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Abstract

Two recent advances—the use of functionally gradient materials in parts and layered manufacturing technology—

have brought to the forefront the need for design and fabrication methodologies for heterogeneous objects. However,

current solid modeling systems, a core component of computer-aided design and fabrication tools, are typically purely

geometry based, and only after the modeling of product geometry, can a part’s non-geometric attributes such as

material composition be modeled. This sequential order of modeling leads to unnecessary operations and over-

segmented 3D regions during heterogeneous object modeling processes.

To enable an efficient design of heterogeneous objects, we propose a novel method, direct face neighborhood

operation. This approach combines the geometry and material decisions into a common computational framework as

opposed to separate and sequential operations in existing modeling systems. We present theories and algorithms for

direction face neighborhood alteration, which enables direct alteration of face neighborhood before 3D regions are

formed. This alteration is based on set membership classification (SMC) and region material semantics. The SMC is

computationally enhanced by the usage of topological characteristics of heterogeneous objects. After the SMC,

boundary evaluation is performed according to the altered face neighborhood. In comparison with other solid modeling

methods, the direct face neighborhood alteration method is computationally effective, allows direct B-Rep operations,

and is efficient for persistent region naming. A prototype system has been implemented to validate the method and

some examples are presented.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Heterogeneous objects are objects composed of

different constituent materials. In these objects, multiple

material properties from different constituent materials

can be synthesized into one part. Consequently, these

objects offer new material properties and multiple

functionalities that cannot be obtained otherwise. Two

recent advances—use of functionally gradient materials
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in parts and layered manufacturing technology—have

brought to the forefront the need for design and

fabrication methodologies for heterogeneous objects

[1–5].

The current solid modeling systems, as a core

component of CAD/CAM/CAE system, have typically

been purely geometry based. Consequently, the model-

ing of non-geometric product attributes such as material

composition, and the modeling of geometric structures

have been separated. After a residing region’s geometric

and topological structures have been formed, the

material modeling is conducted. Then the entire object’s

geometric model is ‘‘regularized’’ according to the

material modeling result. This sequential order of
d.
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geometric operations and material operations leads to

unnecessary operations and over-segmented 3D cells for

heterogeneous object modeling.

Even though research on modeling and representation

schemes for heterogeneous objects has been under way,

the work has been primarily focusing on representation

of heterogeneous objects, not on design methods. To

enable an efficient design of heterogeneous objects, a

constructive design method is desired [4].

Given heterogeneous objects A ¼ fA1j
�A2j

�
yj�Amg

and B ¼ fB1j�B2j�yj�Bng and the constructive opera-

tor, the resultant solid needs to be formed. It essentially

involves two tasks:
(1)
 to determine the geometric boundary of A and B

that appears in the resultant solid C (Geometric

Boundary Evaluation) and
(2)
 to organize the resultant faces into regions and to

associate material function mi to each region gi

(Material Region Forming).
In this paper, we propose a novel method, direct face

neighborhood alteration, to fulfill these two tasks. With

two-sided face neighborhood operations, a designer can

do concurrent geometric and material operations as

opposed to sequential operations in existing methods.

This method enables face neighborhood change before

3D regions are formed. It directly alters the face’s two-

sided neighborhood according to set membership

classification (SMC) and material semantics. That is,

during the constructive operations, this method concur-

rently conducts geometric and material operations.

In the remaining of this paper, Section 2 reviews the

previous research pertaining to solid modeling. Section 3

then presents the constructive operations for hetero-

geneous objects. Section 4 presents the direct face

neighborhood alteration method for constructive opera-

tions. In Section 5, we present an enhanced SMC

algorithm utilizing the special topological characteristics

of heterogeneous objects. Section 6 gives some examples

from the implementation of the direct face neighbor-

hood alteration method. Section 7 compares the face

neighborhood alteration with current cellular object

modeling method, and describes some possible exten-

sions to face neighborhood alteration method. Section 8

concludes this paper.
2. Literature review

2.1. Representation schemes

Many representation schemes have been developed to

represent solids. To represent a solid model, manifold

solids and R-sets were first proposed to represent solid

objects [6,7]. A radial-edge data structure is another data
structure for modeling non-manifold solids [8]. For

conventional feature modeling, the use of a non-

manifold structure was initially proposed in [9]. Selected

geometric complex (SGC) is a non-regularized non-

homogeneous point set represented through enumera-

tion as union of mutually disjoint connected open cells

[10]. Constructive non-regularized geometry (CNRG)

was also proposed to support dimensionally non-

homogeneous, non-closed point sets with internal

structures [11]. A graphic object algebra-based bound-

ary representation was proposed for polygonal hetero-

geneous solids [12]. A generalized maps boundary

representation was proposed in [13]. Middleditch et al.

presented mathematics and formal specification for

mixed dimensional cellular geometric modeling [14].

Cellular model provides a geometric basis for hetero-

geneous object modeling. However, the current practice

of cellular object modeling has been inept for hetero-

geneous object modeling. The implementation of cellular

object modeling tends to separate the geometric opera-

tion from the volume (3D cell) attribute operation. That

is, a maximum number of 3D cells are generated first,

followed by the propagation of volume attributes, i.e.,

material composition in the context of heterogeneous

objects. Section 7 gives a step-by-step comparison of

modeling heterogeneous objects using a conventional

cellular modeling method and the proposed face

neighborhood alteration method.

Recently, several new representation schemes have

been proposed for representing heterogeneous objects.

Kumar and Dutta proposed that R-m set be used to

represent heterogeneous objects [15]. Jackson et al.

proposed another modeling approach based on sub-

dividing the solid model into sub-regions and associating

analytic composition blending functions with each

region [10]. Qian and Dutta proposed feature meth-

odologies for heterogeneous object realization [3–5].

Other modeling and representation schemes using voxel

model, distance functions or texturing have also been

proposed [16–18].

