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Abstract

In this paper, we present a new B-spline surface reconstruction approach, called dynamic surface reconstruction, aiming to close the sensing-
and-modeling loop in 3D digitization. At its core, this approach uses a recursive least squares method, the Kalman filter, to dynamically reconstruct
the B-spline surface as the surface data are acquired. That is, the acquired data are dynamically incorporated into the surface model and the updated
surface model is then used to dynamically guide further data acquisition. It thus enables a closed-loop shape sensing-and-modeling methodology
for 3D digitization.

Our technical contribution lies on the exploitation of the recursive nature of the Kalman filter for B-spline surface reconstruction. This enables
dynamic parameterization of data points, dynamic determination of next optimal sensing locations, and low-discrepancy based efficient sensing
and reconstruction. Experiments demonstrate that such dynamic surface reconstruction leads to more efficient data acquisition and better surface
reconstruction.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Three-dimensional (3D) digitization (a.k.a. reverse engi-
neering) is a process to obtain digital models (often CAD
models) from physical objects. It is widely used in aerospace,
automobile, biomedical, and consumer product industries
to facilitate product design, analysis and manufacturing from
pre-existing products. The processing steps from physical ob-
jects to digital models can be roughly divided into two: (1) data
acquisition where various modalities of 3D sensors, either tac-
tile, optical, magnetic, acoustic, or x-ray, are used individually
or in combination to obtain a 3D point cloud of the physical
objects; (2) post-sensing data processing where a shape model,
either a mesh, a surface or a solid model, is reconstructed. These
two steps are typically sequential with data acquisition pre-
ceding the shape reconstruction and the reconstruction is done
offline. Such sequential and separate data acquisition and of-
fline reconstruction essentially form an open loop process in 3D
digitization. Such open-loop processing can potentially lead to
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inefficient sensing since there is no timely feedback from the
reconstructed surface to sensing. It may also lead to poor sur-
face reconstruction due to potential data missing and outliers in
the acquired point cloud.

This paper presents an approach aiming to close such a
gap between the 3D sensing and reconstruction. The rapidly
growing 3D sensing techniques and ever-advancing computing
power have made it possible now to reconstruct the surface as
the data are collected. In the proposed approach, the acquired
data are dynamically incorporated into the surface model and
the updated surface model is then used to dynamically guide
further data acquisition. It thus enables a closed-loop shape
sensing-and-modeling methodology for 3D digitization.

The approach presented in this paper, called dynamic
B-spline surface reconstruction, is based on the Kalman
filter. The new approach has the following distinguishing
characteristics:

• More efficient sensing through dynamic sensing planning
When a surface is reconstructed as the data are collected,

the reconstructed surface can be used to find the next
best sensing location based on, e.g. surface curvatures,
root-mean-squared (RMS) error, or the surface uncertainty.
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This way, sensing only takes place at the most desirable
locations such as the missing data area or at the high
uncertainty area. We present two methods: one dynamically
determining the next best sensing location based on its
effect on minimizing the surface uncertainty, and the
other determining the sensing location based on the low-
discrepancy sequences generated by a quasi-Monte-Carlo
(QMC) method. This dynamic sensing approach extends
our earlier work on uncertainty-based multisensor dynamic
sensing-and-modeling [9] into a generalized closed-loop
framework for 3D sensing and digitization, which is
applicable to both single sensor sensing and multisensor
sensing.

• Better quality in reconstructed surface through dynamic data
parameterization.

As described in [13,17], the base surface for data
parameterization in B-spline surface fitting is a significant
factor affecting the resulting surface quality. As the base
surface approximates the true surface better, it leads to better
data parameterization, thus a better reconstructed surface.
Consequently many existing reconstruction approaches
often involve iterative parameterization where the same data
points are parameterized against an evolving base surface
multiple times. In the dynamic parameterization presented in
this paper, the same data points will be only parameterized
once. The dynamic B-spline surface reconstruction updates
the surface as more data are collected. Thus the subsequently
collected data are parameterized on the new surface updated
with previously collected data, which utilizes all available
prior measurement data, and approximates the true surface
better and leads to better surface quality.

Besides the application in dynamic sensing, the
dynamic parameterization is also applicable for surface
reconstruction from the static point cloud. In such cases,
the sequence of incorporating data points into the recursive
surface reconstruction can be judiciously determined, e.g.
using QMC, to improve the resulting surface quality.

• Eliminating the need for large storage space to store the point
cloud or wide transmission band to transmit the point cloud.

With the advancement of various 3D sensors, some of
these sensors can output point clouds of megabytes or even
gigabytes size and they thus need large storage space. The
use of recursive surface updating allows the measurement
points to be incorporated into the surface model as they are
collected. Thus it avoids the need for large storage space.
This is especially useful in a networked or remote sensing
environment where storage space or data bandwidth might
be limited.

The remainder of this paper is organized as follows.
Section 2 reviews prior work in surface reconstruction.
Section 3 presents the mathematical basis for dynamic
surface reconstruction through the Kalman filter. Section 4
discusses the properties of the dynamic surface reconstruction.
Section 5 describes the advancements enabled by the dynamic
surface reconstruction. Section 6 presents the experimental
results. The computational complexity of the dynamic surface
reconstruction is analyzed in Section 7. This paper concludes in
Section 8.

2. Literature review

Surface reconstruction has been an active research topic
due to its broad applications such as reverse engineering [22]
and quality inspection [12]. In the mechanical computer aided
design community, a tensor B-spline surface is the standard
surface representation and its reconstruction has been studied
extensively [13,17,25]. To obtain an accurate and smooth
surface, hierarchical B-spline surface fitting [6], multilevel B-
spline surface fitting [11], and local surface updating [14]
techniques have been introduced. The dynamic surface
reconstruction has also been reported in the computational
geometry community to obtain a fine reconstruction surface [1,
2]. However, they only address the post-sensing reconstruction,
not addressing how to couple the sensing and reconstruction.

In the computer vision community, the Kalman filter has
been used to build a tensor parametric surface [20,23,24] from
multiple sensor data. Other forms of the recursive least squares
based methods have been used for surface reconstruction [4,
5]. However they were just utilized for statically integrating
different sensor data, not for closed-loop sensing and modeling.
In the computer aided design area, the incremental updating
nature of the Kalman filter has been used to interactively deform
the free-form surface [19], but not used for reconstructing the
surface.

During the B-spline surface fitting, parameterization is a
critical issue [21] because a poor choice of the base surface
for parameterization may lead to a poor reconstruction. So
an iterative process is often used to achieve a better base
surface [13,17]. A dynamic base surface has been proposed by
iteratively projecting the increased grid points from the base
surface to the point cloud, and then reconstructing a new base
surface from those projected points in the point cloud until the
termination criterion is satisfied [16]. However, in our dynamic
parameterization approach, the base surface can be updated
with an arbitrary number of data points acquired at any location.

