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Abstract

The ability to image complex general three-dimensional (3D) structures, including reentrant surfaces and undercut features using

scanning probe microscopy, is becoming increasing important in many small length-scale applications. This paper presents a dexel data

representation and its algorithm implementation for scanning probe microscope (SPM) image simulation (morphological dilation) and

surface reconstruction (erosion) on such general 3D structures. Validation using simulations, some of which are modeled upon actual

atomic force microscope data, demonstrates that the dexel representation can efficiently simulate SPM imaging and reconstruct the

sample surface from measured images, including those with reentrant surfaces and undercut features.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Scanning probe microscopy (SPM) includes atomic force
microscopy (AFM), scanning tunneling microscopy (STM)
and a number of other variants. It has become one of the
most important nano-scale probing and manipulation
tools. It provides a vital tool for dimensional measurement
of topographic features at nanometer-scale resolution [1].
The diminishing feature size in semiconductors and the
growing academic and industrial research interests in nano-
technologies have lead to the widespread use of SPM in a
variety of applications. However, conventional SPM
instruments, due to their cone-like probe shape and the
unidirectional feedback systems, have their images re-
stricted to shapes (‘‘umbras’’) characterized by a single
height at each lateral position. These instruments cannot

accurately image reentrant or even nearly vertical features
of specimens. The dimensional characterization of such
reentrant surfaces at the nano-scale, including measure-
ments of side-wall angles, side-wall roughness, and width
variability of lines and trenches, are urgently needed in the
semiconductor industry as feature size is reduced to follow
the International Technology Roadmap for Semiconduc-
tors [2].
For a number of years now, probes with lateral

protrusions and feedback systems with bi-directional servo
control have been incorporated into the newer AFM
instruments [3–6]. In these SPM systems, probes are
designed with flare- or hammerhead-like shapes to access
reentrant surfaces and undercut features. Fig. 1 gives a
schematic description of probe shape extension from
conventional cone-like probe tips restricted to non-
reentrant surfaces, to flared tips for reentrant surfaces,
and to hammerhead shaped tips for severely undercut
features. These instruments, which are capable of imaging
undercut features, have found applications as reference
metrology tools at SEMATECH and in a number of
semiconductor fabrication facilities.
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Analytical methods for treating the data have not kept
pace with the improved hardware. Such methods are
needed because SPM images are distorted representations
of samples due to the dilation of the image by the tip [7–9].
If S is the sample and P the reflection of the tip through the
origin then

I ¼ S � P (1)

describes the image. A capability for image simulation
implies the ability to calculate this dilation. Such simula-
tion is needed in order to understand the tip effect and the
lost details on a given specimen due to the ever-blunter tips
since the tip sharpness dulls with use [10]. Accurate
measurement of specimen topographic features requires
methods of reconstructing the specimen shape (to the
extent possible) given its image. Sample reconstruction is
ordinarily performed using erosion:

Sr ¼ I � P. (2)

Sr is the set describing the deepest penetration of the tip. As
such, the actual sample is a subset of Sr. An alternative to
explicit dilation and erosion relies upon matching surface
slopes [11]. Although this is in principle equivalent,
implementations of the slope method require numerical
derivatives, so in practice they usually involve filtering or
other operations to improve accuracy and ensure stability.

Algorithmic implementations of these methods have not
been able to match the progress in hardware for the
following reasons:

� With a single exception to be discussed below, current
algorithms are based on grayscale morphology with the
assumption of an umbra specimen shape. That is they
assume surfaces can be represented as single-value
functions. However, reentrant surfaces possess multiple
z values for a given ðx; yÞ coordinate and thus cannot be
represented by such functions.
� For samples that are not single-valued, the typical
procedure to correct for the tip effect has been to
subtract a constant offset that corresponds to the overall
tip width [4]. When appropriate, such as for sloped
sidewalls, a correction may also be made for the effect of

the vertical offset height of the tip flare. This is typically
done by scanning an undercut characterizer to estimate
the offset height and using the image to estimate the
sidewall slope of the feature and performing an
extrapolation to correct the resulting width bias
[12,13]. These methods do not generate a reconstructed
profile of the surface, but only attempt to correct the
effect of the tip on a specific measurand. However, these
methods are less effective on complex and irregular
structures where simplified models are inappropriate.