2.2. Boolean operations for homogeneous solid

Boolean operations for homogeneous solids typically

include the following stages: intersection, set member-

ship classification, and boundary update (discarding

unnecessary portions and re-organizing of the B-rep

structure) [6,19,20]. The intersection stage involves the

intersecting of the boundaries of two solids. The

resultant intersection edges divide each solid boundary

into different portions. Each of the portions is then

classified against the other solid. The set membership

classification refers to the classification of one set against

the other set. The classification result can be divided into

three categories: in, out and on [21].
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Table 1

Boundary classification for homogeneous objects

Set operation Boundary classification

Union AoutB|BoutA

Intersection AinB|BinA

Difference AoutBjðBinAÞ�1

Fig. 1. Neighborhood combination eliminates on/on ambiguity

for homogeneous solid. (a) Neighborhood definition in homo-

geneous solid. (b) Neighborhood combination.
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Fig. 2. Extension to the radial edge structure with material

representation.
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According to the Boolean operation type, some

portions are discarded and final part boundary is a

collection of the remaining portions. Table 1 lists the

collection for different Boolean operations. Note,

ðBinAÞ�1 means the normal direction of the face is

reversed.

Special processing is necessary for situations where

points that lie on boundaries of both primitives

[19,21,22]. In a typical modeling system, the neighbor-

hood concept is used to facilitate boundary classification

for the on/on cases. It is represented by a surface

normal, and a side bit, which indicates that the solid’s

material is either locally on the side toward the normal

direction or on the opposite side (Fig. 1a). For example,

in Fig. 1b left, point t1 has two neighborhoods in the

same direction—one from solid A and one from solid

B—so the union of the neighborhood is still a one-sided

face neighborhood. The difference of neighborhood is

empty. However, in Fig. 1b right, the point t2 has two

neighborhoods having opposite directions. So the union

of the two neighborhoods leads to a full, while the

difference is still the one-sided face neighborhood.

Therefore, this neighborhood combination eliminates

the on/on ambiguity for set membership classification in

homogeneous solid modeling.
3. Constructive operations for heterogeneous objects

In this paper, we adopt an R-m set as the working

representation scheme for heterogeneous objects since it

is the most conversed one to us. That is, an R-m set

ðg;mÞ is used as the building block for the constructive

design. For an R-m set Aðg;mÞ; mðAÞ gives the material
information m; gðAÞ gives the R-m set geometry. ‘‘ j�’’ is
the regularized gluing operation [11].

To support a constructive design of heterogeneous

objects, we extend the radial-edge graph (Fig. 2) to

represent the geometry of heterogeneous objects. Ra-

dial-edge graph data structure is widely used in

commercial solid modeling packages and is also the

representation scheme used in STEP ISO10303 [23]. In

this extended data structure, each region has its material

composition representation and each face use has

neighborhood information, which contains a pointer

pointing to material representation.

3.1. Constructive operations for heterogeneous object

design

Constructive operations form the basis of feature-

based design. In compliance with form feature classifica-

tion in STEP, we propose two corresponding construc-

tive operations: additive and subtractive [4]. The

operation type reflects the point set change of an object.

In addition, we add the partition operation for the

convenience of substituting a sub-region’s material

composition. Each material volume can be thought of

as a form feature volume plus the material composition

in the region [4]. A compound feature (building block),

consisting of more than one R-m set can also be defined,

i.e., a finite collection of R-m sets, ðg1;m1Þ;
ðg2;m2Þ;y; ðgn;mnÞ; each consisting of a material
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Fig. 3. Generic constructive operations for heterogeneous

objects: (a) addition; (b) subtraction; and (c) partition.
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volume. The three constructive operations are defined

mathematically as

1. Additive operation

ðg1;m1Þ þ ðg2;m2Þ

¼ ðg1 � g2;m1Þj�ðg2 � g1;m2Þj�ðg1-g2;m1#m2Þ:

2. Subtractive operation

ðg1;m1Þ � ðg2;m2Þ ¼ ðg1 � g2;m1Þ:

3. Partition operation

ðg1;m1Þ=ðg2;m2Þ ¼ ðg1 � g2;m1Þj
�ðg1-g2;m1#m2Þ:

To eliminate possible material composition ambiguity

in intersecting regions, we introduce material priority

tag p to each material volume. That is,

m1#m2 ¼

m1 if p1 > p2;

m2 if p1op2;

m1"m2 if p ¼ p2:

8><
>:

Note, here m1"m2 is a user-defined interpolation

function. It could be a1 	 m1 þ ð1� aÞ 	 m2; aAð0; 1Þ; or
any other form. The m1"m2 function has been

particularly useful for applications like doping, and

implanting, where material volume is ‘‘contaminated’’

by some exotic material.

The partition operation functions the same as additive

operations over the intersection region ðg1; g2Þ; but it is
not applicable to the region outside of g1: This partition
operation is used extensively for heterogeneous object

modeling when material functions are imposed on a

given geometry domain.

We refer to the material and the priority tag of a

region as the region’s material semantics. It indicates

material survival rules over the intersecting regions. Fig.

3 lists the three types of operations and their semantics.

Clearly, the part C ¼ A#B depends on the feature type

(operation), and each region’s materials and the priority

tag. Note, we use the symbol ‘‘#’’ to represent the three

constructive operation types: additive, subtractive and

partition, when the operation attending arguments, A

and B; are both a collection of R-m sets ðg;mÞ: When

both arguments are material compositions as in

m1#m2; the symbol ‘‘#’’ represents material semantics

in accordance with the material priority tag p:
These constructive operations can be easily custo-

mized for many specific applications, e.g., design by

composition for layered manufacturing [24], steel bar

partially inserted in concrete bar, and MEMS process

simulation.
3.2. Problem analysis

For the constructive or feature-based design, the

modeling tasks in heterogeneous object modeling are

different from the homogeneous set operations.

First, geometry information alone is not sufficient to

determine the boundary of the resultant solid. In

homogeneous object modeling, face direction is suffi-

cient to eliminate the ambiguity for the boundary

evaluation (Fig. 1). However, for a heterogeneous solid,

even for the solids with the same geometric boundary

classification, the final geometry may be different due to

the different material compositions. For example, in Fig.

4a, point p in the left figure is on the (interior) boundary

separating the two regions in the solid C (mAamB),

while point p in the right figure is in the interior of solid

C (mA ¼ mB). For the situations where there is no ‘‘on/

on’’ ambiguity, material semantics still complicates the

geometric boundary classification. For example, in Fig.

4b, the point p is completely in the interior of solid B;
but it should appear in the final solid C of the left figure,
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Fig. 4. Geometry information alone is not sufficient for

boundary classification. (a) on/on ambiguity and (b) ambiguity

for BinA classification.