3. Mathematical basis for dynamic surface reconstruction

This section gives the mathematical basis for our
dynamic surface reconstruction, including (1) B-spline surface
representation, and (2) the Kalman filter for surface updating.

Note, it is assumed in this paper that the object has been
properly segmented [22] so that only one B-spline surface is
reconstructed for a given point cloud.

3.1. B-spline surface

B-spline surfaces are widely used to model free-form shapes
in product design and manufacturing in automotive, aerospace
and consumer products industries.

A bi-cubic B-spline surface has the form:

S(u, v) =

∑
i, j

Ni (u)N j (v)Pi j (1)
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where N is the B-spline shape function and Pi j is the i j-th
control point. The equation can also be expressed in a compact
form:

S(u, v) = A(u, v)P (2)

where A(u, v) and P are vectors of length n and n is the number
of control points. See [18] for details on B-spline surface
representation.

3.2. Kalman filter for surface updating

In order to fuse noisy sensor data (here we assume the noise
is independent, white and Gaussian) into a B-spline surface,
we choose the Kalman filter [10,26] to produce the statistically
optimal estimate of the surface.

For any point on the B-spline surface S(u, v), its sensor
measurement is z, and its parameter is (uz, vz), we can get from
Eq. (2)

z = A(uz, vz)P + ε (3)

where ε is the measurement noise.
In the terminology of the Kalman filter, the above B-spline

surface equation represents a linear system between the internal
surface state P and external observation z. That is, the collection
of control points P constitutes the internal state of the object
shape, the measurement z with its uncertainty Λz forms the
external observation of B-spline surface. A(uz, vz) corresponds
to the measurement matrix H in [26]. Then we can get the
Kalman gain [9] as

Kl = 3Pl−1AT(uz, vz)

×

(
A(uz, vz)3Pl−1AT(uz, vz) + Λz

)−1
(4)

where Kl is the l-th step Kalman gain, and 3Pl−1 is the state
uncertainty at the (l − 1)-th step.

The surface state and its uncertainty updating equation can
be obtained as

Pl = Pl−1 + Kl (z − A(uz, vz)Pl−1) (5)
(a): 3Pl = (I − KlA(uz, vz)) 3Pl−1 or

(b): (3Pl)
−1

= (3Pl−1)
−1

+ AT (uz, vz) (Λz)−1 A (uz, vz) . (6)

That is, for any new measurement z and its variance Λz at
the l-th step, we can get the updated surface estimate Pl and
uncertainty 3Pl (its dimension is n × n) through Eqs. (5) and
(6) based on the prior surface state Pl−1 and its variance 3Pl−1.
Such recursive updating forms the basis of our dynamic B-
spline surface reconstruction.

4. Dynamic surface reconstruction

In this section, we describe how we can use the recursive
nature of the Kalman filter for dynamic surface reconstruction
in two modes, and then also examine the effectiveness of
the dynamic surface reconstruction by comparing it with the
least squares based reconstruction. Here, the dynamic surface
reconstruction refers to a surface reconstruction process in
which the surface is reconstructed or updated from an a priori
surface in an incremental manner, in which the points are
incorporated into the surface model as they are collected.

For a given set of measurements {zi , i = 1, . . . m} with the
corresponding noise characteristics Λzi , and the a priori surface
estimate defined by P0 and 3P0, we can iteratively update the
surface from those m measurements with Eqs. (5) and (6). This
surface reconstruction mode is defined here as the incremental
mode. The pseudo-code for this incremental surface updating
can be written as in Box I.

If all the measurements {zi , i=1, . . . m} with corresponding
noise Λzi are parameterized with reference to one surface and
given the same a priori surface estimate P0 and 3P0, the
resulting surface through Eqs. (5) and (6) can also be computed
through the following equations.

Pm =

(
(3P0)

−1
+

m∑
i=1

AT(uzi , vz i
)

× (Λzi )
−1 A(uzi , vzi )

)−1

×

(
(3P0)

−1 P0 +

m∑
i=1

AT(uzi , vzi ) (Λzi )
−1 zi

)
(7)

3Pm =

(
(3P0)

−1
+

m∑
i=1

AT(uzi , vzi )

× (Λzi )
−1 A(uzi , vzi )

)−1

(8)

where P0 and 3P0 are the initial estimate of surface and its
uncertainty estimate, A(uzi , vzi ) is the B-spline shape function
matrix corresponding to the measurement z, and Λzi is the
uncertainty of the measurement zi .

In Eqs. (7) and (8), we can see that all the measurements
are processed at once to produce the surface. This fitting mode
is referred to as the batch mode. The pseudo-code for surface
reconstruction in this batch mode is as follows:

These two modes of surface reconstruction have the
following properties.

Property 1. Assume all the measurements are parameterized
with reference to one initial surface, for a given set of
measurements {zi , i = 1, . . . m} with corresponding noise
Λzi , the reconstructed surface, its control point Pm and its
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For i = 1 to m

Compute the Kalman gain Ki = 3Pi−1AT(uzi , vzi )
(

A(uzi , vzi )3Pi−1AT(uzi , vzi ) + Λzi

)−1
.

Compute Pi through Pi = Pi−1 + Ki
(
zi − A(uzi , vzi )Pi−1

)
.

Compute 3Pi through 3Pi =
(
I − Ki A(uzi , vzi )

)
3Pi−1 = 3Pi−1 − Ki A(uzi , vzi )3Pi−1.

End for

Box I.
uncertainty covariance 3Pm , can be obtained equivalently in
a batch mode through Eqs. (7) and (8) or in an incremental
mode through Eqs. (5) and (6). (The proof can be seen in the
Appendix A).

Property 2. If the measurements are parameterized with one
initial surface, Pm and 3Pm computed from the Kalman
filter are independent of the measurement sequence of zi , z j ,

(i 6= j).

Proof. This can be easily seen from the batch fitting mode
equations (Eqs. (7) and (8)). �

Property 3. If the measurements (total m points) are parame-
terized with reference to one initial surface, with the same m
measurements and parameterization, the reconstructed surface
from the weighted least squares equals that from the Kalman
filter if

(1) the initial determinant det (3P0) → ∞ and it is fused
with the m points using the Kalman filter (Condition 1), or

(2) the initial surface as characterized by P0 and 3P0 is
estimated with the weighted least squares from initial m0 points
and it is then fused with the remaining (m − m0) points using
the Kalman filter (Condition 2).

