of a group of shapes. The feature points are selected
and ranked by the amount of percentage variance they capture of the shape
population.

We then demonstrate the successful incorporation of the proposed feature
point identi�cation approach in the applications of sparse shape reconstruc-
tion, construction and selection of new dimensions and shape classi�cation
by sparse measurements. The numerical results demonstrate the e�ciency
and e�ectiveness of the proposed approach.

The contributions of this paper are:
1) A metric to quantitatively evaluate the percentage variance of the

shape population captured by the feature points.
2) Selecting feature points and sizing dimensions by the total variance

they capture of the shape population.
The selected feature points and sizing dimensions are capable of captur-

ing the shape variations that are not captured by the anatomical landmarks
and traditional list of dimensions. The ability of capturing population infor-
mation makes the selected feature points and dimensions powerful in sparse
shape reconstruction and parametric shape synthesis. For example, with the
67 selected feature points, the mean surface deviation of the reconstructions
is 2.47 millimeter, while with the 67 anatomical landmarks, the mean surface
deviation is 2.86 millimeter. With the 15 selected feature points, the mean
surface deviation of the reconstructions is 4.26 millimeter while the mean
surface deviation of the reconstructions by the randomly generated points is
6.1 millimeter.

3) A way to automatically construct and select new sizing dimensions.
The new dimensions are automatically composed by the lengths and an-

gles constructed from the selected feature points. It has been shown that the
new dimensions are able to capture shape variations in the population that
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(a) +Mode 1 (b) +Mode 2 (c) +Mode 3

(d) -Mode 1 (e) -Mode 2 (f) -Mode 3

Figure 25: Statistical shape modeling of the rabbit tibias: the �rst three
eigenmodes. Color shows the surface deviation from the mean shape, unit is
millimeter.

are not captured by the traditional list of measurements.
4) A way to select dimensions to capture particular shape variations in

the population.
In shape classi�cation, shape parameters that are relevant to group dif-

ferences are identi�ed by paired-t test. The corresponding dimensions are
selected to capture the variances in such shape parameters. The numerical
results show that the selected dimensions can successfully distinguish the
surgical and non-surgical groups.

In the future, we will account for more general shape populations that
may not be normally distributed. In this work, the shape parameters are
assumed to be normally distributed. For shape populations that are not
normally distributed, especially when obvious pose changes are involved [36,
37], alternative techniques for statistical shape learning can be considered
such as the support vector machine (SVM), Gaussian process latent variable
models (GPLVMs), and neural networks. More general shape registration
technique that deals with both shape and pose changes via articulated shape
model could also be applied [38].

Our current approach selects feature points (and dimensions) only by
considering the amount of shape variations captured by the feature points
(and dimensions). However, for many applications, semantic features must
present for practical reasons. In the future we will improve the approach
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(a) Cumulative variance (b) Distribution of weights, Unit
is millimeter.

Figure 26: Statistical shape modeling of the rabbit tibias: (a) the cumu-
lative variance captured by the increasing number of eigenmodes; (b) the
distribution of the �rst two shape parameters, ∗: normal, o: surgical.

by considering both the automatically selected feature points and the se-
mantic feature points. The semantic feature points can be selected from the
anatomical landmarks and their semantic importance can be determined by
comparing with the semantic regions segmented by the approaches in [39, 40].

Accurate shape registration is important to the proposed feature point
selection approach. Otherwise unrealistic artifacts would be incorporated in
the modes of shape variations and the obtained shape variances would be
larger than the actual total variances since the variances of the artifacts are
included. In the future, we will evaluate how sensitive this approach is to
the quality of shape registration.
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