Fig. 5. Material region formulation remains unclear even after

the boundary classification: (a) A; (b) B; and (c) C ¼ A#B:
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and should not appear in the final boundary of solid C

of the right figure.

In addition to geometric boundary classification,

heterogeneous object modeling requires material region

forming to complete the heterogeneous object represen-

tation. During the modeling process, the geometry and

its partition are dynamically changing and so is the

material composition at each partitioned region. There-

fore, the lumps and shells that represent the regions need

to be reorganized after each boundary classification.

How to keep track of the region material information

during the modeling process is an issue to be solved.

Current B-Rep modeling systems do not directly

support the region attributes propagation during the

region merging/splitting processes.

For example, in Fig. 5, there are two regions in A and

two regions in B: There are 12 lumps in the final solid C:
The task of grouping the lumps into their respective

regions (seven regions) and associating each region with

the corresponding material function is referred to in this

paper as material region forming.

In this paper, both the geometric boundary evaluation

and material region forming are conducted based on a

common computational framework: direct face neigh-

borhood alteration.

In homogeneous set operations, the resultant solid

boundary is a collection of classified boundary (Table 1).

This classification is based on SMC augmented with the

neighborhood information. In cellular object modeling,

the geometric operation and volumetric attributes

propagation are sequential. In heterogeneous object

modeling, the steps involved in set operations in

heterogeneous objects are the following. First, the

SMC method is enhanced due to the usage of

topological properties of heterogeneous objects. The

face’s two-sided neighborhood is altered according to

material semantics in each region and faces’ classifica-

tion value. The boundary evaluation and material region

forming are based on the altered neighborhood. In the
following two sections of this paper, we detail the direct

face neighborhood alteration and the enhanced SMC.
4. Direct face neighborhood operation

Neighborhood is a well-known concept from topology

[25]. In heterogeneous object, since each face has two

regions, we perceive the 3D face’s neighborhood as a

two-sided face neighborhood and represent it as a

combination of two one-sided face neighborhoods from

each adjacent region.

4.1. One-sided face neighborhood representation

The face neighborhood in each region is represented

as a combination of normal direction of the face and

material function of the region. Suppose point p lies on a

face of region A; its neighborhood is represented as

nFA ¼ ðdir A;mAÞ: ð1Þ

Here the dir A is the region A’s inward normal

direction at point p; mA is the material composition

function in region A:
For example, in Fig. 6a, the point p in region A’s

neighborhood is nF ðpÞ ¼ ð�n;mAÞ:

4.2. Two-sided face neighborhood representation

Before we define a two-sided face neighborhood, we

first define the neighborhood of the complement set of

an object to ensure that each face has a two-sided face

neighborhood.

Denote W ; WCE3; as the universal set. The

complement set of a heterogeneous object S is defined

as Sc ¼ W � S: This complement set is also named as

NULL material region since it does not contain any

material substance. Due to the inclusion of Sc; each face
in object S has two adjacent regions and they are either

an R-m set in S or the NULL material region. Note a

face neighborhood in NULL material region Sc is

represented as nFSc ¼ ðdir Sc; nilÞ:
Denote a face’s preserved reference normal direction

at point p as n: The front side refers to the side of a face,
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Fig. 6. Face neighborhood representation for a heterogeneous

solid: (a) one-sided face neighborhood; (b) two-sided face

neighborhood; (c) full; and (d) empty.

Fig. 7. Face membership classification and neighborhood

operation: (a) in/out and (b) on/on.
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which is in front of p along the normal direction n: The
opposite side is called a back side. So each face has two

one-sided neighborhoods respectively in two adjacent

regions, i.e., nFfront ¼ ðRefNormal;mfrontÞ; and nFback ¼
ð�RefNormal;mbackÞ:
A 3D face’s complete neighborhood representation at

point p is a combination of nFFront and nFBack:

NF ðpÞ ¼ nFFront j nFBack:

So the 3D face’s neighborhood is a quadruple

NF ðpÞ

¼ ðRef Normal;mfrontÞjð�Ref Normal;mbackÞ: ð2Þ

From Eq. (2), we have the following interpretation of

neighborhood concepts: Empty and Full.

Empty 
 ðn; nilÞjð�n; nilÞ; ð3Þ

Full 
 ðn;mÞjð�n;mÞ: ð4Þ

That is, when both sides of a face have null material,

the neighborhood is empty and the face is in the exterior

of the object. When both sides of a face have the same

material function, the neighborhood is full and the face

is in the interior of a region. During the regularization

process, faces with either empty or full neighborhood

shall be discarded.

For example, in Fig. 6b, the two-sided face neigh-

borhoods of the points, p1 and p2; are NFðp1Þ ¼
ðn1;m1Þjð�n1;m2Þ; NF ðp2Þ ¼ ðn2; nilÞjð�n2;m2Þ: In Fig.

6c, the point p3 has neighborhood NFðp3Þ ¼
ðn3;mÞjð�n3;mÞ: Therefore, p3’s neighborhood is full

and is completely interior to region B: In Fig. 6d, the

point p4 lies on the boundary of (A1–A2). So its

neighborhood after the operation (A1–A2) is NF ðp4Þ ¼
ðn4; nilÞjð�n4; nilÞ and is empty.
4.3. Neighborhood operations

During the object construction process, i.e., C ¼
A#B; the face neighborhood NF alters according to the

operation type ‘‘#’’, and material semantics in A and B:
This section details how NF alters according to the face

classifications between A and B:
Let A and B be the collections of regions in

heterogeneous objects, i.e. A ¼ fA1j�A2j�yj�Amg and

B ¼ fB1j
�B2j

�
yj�Bng: Given the objects A and B; the

faces from A and B; FA and FB; can be classified against

each other. There are five types of SMC values: FA in B;
FA out B; FA on B=FB on A; FB in A; FB out A (Fig. 7).

With the inclusion of object complement set, FA out B

and FB out A are equivalent to FA in Bc; and FB in Ac:
Note, the faces FA and FB refer to the face sets in A and

B after the intersection and sub-dividing.