Proof. For the same measurements and parameterization, we
can also reconstruct a B-spline surface of the same number of
control points by employing the weighted least squares method
(details are in the Appendix B). The reconstructed surface and
its uncertainty can be represented by

Pm =

(
m∑

i=1

AT(uzi , vzi ) (Λzi )
−1 A(uzi , vzi )

)−1

×

m∑
i=1

AT(uzi , vzi ) (Λzi )
−1 zi (9)

3Pm =

(
m∑

i=1

AT(uzi , vzi ) (Λzi )
−1 A(uzi , vzi )

)−1

. (10)

Under condition (1)
From Eqs. (7) and (8), when the determinant of the initial

surface uncertainty det(3P0) → ∞, then det((3P0)
−1) →

0, (ΛP0)
−1 P0 → 0, and (3P0)

−1
→ 0 (in this case,

the a priori shape is a surface with very large uncertainty),
the reconstructed surface from m measurements through the
Kalman filter changes to

3Pm =

(
(3P0)

−1
+

m∑
i=1

AT(uzi , vzi ) (Λzi )
−1 A(uzi , vzi )

)−1
=

(
m∑

i=1

AT(uzi , vzi ) (Λzi )
−1 A(uzi , vzi )

)−1

(11)

and

Pm =

(
(3P0)

−1
+

m∑
i=1

AT(uzi , vzi ) (Λzi )
−1 A(uzi , vzi )

)−1

×

(
(3P0)

−1 P0 +

m∑
i=1

AT(uzi , vzi ) (Λzi )
−1 zi

)

=

(
m∑

i=1

AT(uzi , vzi ) (Λzi )
−1 A(uzi , vzi )

)−1

×

(
m∑

i=1

AT(uzi , vzi ) (Λzi )
−1 zi

)
. (12)

Comparing Eqs. (11) and (12) with Eqs. (9) and (10),
we can see that the two surfaces and their uncertainty are
actually equivalent when the determinant of the initial surface
uncertainty det(3P0) → ∞.
Under condition (2)

In Eqs. (7) and (8), the initial surface P0 and 3P0 can be
estimated from a subset of the total measurements (m0, m0 ≤

m) by using the weighted least squares. From Eqs. (9) and (10),
the P0 and 3P0 can be got by

P0 =

(
m0∑
i=1

AT(uzi , vzi ) (Λzi )
−1 A(uzi , vzi )

)−1

×

m0∑
i=1

AT(uzi , vzi ) (Λzi )
−1 zi

3P0 =

(
m0∑
i=1

AT(uzi , vzi ) (Λzi )
−1 A(uzi , vzi )

)−1

.

(13)

Then, we can get the final reconstructed surface and its
uncertainty based on the initial surface P0 and 3P0 and the
other m − m0 measurements with Eqs. (7) and (8) as

Pm−m0

=

(
(3P0)

−1
+

m−m0∑
i=1

AT(uzi , vzi )

× (Λzi )
−1 A(uzi , vzi )

)−1
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×

(
(3P0)

−1 P0 +

m−m0∑
i=1

AT(uzi , vzi ) (Λzi )
−1 zi

)

=

(
m0∑
i=1

AT(uzi , vzi ) (Λzi )
−1 A(uzi , vzi )

+

m−m0∑
i=1

AT(uzi , vzi ) (Λzi )
−1 A(uzi , vzi )

)−1

×

(
m0∑
i=1

AT(uzi , vzi ) (Λzi )
−1 zi

+

m−m0∑
i=1

AT(uzi , vzi ) (Λzi )
−1 zi

)

=

(
m∑

i=1

AT(uzi , vzi ) (Λzi )
−1 A(uzi , vzi )

)−1

×

(
m∑

i=1

AT(uzi , vzi ) (Λzi )
−1 zi

)
(14)

3Pm−m0

=

(
(3P0)

−1
+

m−m0∑
i=1

AT(uzi , vzi )

× (Λzi )
−1 A(uzi , vzi )

)−1

=

(
m−m0∑

i=1

AT(uzi , vzi ) (Λzi )
−1 A(uzi , vzi )

+

m0∑
i=1

AT(uzi , vzi ) (Λzi )
−1 A(uzi , vzi )

)−1

=

(
m∑

i=1

AT(uzi , vzi ) (Λzi )
−1 A(uzi , vzi )

)−1

. (15)

Comparing Eqs. (14) and (15) with Eqs. (9) and (10), we can
see that the two surfaces and their uncertainty are equivalent
when P0 and 3P0 are computed directly with the weighted
least squares from m0 points and are subsequently fused with
(m − m0) points through the Kalman filter. �

This equivalency property between the Kalman filter and
the weighted least squares gives us an intuitive sense why the
Kalman filter can be used for surface reconstruction, since the
least squares method is a common way for reconstructing the
B-spline surface.

5. New advancements enabled by dynamic B-spline surface
reconstruction

This section presents how dynamic surface reconstruction
enables dynamic parameterization for a sequential data
acquisition process, in which subsequently collected data are
parameterized on the previously updated surface. This dynamic
parameterization makes it possible to dynamically optimize
or plan the sensing operations based on available information
such as fitting error and its distribution in the reconstructed
surface, surface uncertainty, curvature and other geometric
properties. Based on this dynamic parameterization, we present
two sensing strategies below:

• Uncertainty minimization based sensing: based on the
previously sensed data, dynamically determining optimal
subsequent sensing locations to minimize the surface
uncertainty, which can result in more effective sensing and
better surface quality.

• Low-discrepancy based sensing: acquiring shape data in
a surface domain with the low-discrepancy sequences
generated by the quasi-Monte-Carlo method, which can also
lead to more efficient sensing and better surface quality.
With this sensing strategy, the acquired point set can be
augmented one point at a time with the goal of keeping all
the points being evenly distributed in the sampling domain.

Note, these methods are also applicable for a static point
cloud whereby the sequence of points being incorporated into
the recursive surface update can be planned similarly.

5.1. Dynamic parameterization

Data point parameterization is a key step in the B-spline
surface reconstruction. It involves a process mapping a point in
3D space to one parameter pair (u, v) on the parametric domain
of a base surface. The corresponding surface point’s parameter
pair (u, v) is chosen as the parameter for the 3D point. Thus,
for a given point cloud, the base surface is the key to obtain a
better parameterization and a better surface.

In Fig. 1, we select three kinds of base surfaces to illustrate
the effect of data parameterization on surface reconstruction.
The first is a planar surface, the second is a Coons surface
defined by the four boundary curves of the point cloud, and
the last is the surface reconstructed from the point cloud using
the Kalman filter, in which the data is first parameterized by the
planar surface (Fig. 1(b)). From the fitting accuracy of resulting
surfaces, we can see that the resulting surface has smaller RMS
error when the base surface better approximates the underlying
shape of the point cloud.