In this paper, new mathematical morphology software
for AFM image simulation and surface reconstruction,
applicable for complex three-dimensional (3D) structures
with undercut features, is introduced. The approach is
based on a representation in which the usual rectangular
array of pixels is replaced by an array of ‘‘dexels.’’ A pixel
contains a single height value, representing the height of an
object’s surface. Points below this surface are inside the
object. Points above are outside. Unlike a pixel, a dexel
(depth element) may have multiple heights, each of which
represents the height of a transition from inside to outside
of an object or vice versa. This allows undercut features to
be represented by dexels.
In this paper we introduce such a dexel representation

and develop algorithms for operations on objects specified
in terms of arrays of them. Our implementation is complete

in the sense that (a) any 3D object may be represented in a
dexel form to any desired degree of accuracy, simply by
choosing the resolution high enough (i.e., by making the
lateral spacing of dexels small enough), and (b) we
implement all of the basic set operations—reflection,
complement, translation, union, intersection, dilation,
and erosion.
Within this group of operations, reflection, complement,

translation, and union are treated as primitives that are
used to construct the more complex operations, including
intersection, dilation, and erosion. Dilation and erosion are
directly applicable to SPM, since they represent, respec-
tively, the imaging process and reconstruction of either the
sample or the tip.
The implementation is compact in the sense that

algorithms are reused whenever possible. For example,
duality allows erosion to be implemented in terms of the
dilation and complement operators. Similarly, set intersec-
tion is implemented in terms of the complement and union
operators. In this way complicated algorithms are confined
to a relatively few places in the code, reducing the
opportunity for coding errors and improving ease of
maintenance. This strategy is possible because the comple-
ment operation is very efficient within our dexel represen-
tation—the complement of a dexel can be performed by
changing the sense of a single two-state flag.
The exception to our statement that current methods are

limited to single-valued surfaces is two approaches recently
introduced by Dahlen et al. [3]. One is a slope-matching
technique. The other is billed by the authors as an
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Fig. 1. SPM tip shapes: (a) conventional cone-like probe tip restricted to

non-reentrant surfaces; (b) flared tip for reentrant side walls; (c)

hammerhead shaped tip for severely undercut features.
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‘‘erosion’’ algorithm (quotes in original) that ‘‘is not a
direct application of erosion in a strict sense’’ because it
obtains the outer boundary of a surface rather than a
complete set of points describing the region. It appears to
be a swept volume subtraction method applied to the image
surface to reconstruct the sample. It was implemented for
2D profiles and demonstrated [14] on these to give good
agreement with TEM cross-sections. The method should be
extendable to 3D. Despite the authors’ modesty, it appears
to us that Dahlen’s method is a legitimate implementation
of erosion for the surfaces that it treats. If it and the
method we present here are both correctly implemented,
they should yield the same results. The main distinguishing
features of the present work are: (1) The dexel implementa-
tion is a rigorous implementation of set-theoretic opera-
tors. Because of this we can be certain that the theorems of
set theory and mathematical morphology apply to them.
This allows relatively easy building up of more complex
operations out of simple ones. Indeed, we have already
made some such extensions. (2) The present implementa-
tion is not limited to erosion alone, but as mentioned above
includes dilation, union, intersection, and other set opera-
tions. (3) The present implementation is already extended
to 3D.

In Section 2, we describe the dexel representation. In
Section 3, we provide details of how the dexel representa-
tion is used to implement mathematical morphology and
set operations. In Section 4 we describe the sense in which
an array of dexels (a 2D regular grid) approximates a real
extended object and show that one may make the
approximation as good as needed by choosing the grid
spacing fine enough. A pixel is a special case of the more
general dexel. We therefore expect agreement between the
new dexel-based algorithms and the existing grayscale
morphology implementation for those cases where both are
applicable. In Section 5 we demonstrate this agreement. We
also demonstrate that our implementation gives the correct
answer for a calculation on a simple 3D model structure for
which the correct answer is independently known.