During the intersection of the objects, face neighbor-

hood NF changes when each face’s NF interacts with

another region or another face. This alteration can be

illustrated according to the SMC. Therefore, corre-

sponding to the five SMC values, there are five NF

operations for the operation A#B:

* NFA#Bj for FA inside region Bj :
* Ai#NFB for FB inside region Ai:
* NFA#NFB for FA and FB that are co-faces.
* NFA#BC for FA outside the object B; i.e., FA

interacts with region BC :
* AC#NFB for FB outside the object A; i.e., FB

interacts with region AC :

Fig. 7 shows the five neighborhood operations. Since

different regions have different material operation

semantics, the NF operations are carried out by

combining two separate nF operations, each of which

operates according to the residing region’s semantics.
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Fig. 9. Neighborhood operation in multi-region.
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4.3.1. FA in region Bj

FA’s neighborhood operation with region Bj can be

represented as

NFA#Bj ¼ ðnFAFront#BjÞjðnFABack#BjÞ:

Here nFAFront and nFABack refer to the face FA’s front

region and back region’s neighborhood. One-sided face

neighborhood in region Ai is referred to as nFAi
: The

face neighborhood for the object A’s complement set Ac

is noted as nFAc :
An example of FA interacting with region B is shown

in Fig. 8 (bold line). From the four cases in the union

operation, we have the following neighborhood altera-

tion rules:

nFAi
,Bj ¼

nFAi
; mA ¼ mB;

nFAi
; pA > pB;

ðdir Ai;mBÞ; pAopB;

ðdir Ai;mA"mBÞ; pA ¼ pB:

8>>><
>>>:

ð5Þ

The face’s NULL neighborhood operation can be

represented by the following equations:

nFAc,B ¼ ðdir Ac;mBÞ: ð6Þ

For the subtraction operation, we have

nFAi
� B ¼ ðdir Ai; nilÞ; ð7Þ

nFAc � B ¼ ðdir Ac; nilÞ: ð8Þ

For the partition operation, we have the similar

semantics derivation as union operation.

Note, if any object has more than one region, the one-

sided face neighborhood operations are conducted

separately. For example, in Fig. 9, the two-sided face

neighborhood operation at point p is NF ðpÞ ¼
ðnFA1

#BÞjðnFA2
#BÞ: Each of the one-sided face neigh-
Fig. 8. Neighborhood operations for FA in B:
borhood operation follows the same semantics defined

above.

The complete neighborhood operations for FA in

region Bj are listed in Table 2.

4.3.2. FB in region Ai

Similar to FA’s neighborhood in region Bj ; we have

the following neighborhood operation for FB in Ai:

Ai#NFB ¼ ðAi#nFBFrontÞjðAi#nFBBackÞ: ð9Þ

The one-sided face neighborhood operation for FB in

region Ai is also listed in Table 2.

4.3.3. FA on B=FB on A

When FA and FB are co-faces, the neighborhood

operation for FA and FB is NFA#NFB: So we have the

following operation representation:

NFA#NFB ¼ ðnFAFrontjnFABackÞ#ðnFBFrontjnFBBackÞ:

ð10Þ

NFA#NFB

¼

ðnFAFront#nFBFrontÞjðnFABack#nFBBackÞ

if dirðFaÞ ¼ dirðFbÞ;

ðnFAFront#nFBBackÞjðnFABack#nFBFrontÞ

if dirðFaÞ ¼ �dirðFbÞ:

8>>><
>>>:

ð11Þ

The one-sided face neighborhoods nF operate with

each other only when their inward directions are the

same. It is not applicable for the neighborhoods with

different inward directions. For example, in Fig. 10,

faces within object B are only involved with the

operations on A1; not A2:
Referring to Fig. 10, we have the following neighbor-

hood alteration rules for co-face situations:

nFAi
,nBj ¼

nFAi
; mA ¼ mB;

nFAi
; pA > pB;

nFBj
; pAopB;

ðdirAi;mA"mBÞ; pA ¼ pB:

8>>>><
>>>>:

ð12Þ

The face’s NULL neighborhood operation can be

represented by the following equations: nFAi
,nFBc ¼

nFAi
and nFAc,nFBj

¼ nFBj
:
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Table 2

One-sided face neighborhood operations

A#B FAinB FBinA FAonB or FBonA

nFAi
#Bj nFAc#Bj Ai#nFBj

Ai#nFBc nFAi
#nFBj

nFAi
#nFBc

Additive mA ¼ mB nFAi
ðdir Ac;mBÞ nFBj

ðdir Bc;mAÞ nFAi

pA > pB nFAi
ðdir B;mAÞ nFAi

nFAi

pAoPB ðdir A;mBÞ nFBj
nFBj

pA ¼ pB ðdir A;mA"mBÞ ðdir A;mA"mBÞ ðdir A;mA"mBÞ

Subtractive nil nil nil ðdir Bc;mAÞ nil nFAi

Partition mA ¼ mB nFAi
nil nFBj

ðdir Bc;mAÞ nFAi
nFAi

pA > pB nFAi
ðdir B;mAÞ nFAi

pAoPB ðdir A;mBÞ nFBj
nFBj

pA ¼ pB ðdir A;mA"mBÞ ðdir A;mA"mBÞ ðdir A;mA"mBÞ

A#B FAonB or FBonA FAoutB FBoutA

nFAc#nFBj
nFAc#nFBc nFAi

#Bc nFAc#Bc Ac#nFBj
Ac#nFBc

Additive mA ¼ mB nFBj
nil nFAi

nil nFBj
nil

pA > pB

pAoPB

pA ¼ pB

Subtractive nil nil nFAi
nil nil nil

Partition mA ¼ mB nil nil nFAi
nil nil nil

pA > pB

pAoPB

pA ¼ pB

Fig. 10. Neighborhood operations for 3D faces (on/on): (a)

NFA#NFB and (b) nFA,nFB:
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Fig. 10 only lists the cases for union operations. For

subtraction and partition operations, material neighbor-

hood alteration rules can be derived similarly (shown in

Table 2).
4.3.4. FA out B

We have the following equations for neighborhood

operations for FA outside B:

NFA#Bc ¼ ðnFAFront#BcÞjðnFABack#BcÞ: ð13Þ

Since FA is outside of B; its neighborhood is not

affected by region B regardless of the operation type, so

nFAi
#Bc ¼ nFAi

and nFAc#Bc ¼ nFAcy :

4.3.5. FB out A

The equations for neighborhood operations for FB

outside A:

Ac#NFB ¼ ðAc#nFBFrontÞjðAc#nFBBackÞ: ð14Þ

When FB is outside A; the material in region A has

no effect on FB’s NULL neighborhood nFBc ; i.e.