Therefore, to achieve a higher accuracy in surface
reconstruction, a better initial base surface for parameterization
is desired. Hence currently an iterative fitting process is
often applied [13,17]. Let z1, z2 · · · zm be the discrete sensed
points and S0 be initial base surface for parameterization, this
common iterative process can be described in Fig. 2(a). In this
iterative parameterization process, the previously reconstructed
surface Sl is used as the base surface for parameterizing the
entire point set {zi }. Upon completion, the entire point set is
used to reconstruct the surface Sl+1. A termination criterion
such as the change of root mean squared error ∆e between
Sl+1 and {zi } is used to determine whether such iteration
should continue. As such, the iterative process includes several
times of parameterization ϕ (Sl , zi , i = 1, . . . m) and surface
reconstruction that involves the entire point cloud. Assuming
q is the times of iterative parameterization and surface
reconstruction, the total number of point parameterization for
the total m measurements is q × m.
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Fig. 1. Different base surfaces for parameterization and the resulted fitting accuracy.
(a) Iterative parameterization. (b) Dynamic parameterization.

Fig. 2. Iterative parameterization vs dynamic parameterization in surface reconstruction.
Instead of q × m times of iterative point parameterization,
we can dynamically parameterize any number of dynamically
acquired r points (or 1 ≤ r ≤ m for any static point cloud)
and update the surface with just the parameterized r points
(Fig. 2(b)). Such dynamic parameterization and surface update
constitute our new dynamic parameterization scheme, which
enables us to achieve a better reconstructed surface with fewer
parameterization steps.

Assume the current surface estimate after fusing the point zi
is S′

i and the next measurement is zi+1. The parameter of zi+1
can be obtained as follows:

(ui+1, vi+1) = ϕ
(
S′

i , zi+1
)
.

Then the surface S′

i can be dynamically updated with
parameterized zi+1 through Eq. (5). A similar parameterization
can be applied in the batch mode through Eq. (7). In this
manner, the base surface is dynamically updated and the
subsequent measurements are then dynamically parameterized
based on the updated surface. Therefore, we call it dynamic
parameterization.

In order to achieve a better parameterization for the
subsequent sampling points, we need to plan the data sampling
sequence so that the dynamically updated base surface
approximates more closely to the true surface. Therefore,
there arises a sensing planning issue in dynamic surface
reconstruction: what would be a desirable point sampling
sequence so that the resulting base surface is beneficial for the
subsequent data points’ parameterization?

5.2. Uncertainty minimization based sensing

We show here how dynamic surface reconstruction can be
useful in efficiently determining the next best sensing locations
to minimize the surface uncertainty. This is especially useful
for adding additional points at the missing data area during the
sensing process. So a next best point (NBP) problem can be
formulated as follows:

Let z be the next measurement on the free-from surface
with parameter (uz, vz) and 3Pi be the uncertainty covariance
matrix at the time step i . From Eq. (6)(b) by setting l = i , we
can get the updated uncertainty covariance matrix at time step
(i + 1) as

(3Pi+1)
−1

= (3Pi )
−1

+ AT(uz, vz) (Λz)−1 A(uz, vz). (16)

Then 3Pi+1 = 3Pi (I+3Pi AT(uz, vz)(Λz)−1A(uz, vz))
−1.

From reference [9], the determinant of 3Pi+1 can be got by

det(3Pi+1) = det(3Pi )/(1 + A(uz, vz)3Pi

× AT(uz, vz) (Λz)−1). (17)
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Fig. 3. Dynamic seeking–sensing–modeling procedures for dynamic surface reconstruction.
From Eq. (17), we can see that minimizing the determinant
of 3Pi+1 is equivalent to maximizing A(uz,vz)3Pi AT(uz, vz).
That is,

min(det(3Pi+1)) ∼ max
(

A(uz, vz)3Pi AT(uz, vz)
)

. (18)

So the NBP problem can be cast as finding the optimal point
on the reconstructed B-spline surface with maximal uncertainty
to maximally reduce the reconstructed surface uncertainty.

With the NBP, we can dynamically determine the best
position on the physical surface from the dynamically
reconstructed surface, and then the updated surface can
again be used to determine the next best sensing location.
Cycling the seeking, sensing and surface reconstruction
process, we can efficiently reconstruct the surface. So the
dynamic seeking–sensing–reconstruction basically involves the
following three steps:

◦ Seeking: dynamically determine the next best sensing
location to minimize the surface uncertainty by solving
Eq. (18). One approach based on divide-and-conquer
strategy was presented in [9] to dynamically seek such
NBPs.

◦ Sensing: dynamically sense the object at the above computed
NBP location.

◦ Reconstruction: dynamically update the surface based on the
above sensed point through the Kalman filter (Eqs. (5) and
(6)).

In Fig. 3, an initial surface (Fig. 3(b)) is first reconstructed
from incomplete data (Fig. 3(a)). Based on the reconstructed
surface uncertainty (Fig. 3(c)), the next best point can be
found and shown in Fig. 3(d). Then we can determine the
sensing location with the largest uncertainty on the physical
surface and sense the next actual point (Fig. 3(e)). Fig. 3(f)
shows the present surface and the actual acquired point.
Fig. 3(g) and (h) show the updated surface and its uncertainty.
Repeat such seeking, sensing and updating procedures until
the dynamically reconstructed surface’s uncertainty satisfies
specified criteria. In the converged state, the initial point cloud
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and the dynamically acquired points are shown in Fig. 3(i), and
the final surface and its uncertainty are shown in Fig. 3(j) and
Fig. 3(k).

So here the dynamic surface reconstruction is the key to
provide an updated surface to guide further sensing. It has been
proven that such an uncertainty minimizing process converges
monotonously [9].

5.3. Low-discrepancy based sensing

In this subsection, we present a low-discrepancy sampling
method which can take advantage of our dynamic parameteriza-
tion to improve the sensing efficiency and reconstruction qual-
ity. More specifically, a quasi-Monte Carlo (QMC) method is
used to generate the low-discrepancy sensing sequence in the
parametric domain.

The discrepancy of sampled points is used to characterize
the quality of the even distribution of discrete points X =

{xi |0 ≤ xi < 1, 1 ≤ i ≤ m} over a given interval (here we
assume the interval is [0, 1]). It is defined as

Dm = sup
J∈J∗

∣∣∣∣ B(J ; X)

m
− |J |

∣∣∣∣ (19)

where J ∗ is the set of intervals [0, t] with 0 < t ≤ 1, B(J ; X)

is the number points in X that fall into the particular interval of
J , and |J | is the length of the interval J . From Eq. (19), we can
see that

(1) Dm is in between 0 and 1;
(2) more evenly distributed points means a smaller value of

Dm . An overly denser or sparser distribution of points in one
particular interval will lead to a larger value of Dm .

There are several well-known low-discrepancy sequence
construction methods such as Faure [3], Halton [7] and
Niederreiter [15]. Since the Halton sequence construction
method performs well in lower dimensions, in this paper, we
select the Halton construction to successively generate points
with a low discrepancy. Consider a prime base b, the number i
can be written in the form

i = d j b j
+ · · · d2b2

+ d1b + d0, 0 ≤ d j < b. (20)

Then the i-th Halton sequence point X i is defined by

X i =
d0

b
+

d1

b2 + · · · +
d j

b j+1 . (21)

In Eq. (21), the i-th Halton sequence point X i is in the open
interval (0, 1).