Ac#nFBc ¼ nFBc However, the operation type ‘‘#’’

affects the resultant nFBj
; i.e. Ac,nFBj

¼ nFBj
; Ac �

nFBj
¼ nil and Ac=nFBj

¼ nil:
The complete list of neighborhood operations is

shown in Table 2. These neighborhood operations are

consistent with material region semantics presented in

Fig. 3. Fig. 3 illustrates the neighborhood alteration of a

point p under all kinds of operations. Point p lies on the
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face of object A: Before the operations, it has neighbor-
hood NF ðpÞ ¼ ðn;mAÞjð�n; nilÞ: After the operations,

NF ðpÞ exhibits different values for different operations,
such as ðn;mAÞjð�n;mAÞ 
 Full; ðn;mBÞjð�n;mBÞ 

Full; ðn;mBÞjð�n;mAÞ; ðn;mA"mBÞjð�n;mBÞ; ðn; nilÞj
(�n,nil)
Empty,(n,mA)|(�n,nil),(n,mB)|(�n,nil)and(n,-

�n,nil),(n,mB)|(�n,nil)and(n,mA"mB)|(�n,nil).

4.4. Algorithm (neighborhood operation algorithm)

Based on these defined neighborhood operations, for

any heterogeneous object operation A#B; we have the
following neighborhood processing algorithm to calcu-

late the face neighborhood change (Fig. 11). Note, in

this algorithm, we assume that the face membership

classification is given.

First, each face’s one-sided neighborhoods, nFFront

and nFBack; are found. Then according to the operation

type and face classification, face neighborhood opera-

tions are performed, respectively, from Eqs. (5), (9),

(10), (13), and (14). Each of the NF operations can be
Fig. 11. Neighborhood operation algorithm.

Fig. 12. Neighborhood-based boundary evaluation: (a)
further decomposed into two nF operations as listed in

Table 2.

4.5. Boundary evaluation for heterogeneous objects

The final geometric boundary of constructive opera-

tions can be derived from the direct face neighborhood

processing. It is described by the following lemma.

Lemma 1. A face remains in the resultant solid if and only

if the face’s two adjacent regions have different material

composition functions (Boundary Evaluation).

The lemma suggests:

1. For any face F ; if NF is full, i.e. NF ¼
ðn;mÞjð�n;mÞ; or NF is empty, i.e. NF ¼
ðn; nilÞjð�n; nilÞ; then the face F shall be removed.

2. For any edge E; if E only has two adjacent faces

and they are co-faces, then the E shall be removed.

Once face neighborhood has been properly processed,

the edge-classification can be easily derived. For the

edges that have only two adjacent faces, and both are

co-faces, then the edges shall be eliminated.

Fig. 12 shows an example, in which objects A and B

each has two regions with different material semantics.

After the neighborhood operations, the result is shown

in Fig. 12b. This boundary evaluation algorithm then

‘‘regularizes’’ the model according to the lemma for

boundary evaluation. Faces, such as F1 and F2; are
eliminated after the evaluation in Fig. 12c.

The boundary evaluation algorithm is shown in

Fig. 13.

4.6. Material region forming

In our representation, each face has references to the

residing regions’ material functions. To maintain a

correct relationship between the face and its adjacent

region’s material semantics, material information pro-

cessing is necessary before the new shells and lumps are

organized. Direct face neighborhood operations solve

this task efficiently. After the neighborhood alteration,

each face carries proper material information. Regions
A; B; (b) NF alterations; and (c) regularization.
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Fig. 14. Material region forming algorithm.

Fig. 13. Boundary evaluation algorithm.
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can be easily formed and are associated with material

functions according to the following lemma.

Lemma 2. A collection of faces forms a region if and only

if all the faces are topologically connected and share one

material composition function M (material region form-

ing).

RðmÞ ¼ fFi j(FjCRjðFi-Fja+Þ; nFi ¼ ðn;mÞg: ð15Þ

The material region classification algorithm is shown

in Fig. 14.
5. SMC for heterogeneous objects

During the Boolean operations, the face neighbor-

hood changes according to the SMC. Therefore, in order

to alter the face neighborhood in accordance with the

region material semantics, each face’s SMC related to

the other objects needs to be known.

Many methods have been proposed for SMC [21].

However, in this paper, we enhance the existing methods

for SMC by utilizing the unique characteristics of the
internal boundary of heterogeneous objects to eliminate

the unnecessary complex geometric intersection compu-

tation. This method automatically infers the SMC

according to the topological relationship. In addition

to the inference, it also propagates SMC value; i.e., some

portions’ SMC value can be derived by propagation if

the adjacent portion’s SMC is known.

5.1. Theoretical basis

Intersection loop, ILða; bÞ; refers to the loops formed

due to the intersection of two objects/regions a and b: It
is a collection of edges that are shared by both objects/

regions a and b:
Let E be the collection of the edges in the resultant

solid from the intersection between a and b: We have

ILða; bÞ ¼ fx j xAE; xAa; xAbg:
There are two types of interaction loops, the interac-

tion loop between the objects and the interaction loop

between the regions. The first type is an object

interaction loop, noted as IL1; consisting of intersecting
edges from exterior boundaries of the two objects. The

second type is a region interaction loop, noted as IL2;
and it can be composed of edges from interior

boundaries.

For example, in Fig. 15, object A and object B ¼
fB1j�B2g intersect with each other. Fig. 15a and b show

IL1 and IL2: The region interaction loops, L1 and L2

include the interaction between the internal boundaries

of object B with another object/region A: These internal
boundaries do not appear in the object interaction loop

ðLÞ: So the collection of IL1 is a subset of IL2 collection,

i.e.,
Q
ðIL1ÞD

Q
ðIL2Þ: For example, in Fig. 15 edge e0

appears in IL2; but not in IL1:
Depending on the edge’s position in IL2 relative

to the boundary S of the object, the IL2 can have

edges that are interior to the object, and the edges that

lie on the boundary of the object. We call these

edges IL2’s ‘‘in edges’’ and ‘‘on edges’’ respectively.

For the IL2’s in edges, IL2;in ¼ fx j xAIL2; x in Sg: For
the region IL2’s on edges, IL2;on ¼ fx j xAIL2; x on Sg
(Fig. 15b). Note, all the IL1 are on the object

boundary.

The interaction loops partition the object boundaries

into several sections. Each section is called a ‘‘portion’’

in this paper. Let portion refer to the collection of

connected faces bounded by IL with no internal

edges from other ILs: Mathematically, PðILiÞ ¼
fx j xAF ;

P
F+ILi; 8eAILj ; eeFg; where e is an edge

of the interaction loop IL:
In Fig. 15b, there are three interaction loops: one

object IL1 (L) and two region IL2 (L1 and L2).

Correspondingly, these three loops partition the

object A into different portions as shown in Fig. 15c.

For example, the loop L1 partitions the object A

into three portions, P4;P6;P7: Note, P6,P7 does not
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Fig. 15. Intersection loop and portion: (a) intersection loop; (b) IL1 and IL2 and (c) portions divided by intersection loops.
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form a portion since otherwise there would be an

internal edge e5 in the portion. For illustration

purpose, portion formation in Fig. 15c is separate

for each interaction loop. The actual portion
formation in the later algorithm is shown in

Fig. 19b.

An interaction loop’s adjacent regions (AR) are the

regions on which the edges of the IL lie. Interaction



ARTICLE IN PRESS
X. Qian, D. Dutta / Computers & Graphics 27 (2003) 943–961954
loop’s adjacent regions within a solid S is noted as

ARðIL;SÞ: Mathematically, ARðIL;SÞ ¼ fx j xAR; xAS;
8eAIL; eARig; where R is the collection of regions and S

is the solid. Suppose L ¼ ILðA;BÞ; then ARðL;BÞ does
not include any region in A:
Different IL2 may share common edges. An IL2’s

sibling interaction loop refers to the another IL2 with

which common edges are shared.

In Fig. 15, the loop L1 (IL2) has the sibling loop L2

(IL2) and vice versa. L1’s and L2’s adjacent regions

include fB1;B2;A;NULLg: NULL is the complement

set of the object.

5.1.1. Properties of portion membership classification for

heterogeneous objects

Suppose candidate set a is classified against reference

set b: The SMC function of any geometric entity x

within a against b is represented as

SMCðx;bÞ ¼

in; xAb; x-@b ¼ 0;

on; xAb; x-@ba0;

out; xeb;

8><
>:

where @b refers to b’s boundary. With the above

definitions, we have the following propositions for SMC.

Proposition 1. All the topological entities in a portion

bounded by an interaction loop have one SMC value: in,

on, or out. Mathematically,

ð8x; 8yCPðILÞÞAa ) SMCðx; bÞ ¼ SMCðy; bÞ ¼

in

on

out

8><
>:

Proposition 2. If any portion bounded by an object

interaction loop contains the region IL2;in; then that

portion’s SMC value relative to the object is ‘‘in’’

(object In).

PðIL1Þ+IL2;in ) SMCðPðIL1Þ; bÞ ¼ in:

Proof. According to our definition, IL2’s ‘‘in’’ edges lie

in the interior of the object. So these ‘‘in’’ edges have the

SMC value ‘‘in’’, relative to the object. According to

Proposition 1, the entire portion bounded by IL1 that

contains the IL2 ‘‘in’’ edges has SMC value ‘‘in’’.

For example, in Fig. 15b and c, portion 1 contains

edge e1; which is IL2;in; so portion 1 from object A has

the SMC value ‘‘in’’ relative to the object B: &

Proposition 3. If any portion bounded by an object IL1

contains the region IL2;on; and the region IL2 does not

completely belong to IL1; then that portion’s SMC value

is ‘‘on’’ (object On).

PðIL1Þ+IL2;on; IL2;ongIL1 ) SMCðPðIL1Þ; bÞ ¼ on:
The proof of Proposition 3 is similar to the proof of

Proposition 2.

For example, in Fig. 15b and c, portion 2 contains

edge e2; which is IL2;on; so portion 2 from object A has

the SMC value ‘‘on’’ relative to the object B:
Note, any region IL2;on edges that also belong to IL1

do not provide any information for SMC.

Proposition 4. The intersection of a set of regions’ outer

portions has the SMC value ‘‘out’’ relative to the union of

the set of regions (object Out).

SMCðPðIL2i
Þ;RiÞ ¼ out ) SMC

\n

i¼1
PðIL2i

Þ;
[

i
Ri

	 

¼ out:

This proposition’s proof is straightforward according

to the set operation property.

This proposition is especially useful for deducing a

portion bounded by object IL1; lying outside of an

object. For example, in Fig. 15, portion 3 is outside

region B1 and region B2: According to Proposition 4,

portion 3 is outside of region B ¼ fB1j�B2g:

Proposition 5. Any portion bounded by a region IL2; if

this portion satisfies the following conditions, the candi-

date region’s SMC value is ‘‘in’’ (region in):
(1)
 it does not contain any edges from other interaction

loop;
(2)
 its boundary has such two edges that the only

common adjacent region in the reference object G is

the reference region itself.
Illustrative proof for Proposition 5

L ¼ ILða; bÞ; bDG

(E1;E2AL; s:t: ARðE1;GÞ-ARðE2;GÞ ¼ fbg

)

) SMCðPðLÞ;bÞ ¼ in:

Proof. An edge in the interaction loop is shared by the

faces from both the reference object and the candidate

object. In heterogeneous objects, each face has two

adjacent regions. Therefore, any edge in the interaction

loop has at least two adjacent regions in the reference

object.

Assume ARðE1;GÞ ¼ fb;R0
1;yg; ARðE2;GÞ ¼

fb;R0
2;yg (Fig. 16). Since ARðE1;GÞ-ARðE2;GÞ ¼

fbg; we have fR0
1;yg-fR0

2;yg ¼ +:
Let x1 and x2 be points, respectively, from E1 and E2:

Get the neighborhood ball of x1; x2 as N1; N2: N1

consists of volume from fb;R0
1;yg and N2 consists of

volume from fb;R0
2;yg:
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Fig. 16. Illustrative proof for Proposition 5.
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The portion is bounded by L ¼ ILða; bÞ: According to
Proposition 1, the portion PðLÞ; relative to the reference

region b; has one SMC value, either in, on, or out.