The 2D Halton point can be composed by using a product
of two 1D Halton points with a different base, e.g. b = 2 in
the u direction and b = 3 in the v direction. Since the 2D
Halton point is generated in the open interval (0, 1)× (0, 1), no
sampling takes place on the surface boundary. Since data points
near the vicinities of surface boundary are critical to surface
reconstruction, we introduce an additional one dimensional
quasi-Monte Carlo (QMC) sequence on the boundary of the
parametric domain as shown in Fig. 4 (here i starts from 0 in
order to include the four corner points and the base b = 2).
Fig. 4. Sampling scheme for QMC on the boundary of the parametric domain.

Assume we want to obtain r points through QMC. Of these
points, [t × r/4] points are sampled on each of the four sides
of the boundary, where t is the percentage of r points to be
sampled on the boundary (0 ≤ t < 1). Denote the initial
base surface as S0, we can present such a dynamic sampling,
sensing and reconstruction strategy through the quasi-Monte
Carlo method as follows.
Dynamic sampling, sensing, and reconstruction strategy
Step 1. Reconstruct the initial surface S from available sensed
data points and the a priori surface S0 through the batch fitting
mode of the Kalman filter.
Step 2. Identify the areas on the parametric domain of the
surface S requiring additional sensing, e.g. missing data areas.
(Here we assume the area interval is [u1

∗, u2
∗
] × [v1

∗, v2
∗
].)

Step 3. Dynamic sampling, sensing and surface updating.

• Generate [t×r/4] points on each of the four boundary curves
bounding the surface parametric domain with the one-
dimensional Halton low-discrepancy sequence construction
method (base b = 2).

• Generate the interior r − [t × r/4] × 4 low-discrepancy
sequence points (ui , vi ), 0 ≤ ui , vi ≤ 1, i = 1, . . . , r − t ∗r
and transform {(ui , vi )} into the interval [u∗

1, u∗

2] × [v∗

1 , v∗

2 ]

by ui = u∗

1 + ui ×
(
u∗

2 − u∗

1
)

and vi = v∗

1 + vi × (v∗

2 − v∗

1).
• Acquire shape data {zi } on the physical part surface at the

locations closest to {S(ui , vi )} where (ui , vi ) is the sequence
of r points generated above.

• Update the surface S with the acquired point set {zi } through
the Kalman filter and get the updated surface S′. Set S = S′.

• Repeat the step 3 until a termination criterion is met.
For example, a rule of thumb can be that the number of
sensed points should be several times the number of model
parameters.

6. Examples

Four examples are shown below to demonstrate the
capabilities enabled by the dynamic surface reconstruction.

6.1. Example 1: Simulated surface

In Fig. 5, 9 × 104 data points (Fig. 5(b)) are uniformly
sampled from a known bi-cubic B-spline surface (28 × 12
control points) (Fig. 5(a)). Gaussian noise was added (variance
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(a) A B-spline surface (28 × 12). (b) Uniformly sampled 9 × 104

points from (a).
(c) Re-sampled 61127 points from
(b).

Fig. 5. Sampled point cloud from a known B-spline surface.

(a) Validate points for RMS
computation (3907 points).

(b) Point-cloud (61,127 points). (c) Initial surface estimate
RMS = 8.120393.

(d) The uncertainty of the
estimated surface.

(e) Point-cloud + additional
points (79 points).

(f) Dynamically reconstructed
surface RMS = 0.067915.

(g) The uncertainty of the
reconstructed surface.

Fig. 6. The final surface and its uncertainty through dynamic reconstruction. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
Λzx
= Λzy

= Λzz
= 0.01). In the noisy data, 61,127 data

points (Fig. 5(c)) are then selected to represent the acquired
point cloud and to simulate the measurement with missing data
on the surface.

Since the model structure of the surface is known, a planar
surface with 28 × 12 control points bounding the point cloud
is firstly selected as the a priori shape and the unit matrix is
defined as the covariance matrix of its control points. Then
the points are parameterized with reference to this a priori
surface and the Kalman filter in the batch fitting mode is applied
to estimate the initial surface and its uncertainty. A B-spline
surface is first reconstructed with 28 × 12 control points. The
dynamic seeking, sensing and surface updating is then iterated
to minimize the surface uncertainty as described in Section 5.2.
The 79 additional optimal points are added to reduce the surface
uncertainty. It took total 88.75 s (incremental fitting with the
Kalman filter: 0.14 s; seeking time: 88.61 s).

In Fig. 6, the initial surface estimate (Fig. 6(c)) and its
uncertainty (the red ellipsoids in Fig. 6(d)) are obtained from
the point cloud (Fig. 6(b)), and then dynamic seeking, sensing
and surface reconstruction is run and 79 accurate points with
variance Λzx

= Λzy
= Λzz

= 0.0001 are added to obtain the
surface with lower uncertainty (Fig. 6(f)). We can see that the
final reconstructed surface has a lower uncertainty (Fig. 6(g))
and a smaller RMS error, which is computed with the randomly
sampled 3907 points (Fig. 6(a)) in the missing data area at the
actual surface.

To validate the sensing efficiency through our dynamic
seeking–sensing–reconstruction approach, we compare it with
a static plan-reconstruction method and an ad hoc method. The
static plan-reconstruction is to pre-plan the optimal points in the
parametric domain according to an initial reconstructed surface
and its static surface uncertainty distribution, and then to map
them to the physical surface for sensing. This differs from our
dynamic approach in that the parameterization is done with a
fixed static base surface, which is estimated from the initial
point cloud (Fig. 6(c)). The ad hoc method refers to a way of
randomly sensing the points in the missing data areas with a
static base surface for parameterization.

Given an estimated surface and its physical counterpart, and
a point’s (u, v) parameter, we can compute the corresponding
3D point on the estimated surface and its normal, and then
mapping it onto the physical surface by intersecting the physical
surface with the ray going through the point and along the
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Fig. 7. Reconstructed surface accuracy with sensed points.

normal direction. This approach for acquiring the sensed point
is used for all three methods.

In Fig. 7, the parameterization based on point projection to
the base surface (i.e. the shortest distance between the point
and the base surface) is applied, and the comparison of the
reconstructed surface accuracy shows that (1) dynamic sensing
and reconstruction method steadily converges to a much lower
RMS error than the other two methods, (2) with three times of
measured points in the dynamic approach, the ad hoc method
still cannot achieve the same steady accuracy surface, (3)
the static plan-reconstruction method also takes many more
additional sensed points to reconstruct a good surface.