Assume PðLÞ from a is out b; as shown in Fig. 16(P1).

Since the portion is a connected set of faces, it has to go

through fR0
1;yg and fR0

2;yg so that the portion is

outside b: fR0
1;yg-fR0

2;yg ¼ +: Therefore, the

portion has to be across the boundaries of fR0
1;yg

and fR0
2;yg: That is, there must be some interaction

edges within the portion P: This is contradictory to

condition 1 (no edges from other IL), so the portion

cannot be out.

Assume PðLÞ from a is on b; as shown in Fig. 16(P2).

For the similar reason as above, the portion PðLÞ that
connects x1 to x2 must have edges that go across

fR0
1;yg and fR0

2;yg: Since faces in a and b are on,

these crossing edges also lie in a: Therefore they are also
part of IL: This again is contradictory to the condition 1
(no edges from other IL), so this portion cannot be on.

Therefore, PðLÞ from a is in b: &

For example, in Fig. 15, portion 3 contains edges e3

and e4: In the reference set B; ARðe3;BÞ ¼ fB1;NULLg;
ARðe4;BÞ ¼ fB2;NULLg: So we have portion 3 in

region NULL; i.e., portion 3 is outside of B:
For another example, consider portion 4 in Fig. 15.

Portion 4 contains edges e3 and e6: ARðe3;BÞ ¼
fB1;NULLg; ARðe6;BÞ ¼ fB1;B2g: So ARðe3;BÞ-AR

ðe6;BÞ ¼ fB1g: This portion satisfies condition 2, but it

does not satisfy condition 1. Portion 4 contains edge e4;
so it is not in region B1:
If we consider the null material region as a separate

region, then Proposition 4 is a special case of Proposi-

tion 5 with b representing the null material region.

Proposition 6. If a portion from the candidate set a is

bounded by IL2 ¼ ILða; b1Þ and it contains an edge from a

sibling region b2’s IL2 ¼ ILða;b2Þ; then, relative to the

reference region b1; that portion has a SMC value ‘‘out’’
(region out).

IL2 ¼ ILða; b1Þ; (eAIL2sib
¼ ILða; b2Þ;PðIL2Þ*e

)SMCðPðIL2Þ; b1Þ ¼ out:

Proof. According to the definition of sibling IL; we

know region b1’s sibling region b2 is outside of region

b1: Therefore, for any portion P in a formed by the loop
IL2ða;b1Þ; if the portion P contains the intersection

edges from the sibling loop in b2; then portion P is

outside of region b1: &

In Fig. 15, portion 4 contains edge e4; which is in the

loop L2; the sibling loop of loop L1: Therefore, portion
4 bounded by loop L1 ¼ ILðA;B1Þ is outside of region
B1: Likewise, portion 5 is outside of region B2:
The above propositions demonstrate that many

portions’ SMC values can be inferred without any

geometric calculation, and these propositions give the

conditions for the SMC inference.

5.1.2. SMC propagation

In addition to the above set (portion) membership

classification propositions, there are other situations

where, once a portion’s SMC is known, the

other portions’ SMC can be inferred. We refer to

such an inference process as an SMC propagation

process.

Proposition 7. Suppose P is a portion from region a1; P

against b is known. Region a1 has adjacent regions

a2; a3;y; an that interact with b: Then any portion in a ¼
fa1; a2; a3;y; ang that shares topological entities with

portion P has the same SMC value as P has (SMC

Propagation) against b:

This can be readily proved from Proposition 1.

Consider the same example in Fig. 15, in which B is

classified against A; as shown in Fig. 17. Suppose by

point membership classification, B1outA is known. By

SMC propagation, B2outA can also be inferred since the

two portions (left and right) share the faces, such as f 1:

5.2. SMC algorithm

We can now formulate the outline of the set (portion)

membership classification algorithm as follows (see Fig.

18). Each step is also illustrated in Fig. 19:

Step 1: Object interaction and intersection loop

identification.

Intersection loops consist of edges from the reference

object and the candidate object. These intersection loops

are divided into two groups: object IL1 and region IL2:
For the edges that are in IL2 but not in IL1; i.e., IL2 �
IL1; they are divided into two groups: IL2;in and IL2;on:



ARTICLE IN PRESS

Fig. 18. Portion membership classification algorithm for

heterogeneous objects.

Fig. 17. SMC propagation.
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Step 2: Portion formation.

Connected faces bounded by an IL form the portions.

Fig. 19a and b show the intersection loops and

portions.

Step 3: Reasoning for the ‘‘in’’ portions.

Check each portion’s boundary. According to Propo-

sition 4, if ARðE1;GÞ � ARðE2;GÞ ¼ fbg; then the

portion has SMC value ‘‘in’’.

Step 4: Reasoning for the ‘‘on’’ portions.

According to Proposition 3, if IL2;on � IL1a+; all
the portions that are bounded by IL1 and contain the

IL2;on � IL1 have the SMC value ‘‘on’’.

Step 5: Reasoning for the ‘‘out’’ portions.

Consider the null material region as the reference

region b: If ARðE1;GÞ � ARðE2;GÞ ¼ fbg; then the

portions are in the reference region b; i.e. the null

material region. Therefore the portions have the SMC

value ‘‘out’’.

Fig. 19c–e show the portions that can be inferred

without any geometric calculations.

Step 6: Point membership classification and SMC

propagation.
For each of the remaining portions with an unknown

SMC value, do a point membership classification.

Suppose, by point membership classification, a portion

a’s SMC is known against b: Check all the adjacent

regions of a: If any portion from these adjacent solids

also interact with a; these portions have the same SMC

value as a has.

Fig. 19 shows that by point membership classification

B1outA is known. By SMC propagation, B2outA can

also be inferred since two portions share the faces.

Similarly, B2inA can be deduced once the portion B1inA

is known.
6. Implementation

A prototype system for heterogeneous object design

has been implemented based on ACIS [26] on a HP-UX

10.0 machine. The languages used were C++ and

Scheme. After the parts are modeled through direct face

neighborhood alteration according to the operations

defined earlier, for display purposes, the parts were then

decomposed into several regions with different material

gradient information. The regions with their respective

material information were transferred to our in-house

software, Heterogeneous Solid Modeler (HSM) [27], for

display.