From the initial surface in Fig. 6(a) and (b), we can see a
local bump missing in the missing data area, which leads to
a significant difference between the computed surface points
at the initial estimated surface and the mapped 3D points
on the physical surface. Further, the static plan-reconstruction
and ad hoc methods only use the initial estimated surface as
the parameterization surface. However, the dynamic sensing
and reconstruction approach utilizes the dynamically evolving
surface as the base surface for parameterization. As more data
points are collected, it approaches the physical surface better
and thus achieves better parameterization results. Consequently,
more effective sensing is achieved.
This example demonstrates that dynamic seeking, sensing,
and surface updating (1) can achieve more accurate surface
digitization with fewer sensed points than static plan-
reconstruction and ad hoc methods, (2) can achieve a higher-
quality surface in terms of fitting accuracy due to the use of
dynamic parameterization.

6.2. Example 2: Aero nozzle

In Fig. 8, an aero nozzle part was scanned in 12 views
with an area sensor (Minolta Vivid 910). In the merged
point cloud, data missing still occurs due to the occlusion
between the airfoils. Such missing data leads to large surface
uncertainty. In [9], we have applied the dynamic seeking,
sensing and surface reconstruction to invoke a tactile sensor
to reduce the surface uncertainty. Instead of uncertainty-based
dynamic seeking–sensing-and-modeling, we here employ the
QMC based dynamic sensing method to improve the surface
quality at the missing data area. The comparison of uniform
sampling (zero discrepancy) with a static base surface for
parameterization and the low-discrepancy QMC sampling with
dynamic parameterization is given in Fig. 9.

As shown in Fig. 9, 21,763 data points for one surface
(variance Λzx

= Λzy
= Λzz

= 0.01 mm2) are obtained
through Minolta Vivid 910, and the initial surface (the number
of control points is 19 × 35) is estimated with the multilevel
Kalman filter method [8] since the underlying model structure
is unknown. In the area where there are missing points, this
area corresponds to the parametric domain [0, 1] × [0.52, 0.64]

and the number of control points affected is 19×8. Thus, in this
area, we used both the uniform sampling method (Fig. 9(d), (e))
and the QMC sampling method (Fig. 9(g) and (h)) to acquire
152 points with the touch probe (variance Λzx

= Λzy
= Λzz

=

0.0001 mm2) in a coordinate measurement machine. In order
to compare the resulting surface quality of the two methods,
an additional 2799 points (Fig. 9(a)) are measured with the
touch probe in the missing data area. RMS errors are evaluated
between the resulting surfaces and these additional measured
points.

Comparing Fig. 9(f) and (i), we can see that the pre-planned
uniform sampling (zero discrepancy) in the parametric grid
with the static base surface (reconstructed from the initial point
cloud shown in Fig. 9(c)) has larger RMS error (0.071987) than
(a) Nozzle part. (b) Scanned point cloud
(185,734 points).

(c) Incomplete data due to occlusion
(21,763 points).

Fig. 8. Scanned incomplete point cloud of nozzle part due to occlusion.



Y. Huang, X. Qian / Computer-Aided Design 39 (2007) 987–1002 997
(a) Validation points for
RMS computation (2705
points).

(b) Point cloud (21,763
points).

(c) Initial surface estimate
RMS = 0.168823.

(d) Sampling points in the
parametric domain (Grid).

(e) Point cloud + additional
grid points (152 points).

(f) Reconstructed surface
RMS = 0.071987.

(g) Sampling points in the
parametric domain (QMC).

(h) Point cloud + additional
QMC points (152 points).

(i) Dynamically
reconstructed surface
RMS = 0.062432.

Fig. 9. Reconstructed surfaces before and after fusing the sensed points.
Fig. 10. The RMS errors vs. the number of additional updating points.

that of the low-discrepancy sequences generated by the QMC
(r = 8, t = 0) method with dynamic parameterization (RMS
error 0.062432).

Fig. 10 further compares the RMS error during the
sequential process when we add uniform sampled points
with static parameterization and QMC generated points with
dynamic parameterization into the surface reconstruction. We
can see that dynamic sensing and surface reconstruction
through quasi-Monte Carlo converges much faster to a
better stable value than the static planned method due to
the combination of low-discrepancy sampling and dynamic
parameterization.

6.3. Example 3: Manufactured free-form surface

In Fig. 11, a manufactured surface was scanned with Minolta
Vivid910 and 104,562 data points (variance Λzx

= Λzy
=

Λzz
= 0.01 mm2) were obtained.

In Fig. 12, a planar base surface (the number of the control
points P0 : n = 28 × 36 and uncertainty covariance matrix
3P0 = I with the dimension 1008 × 1008) is used for
parameterizing the point cloud, and the dynamic sampling and
surface reconstruction described in Section 5.3 with different
number of samples each time (r = 2000, t = 0.24;

r = 1000, t = 0.24) are employed to reconstruct the surface.
The RMS error between the point cloud and the reconstructed
surface are then calculated. Comparing the resulting surfaces’
error with that from the conventional iterative parameterization
method shown in Fig. 1, we can see that the dynamic
parameterization (both strategies in Fig. 12) can lead to a more
accurate surface than the iterative parameterization method
(Fig. 1(d), RMS = 0.061651 mm) using the Coons surface as
the base surface.

In addition, we also examined the process of dynamic
sampling and surface reconstruction.

Fig. 13 gives the comparison of RMS errors between the sur-
faces and data points during the process of dynamic parameter-
ization and iterative parameterization. In the horizontal axis is
the frequency of sampling r data points. For example 15/30
represents 2000 data points have been sampled with QMC for
15 times and 1000 data points have been sampled with QMC for
30 times. Note, during the dynamic parameterization, different
data points are sampled from the point set (104,562 points) due
to the use of QMC. Also in Fig. 13 is the iterative parameter-
ization shown as a blue dotted line where the entire point set
(104,562 points) is parameterized for each iteration.

Fig. 13 shows 20% of data points by the QMC sampling (at
10/20) with dynamic parameterization can lead to smaller sur-
face fitting RMS error than the parameterizing the entire point
cloud on the static base surface. Dynamically parameterizing
the entire point cloud once with sequences generated by the
QMC method (at 52/104) would lead to smaller surface fitting
RMS error than iteratively parameterizing the entire point cloud
five times on a static base surface.

This example demonstrates that high quality surface can be
obtained much faster by dynamic parameterization of the point
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(a) Measured surface. (b) Scanned point cloud (104,562 points).

Fig. 11. Manufactured surface and scanned point cloud.

Fig. 12. The resulting surface through dynamic sampling and reconstruction (unit: mm).
Fig. 13. RMS errors of the dynamic parameterization and iterative
parameterization. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

cloud with an appropriate dynamic sampling scheme (QMC in
this paper) than iterative parameterization.

6.4. Example 4: Complex surface reconstruction

In Fig. 14, a human face was scanned by Minolta Vivid910
and 27,927 data points (variance Λzx

= Λzy
= Λzz

=

0.01 mm2) were obtained.
Fig. 14. A scanned human face and its point cloud.