Fig. 20 shows the sample part from Fig. 17. First, the

parts are classified against each other by the SMC

algorithm (Fig. 19). By direct face neighborhood

alteration, the system gives different results, depending

on the priority of each primitive. The bottom half of the

figure is the shaded cross-section of the parts.

A cutting tool made of gradient alumina–aluminide

alloys (3A) [28] is shown in Fig. 21. In this example, the

part was constructed by two partition operations. The

first partition operation replaced the ceramic with

Al2O3: The second partition operation replaced the

material composition around the shaft area with

functionally gradient material 3A. Fig. 21 illustrates

how the face neighborhood changes during the modeling

process.
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Fig. 19. Portion membership classification: (a) Step 1 (intersection); (b) Step 2 (IL and portion formation); (c) Step 3 (reasoning for

‘‘in’’); (d) Step 4 (reasoning for ‘‘on’’); (e) Step 5 (reasoning for ‘‘out’’) and (f ) Step 6 (point membership classification and SMC

propagation).
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Fig. 22 shows an MEMS fabrication process modeled

through the system. Two types of operations, additive

and subtractive, are used. The color changes illustrate

the face neighborhood changes during the modeling

process. In the last step (Fig. 22e) electrode overrides

acetone. So all the neighborhood of the faces from

acetone are changed to electrode if they are ‘‘inside’’

electrode.

Note, in all the above examples, 3D regions are

formed only at the last stage for the sake of material

gradient display. These examples demonstrate that the

direct face neighborhood alteration method is a feasible,

effective, and efficient method for heterogeneous object

modeling.
7. Discussion

7.1. Comparison with 3D cell-based cellular object

modeling

Compared with many current cellular modeling

systems [20,26], constructive operations based on face

neighborhood alteration have three advantages: (1) it

avoids unnecessary 3D cell/region formation; (2) it

eliminates the radial-edge ordering; and (3) it utilizes

the heterogeneous objects’ topological characteristics to

infer and propagate SMC.

Current cellular object modeling focuses on the

geometric aspects. Due to the lack of physical informa-
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Fig. 20. Sample part for face neighborhood alteration.
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tion, general cellular object modeling unnecessarily

generates all the intersection regions. Suppose object A

and B each consisted of m and n regions; therefore, there

are possibly ðmn þ m þ nÞ 3D cells for the union

operation. It is up to the application users to de-

partition the over-segmented object. For example, in

ACIS 3D cell-based modeling [26], cell computing is

done by finding the nearest face from a seed face around

each edge (radial-edge ordering). Volume attribute

propagation algorithm follows. The 3D cells are then

grouped together according to the volume attribute and

are regularized.

In our two-sided face neighborhood algorithm, the

fundamental difference from cellular object modeling is

that material attributes are directly processed for each

face/face and face/region interaction. Therefore, there is

no need for intermediate 3D cell creation. The material
region is formed only when it is necessary. It avoids the

unnecessary 3D cell shell/region forming.

Therefore direct face neighborhood alteration is

expected to be an efficient method for heterogeneous

object modeling.

7.2. Persistent region naming in the heterogeneous objects

The face neighborhood operation method presented

in this paper can also serve as a persistent naming

scheme for region naming.

During the design process, the part topology changes.

Consequently, all the attributes attached to the topology

entities need to be correctly identified during the editing

process. That is, each topological entity (vertex, edge,

face) shall have a unique name. This is the persistent

naming problem [29–31].
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Fig. 21. Cutting tool. (a) Part model; (b) shaded cross-section; and (c) face neighborhood alteration illustration.

Fig. 22. MEMS fabrication process: (a) Step 1 (addition operations); (b) Step 2 subtract photoresist; (c) Step 3 (add acetone); (d) Step

4 (subtract silicon nitride); and (e) step 5 (add electrode).
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Fig. 23. Region naming. (a) Initial regions and (b) region names after interaction.

A

B

A

B 

B 

Initial regions  After interaction(a) (b)

Fig. 24. Region naming. (a) Initial regions and (b) after

interaction.
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In the context of heterogeneous object modeling, there

is a new issue: the region naming. A heterogeneous object

is composed of different regions, each having a different

material composition function. During the constructive/

editing process, the lumps and shells, of which the

regions are represented, have to be re-organized after

each operations. How to persistently associate material

composition function with the corresponding region is a

region naming issue.

With little change, the neighborhood alteration

algorithm can serve as a naming scheme for regions in

heterogeneous objects. It involves the following steps:

(1) each attending primitive (R-m set) has one unique

name; (2) equal priority is assumed for the operation

attending primitives. Therefore, the region names are

concatenated together whenever regions interact with

each other. After the neighborhood processing, each

intersection region has one unique name. The region

naming scheme derived from the two-sided face neigh-

borhood generates unique names for each R-m sets

without resorting to 3D cells or geometric calculation.

Fig. 23 gives an example of the region naming. This

example is from [11]. All the faces that have the same

attributes form one region. Clearly, each region has one

unique name.

It should be noted that this neighborhood alteration-

based naming scheme is dependent on the region’s SMC.

Therefore, it does not distinguish the sub-regions that

have the same SMC value. For example, in Fig. 24, there

are two sub-regions named ‘B’.
8. Conclusion

This paper presents a novel method, direct face

neighborhood operation, for constructive operations in

heterogeneous object design. Through the defined face

neighborhood operations, this method enables the direct

face neighborhood change according to face member-

ship classification and region material semantics. It then

performs part geometric boundary evaluation and

region material forming after the face neighborhood

alteration.

The algorithms in this paper also utilize the hetero-

geneous object model’s topological characteristics to

infer the SMC. They demonstrate that direct face

neighborhood processing is an effective and computa-

tionally efficient method for heterogeneous object

modeling. It allows for concurrent geometric and

material operations as opposed to sequential operations

in the existing methods.

This face neighborhood alteration-based heteroge-

neous object modeling is part of our overall research

efforts on feature-based heterogeneous object design.

Future work shall further extend the direct face

neighborhood alteration in feature-based design for

heterogeneous objects.
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