From the scanned point cloud (Fig. 15(a)), we use a plane
(Fig. 15(b)) as the base surface for parameterization and the
initial surface estimate has the number of control points P0 :

40 × 30 and uncertainty covariance matrix 3P0 = I (I is
the unit matrix with the dimension 1200 × 1200). Then the
whole measured points are parameterized to reconstruct the
surface (Fig. 15(c)) using the dynamic sampling and surface
reconstruction strategy as described in Section 5.3 (r =

2000, t = 0.04). Finally we project the boundary curve
defined from the boundary points to the reconstructed surface
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(a) The scanned point
cloud (27,927 points).

(b) The planar base surface for dynamic
sampling and surface reconstruction.

(c) The reconstructed
surface and the
boundary curve.

(d) The trimmed
surface with the
boundary curve.

Fig. 15. The reconstructed surface through dynamic surface reconstruction.
Fig. 16. RMS errors of dynamic parameterization and iterative parameteriza-
tion. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

and trimmed the reconstructed surface to get the 3D face
(Fig. 15(d)).

Fig. 16 gives the comparison of RMS error variations for
dynamic parameterization and iterative parameterization. It can
be seen that the dynamic parameterization enables dynamic
sampling and surface reconstruction to achieve a more accurate
surface faster than that of the iterative parameterization method.
With about 23% data points (after sampling 2000 data points
3 times) from the dynamic parameterization, the RMS error
is smaller than that using the iterative parameterization after
fitting all the measurements once. After fusing once all the
measurements (sample times = 13 times) from the dynamic
parameterization, the RMS error is smaller than that of three
times of iterative parameterization.

It can be seen from Figs. 15 and 16 that for a dense
data point cloud from a single sensor, a surface with
many complicated shape undulations can still be dynamically
reconstructed through the Kalman filter. A more accurate
surface is obtained due to the use of dynamic parameterization.

7. Computational complexity analysis

In the dynamic surface reconstruction, the use of two fitting
modes of the Kalman filter facilitates the dynamic surface
reconstruction for different sizes of sensing data. Suppose
m is the number of sensing data points, n is the number
of reconstructed surface’s control points. From the increment
mode procedure and its pseudo code described in Section 4, we
can analyze the computational time as shown in Table 1.

So its complexity for the Kalman filter is O(n2) when fitting
each single data point in the increment mode, and is O(m ×n2)

when fitting all m measurements. On the other hand, we can get
the computation complexity for the Kalman filter in the batch
mode to fit the whole m measurements (Table 2).

So only O(m + n3) is required for the Kalman filter in the
batch mode to fit the whole m measurements. Therefore, the
two modes have the following significance in fitting different
sizes of sensing data:

• The batch fitting capability allows the large amount of
point data (m >> n) to be processed efficiently once (its
computational complexity is O(m + n3)) as opposed to the
large number of iterative use of incremental updating (its
computational complexity is O(m × n2)).

• The incremental update allows any additional single point or
a few sensed data to be dynamically and efficiently fused
with the reconstructed surface model without reference
to the large number of sensed data from scratch (the
computational complexity is O(n2) for one single point).

8. Conclusion

In this paper, a new approach for 3D digitization is
presented. It enables dynamic B-spline surface reconstruction
as point data are acquired. It thus closes the sensing
and modeling loop for 3D digitization through dynamically
determining sensing locations to improve the quality of the
reconstructed surface. The new approach is based on the
Kalman filter.

Technically, we exploit the recursive nature of the Kalman
filter in the context of B-spline surface reconstruction. The re-
sulting surface is equivalent to that from the weighted least
squares method under certain conditions. We present two
modes of dynamic surface reconstruction using the Kalman fil-
ter: batch mode and incremental mode. We demonstrate their
benefits through several examples. These dynamic surface re-
construction modes enable the dynamic parameterization of
data points, dynamic determination of next optimal sensing lo-
cations, and low-discrepancy based efficient sensing and recon-
struction. Experiments demonstrate that high quality surfaces
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Table 1
Computational complexity in the incremental mode of the Kalman filter

Computational items Computation complexity

3Pi−1AT(uzi , vzi ) n × 16
A(uzi , vzi )3Pi−1AT(uzi , vzi ) n × 16 × 16
Ki = 3Pi−1AT(uzi , vzi )(A(uzi , vzi )3Pi−1AT(uzi , vzi ) + Λz)−1 (n × 16 × 16 + 1) + n
Ki A(uzi , vzi )3Pi−1 [(n × 16 × 16 + 1) + n] + n × n
3Pi = 3Pi−1 − Ki A(uzi , vzi )3Pi−1 [(n × 16 × 16 + 1) + n] + n × n + n × n
A(uzi , vzi )Pi−1 16
Ki (z − A(uzi , vzi )Pi−1) 17 + n
Pi = Pi−1 + Ki (z − A(uzi , vzi )Pi−1) 17 + n + n
Pi , 3Pi 2n2

+ 259n + 18

Table 2
Computational complexity in the batch mode of the Kalman filter

Computational items Computation complexity∑m
i=1 AT(uzi , vzi ) (Λzi )

−1 A(uzi , vzi ) m × 16 × 16
(3P0)−1

+
∑m

i=1 AT(uzi , vzi ) (Λzi )
−1 A(uzi , vzi ) m × 256 + n × n

3Pm =

(
(3P0)−1

+
∑m

i=1 AT(uzi , vzi ) (Λzi )
−1 A(uzi , vzi )

)−1
m × 256 + n × n + n3∑m

i=1 AT(uzi , vzi ) (Λzi )
−1 zi m × 16

Pm = 3Pm
(
(3P0)−1 P0 +

∑m
i=1 AT(uzi , vzi ) (Λzi )

−1 zi

)
m × 16 + n + n × n

Pm , 3Pm m × 272 + n + 2n2
+ n3
can be obtained much faster by dynamic parameterization of
the point cloud with an appropriate dynamic sampling scheme
(e.g. through uncertainty minimization or low-discrepancy se-
quences) than iterative parameterization. Further, it does not
need to store the point cloud during the data acquisition process
since all the points are directly incorporated into the surface
model during the sensing process.

Future work will aim to extend this dynamic surface
reconstruction to other types of surface representations, as
well as considering non-Gaussian noise in the sensed data.
Future work will also study the sensing strategies for dynamic
parameterization to optimize the quality of the reconstructed
surface.
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Appendix A. Kalman filter for surface reconstruction in
the batch mode

The Kalman filter for the measurements in the batch mode is
shown in this appendix.

Lemma 1. Let m be the number of measured points
z1, z2 . . . zm with uncertainty Λz1,Λz2 . . . ,Λzm , and P0 with
uncertainty 3P0 be the set of control points of the initial surface
estimate, the final surface through the Kalman filter can be
written as

Pm =

(
(3P0)

−1
+

m∑
i=1

AT(uzi , vzi )

× (Λzi )
−1 A(uzi , vzi )

)−1

×

(
(3P0)

−1 P0 +

m∑
i=1

AT(uzi , vzi ) (Λzi )
−1 zi

)
(22)

3Pm =

(
(3P0)

−1
+

m∑
i=1

AT(uzi , vzi )

× (Λzi )
−1 A(uzi , vzi )

)−1

(23)

where A(uzi , vzi ) is B-spline shape function matrix corre-
sponding to zi , which is noted as Ai in the following.

Proof. Let K1 be the Kalman gain when fitting the point z1 into
the B-spline surface, and A1 be the B-spline shape function
matrix corresponding to z1.

The internal state estimate P1 can be got by

P1 = P0 + K1(z1 − A1P0) (24)

and its uncertainty 3P1 = (I − K1A1) 3P0.
Eq. (24) can also be written as

P1 = (I − K1A1) P0 + K1z1. (25)

From Eq. (25), we can further infer P2 as

P2 = (I − K2A2) P1 + K2z2

= (I − K2A2) ((I − K1A1) P0 + K1z1) + K2z2
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= (I − K2A2) (I − K1A1) P0 + (I − K2A2) K1z1 + K2z2

=

2∏
i=1

(I − Ki Ai ) P0 +

2∏
i=2

(I − Ki Ai ) K1z1 + K2z2 (26)

and its uncertainty 3P2 = (I − K2A2) 3P1 = (I − K2A2)

× (I − K1A1) 3P0 =
∏2

i=1 (I − Ki Ai ) 3P0.
After all the measurements are fitted, the final state estimate

Pm can be denoted by

Pm =

m∏
i=1

(I − Ki Ai ) P0 +

m∏
i=2

(I − Ki Ai )

× K1z1 + · · · Km zm (27)

and its uncertainty

3Pm =

m∏
i=1

(I − Ki Ai ) 3P0. (28)

For any (1 ≤ r ≤ m), Eq. (28) can be written as

m∏
i=r

(I − Ki Ai )

r−1∏
i=1

(I − Ki Ai ) 3P0

=

m∏
i=r

(I − Ki Ai ) 3Pr−1 = 3Pm . (29)

Multiplying (3Pr−1)
−1 to both sides of Eq. (29), we can get

m∏
i=r

(I − Ki Ai ) = 3Pm (3Pr−1)
−1 . (30)

Substituting Eq. (30) with r = 1, 2, . . . , m into Eq. (27), we
can get the final state estimate Pm as

Pm =

m∏
i=1

(I − Ki Ai ) P0

+

m∏
i=2

(I − Ki Ai ) K1z1 + · · · + Km zm

= 3Pm (3P0)
−1 P0 + 3Pm (3P1)

−1 K1z1

+ · · · + 3Pm (3Pm)−1 Km zm . (31)

From the uncertainty updating equation (Eq. (6)(b)) of the
Kalman filter, 3Pr (1 ≤ r ≤ m) in Eq. (31) can be got by

(3Pr )
−1

= (3Pr−1)
−1

+ AT
r (Λzr )

−1 Ar . (32)

Multiplying Kr zr to both sides of Eq. (32), we can get

(3Pr )
−1 Kr zr =

(
(3Pr−1)

−1
+ AT

r (Λzr )
−1 Ar

)
3Pr−1AT

r

×

(
Λzr + Ar3Pr−1AT

r

)−1
zr

=

(
AT

r + AT
r (Λzr )

−1 Ar3Pr−1AT
r

)
×

(
Λzr + Ar3Pr−1AT

r

)−1
zr

= AT
r (Λzr )

−1
(
Λzr + Ar3Pr−1AT

r

)
×

(
Λzr + Ar3Pr−1AT

r

)−1
zr
= AT
r (Λzr )

−1 zr . (33)

Substituting Eq. (33) with r = 1, 2, . . . , m into Eq. (31), we
get the final state estimate Pm as:

Pm = 3Pm (3P0)
−1 P0 + 3PmAT

1 (Λz1)
−1 z1

+ · · ·3PmAT
m (Λzm)−1 zm

= 3Pm

(
(3P0)

−1 P0 +

m∑
i=1

AT
i (Λzi )

−1 zi

)
. (34)

From Eq. (32), we can easily calculate the final state
uncertainty 3Pm by

(3Pm)−1
= (3P0)

−1
+

m∑
i=1

AT
i (Λzi )

−1 Ai (35)

or

3Pm =

(
(3P0)

−1
+

m∑
i=1

AT
i (Λzi )

−1 Ai

)−1

. (36)

Substituting Eq. (36) into Eq. (34), we can get the final state
estimate Pm as

Pm =

(
(3P0)

−1
+

m∑
i=1

AT
i (Λzi )

−1 Ai

)−1

×

(
(3P0)

−1 P0 +

m∑
i=1

AT
i (Λzi )

−1 zi

)
. (37)

So the lemma is proved. �

Note, there is an assumption in this lemma that the
measurements are first parameterized based on one base
surface.

Appendix B. Weighted least squares for surface recon-
struction

The weighted least squares method for surface reconstruc-
tion is discussed in this appendix.

The weighted least squares method is often used to
reconstruct the surface from the measured points in the
statistical optimal sense. The optimal object function f (P) can
be defined as

Pm = arg min
P

(
f (P) =

m∑
i=1

(zi − Ai P)2

Λzi

)
. (38)

Differentiating f (P) against P, we can get

∂ f
∂P

= −2

(
m∑

i=1

AT
i (zi − Ai P)

Λzi

)

= −2

(
m∑

i=1

AT
i (Λzi )

−1 zi −

m∑
i=1

AT
i (Λzi )

−1 Ai P

)
. (39)

Let ∂ f
∂P = 0, the optimal value Pm can be calculated by

Pm =

(
m∑

i=1

AT
i (Λzi )

−1 Ai

)−1 m∑
i=1

AT
i (Λzi )

−1 zi . (40)
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Eq. (40) can also be written as

Pm

=

[AT
1 · · · AT

m
](Λz1)−1

. . .

(Λzm)−1


A1

...
Am




−1

×
[
AT

1 · · · AT
m
](Λz1)−1

. . .

(Λzm)−1


 z1

. . .
zm


= (ATUA)−1ATUZ (41)

where

A =

A1
...

Am

 , U =

(Λz1)
−1

...

(Λzm)−1



and Z =

 z1
...

zm

 .

From the linear relationship between Pm and Z in Eq. (41), we
can easily get the uncertainty 3Pm as

3Pm = (ATUA)−1ATU3Z((ATUA)−1ATU)T

= (ATUA)−1ATU

Λz1
. . .

Λzm

UTA((AT
× U × A)−1)T

= (ATUA)−1ATUA(ATUA)−1

= (ATUA)−1

=

[AT
1 · · · AT

m
](Λz1)−1

. . .

(Λzm)−1


A1

...
Am




−1

=

(
m∑

i=1
AT

i (Λzi )
−1Ai

)−1

(42)
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