2. The dexel-based representation

2.1. Selection of computer representation

When choosing a data representation for SPM imaging
of 3D structures, representation characteristics such as
geometric coverage, compactness, and algorithm efficiency
are the key factors. Lack of sufficient coverage is the reason
for eliminating grayscale images from consideration—i.e.,
such images cannot represent reentrant structures. In this
section we restrict consideration to methods able to
represent general 3D objects. Interestingly, the subject of
solid modeling for representing such objects is quite
mature, and complex set and morphological operations
have also been studied in the solid modeling community.
Two common types of 3D representation [15] are
constructive solid geometry (CSG) and boundary repre-

sentation (B-rep). A CSG model is based on the notion that
a physical object can be divided into a set of primitives that
can be combined in a certain order following a set of rules
(e.g., simple set operations like union and intersection plus
transformations like translation and rotation) to form the
object. These primitives and rules are represented in a tree
data structure. A B-rep model stores the boundary
information for a solid (e.g., vertices, edges, and faces,
together with the information on how they are connected).
Alternatively, a solid can be described by dividing space
into a 3D regular grid. Then a 3D array of ones and zeros
(for example) can designate which volume elements (or
voxels) in the grid are inside the object and which outside.
An octree representation is a tree data structure in which
space is recursively subdivided into octants. This is similar
to a voxel representation except that volume elements are
not all of equal size, so some parts of an object (e.g., the
interior) may be described with a coarse representation
while others (e.g., near a boundary) may be described with
a higher resolution.
Solid modeling has become a mature discipline, in which

various computer representations and corresponding mod-
eling algorithms that can model general 3D solids have
been thoroughly studied. Thus, the objective of this paper
is not to develop a novel computer representation for
general 3D solid modeling, but rather to adapt one to the
mathematical and computational requirements intrinsic to
the particular application we have, i.e., SPM imaging, and
to identify the appropriate computer representation and
algorithms.
The morphological operations for SPM imaging are

analogous to modeling operations in swept volume-based
simulation software for numerical controlled (NC) machin-
ing path generation, even though the dilation operation is
rarely used in NC simulation. The SPM probe movement
forming a swept volume is analogous to robotics and NC
cutting motion. In NC path generation, software simula-
tion is needed to verify the cutting path, to avoid collision
and gauging, and to examine the resulting surface shape
and accuracy in comparison to the nominal surface
geometry. NC path simulation has received tremendous
research. The simulation methods include accurate ap-
proaches [16,17] or and approximate methods [18].
The approaches based on CSG and B-rep are theoreti-

cally capable of providing accurate NC milling simulation
and verification. However, they are computationally
intense. The cost of simulation is reported to be OðN4Þ,
where N is the number of tool movements [19]. A complex
NC program can consist of thousands of motion steps.
SPM imaging can consist of hundreds of thousands
movements, making such computation even more intract-
able.
The approximate methods have OðNÞ computational

complexity and they include the voxel-based approach,
dexel (depth element) approach, and octree approach
[20,21]. The voxel representation is easy to implement but
requires larger storage space. In comparison, the dexel [22]
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is a version of run length encoded volumetric data
representation where 3D objects are represented as a set
of 1D blocks with depth on a grid. Since this is the
representation we chose, details will be provided below.
The dexel and its variants have been widely used in a
variety of NC simulation systems [18,22,23].

Table 1 gives a comparison of the suitability of various
3D computer representations for morphological represen-
tation. The comparison items include:

� Ease of creation: whether the initial 3D representation
can be easily created from SPM imaging data. The
creation of CSG and B-rep from SPM data involves the
reconstructing higher order analytical surfaces from
SPM data.
� Accuracy: whether the 3D representation can accurately
represent various specimen and tip shapes. Neither voxel
nor dexel represent analytical surfaces exactly. However,
through controlling the sampling resolutions, they can
represent the SPM image data with the same accuracy as
B-rep.
� Efficiency: whether the 3D representation supports
efficient morphological operations. Both CSG and B-
rep have OðN4Þ computational complexity and dexel has
OðNÞ, where N is the number of SPM imaging points.
� Compactness: whether the 3D representation can repre-
sent an arbitrarily shaped specimen in a compact
manner. CSG representation can compactly represent
an object through a series of set operations. The
compactness of B-rep of a nanostructure from SPM
measurement depends on the object and the required
accuracy. To maintain representation accuracy, both
dexel and voxel need larger number of cells. However,
dexel is more efficient in z-axis since it uses the run
length encoded representation.
� Ease of coding: whether the 3D representation and the
corresponding morphological operations can be easily
coded.
� Compatibility: whether the proposed 3D representation
is compatible with grayscale morphological operations
in conventional SPM imaging systems. The conversion
of an umbra into a voxel requires the unnecessary
assumption of a bottom for each pixel height.

It is clear from Table 1 that there is no single representation
that is excellent in all aspects. CSG and B-rep are poor in
computing efficiency and in initial model creation since

they require the explicit definition of surfaces from SPM
images and probe data. The Boolean operations for B-rep
are also challenging in terms of coding. However, they can
compactly and accurately represent 3D specimen and
probe shape. On the other hand, voxel representation is
poor in terms of representation compactness since it
involves discretizing the sample object in all three dimen-
sions. However, it is easy to code, the initial model creation
is easier, and the modeling algorithms are efficient. The
dexel representation is a run length encoded version of
volumetric data representation and is more compact and
more accurate than voxel.
Therefore, we adopted dexel representation in our

implementation of mathematical morphology software
for general 3D structures.

2.2. Dexel-based representation

The dexel approach is a version of volumetric data
representation where 3D objects are represented as a set of
1D blocks with depth on a grid. It is more compact and
more accurate than voxel since it does not involve the
discretization in the z-dimension.
We may construct a dexel object, Ad, associated with a

real object A, as follows. First choose an origin and
orientation for a rectangular coordinate system. Define a
grid in the x–y plane of this coordinate system. The x

coordinates in this grid are given by xi ¼ x0 þ idx for i ¼

0; 1; . . . ;mx � 1 with i an integer index, mx the number of
grid elements in the x direction, x0 the position of the first
such element, and dx the grid spacing in the x direction.
The y coordinates are similarly defined. Now imagine a
line, Lij (with z ranging from �1 to 1) at xi; yj for each
i; j in the grid. We can define Ad as

Ad ¼
[
i;j

ðLij \ AÞ. (3)

A 2D example of this is shown in Fig. 2. The object
(shown gray) has undercut edges. Those intervals of the
lines that are enclosed by the object are shown darker. The
dexel object representation includes the collection of
locations of the endpoints of these intervals in an indexed
grid. Each column in the object is represented by a single
dexel. The entire object is then a 2D array of dexels.
To support a complete set representation we allow �1

and1 as possible initial and final heights in a dexel. This is
necessary, for example, to represent the complement of a
bounded set, since such a complement will be unbounded.
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Table 1

Representation comparison

3D representation Ease of creation Accuracy Efficiency Compactness Ease of coding Compatibility

CSG N Y N Y N N

B-rep N Y N ? N N

Voxel Y Y Y N Y ?

Dexel Y Y Y ? Y Y

X. Qian, J.S. Villarrubia / Ultramicroscopy 108 (2007) 29–4232
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It is also desirable because it makes the umbra interpreta-
tion of SPM data that is used in grayscale morphology a
special case of the dexel representation.

Formal representation properties of dexel, as noted in Ref.
[24], include spatial addressability and spatial hashing,
directionality, Boolean simplification, rigid motion, discrete
translations, null-set representation, and completeness.

2.3. Data structure

Our dexel data structure is illustrated in Fig. 3. The data
representation consists of a flag and a linked list of zero or
more heights. (Absence of any heights would be indicated
by a null list.) The flag may take on two values, ‘‘inside’’ or
‘‘outside,’’ which may be represented by �1=1, 0=1,
Boolean true/false, or any other convenient pair. The value
of this flag indicates whether the starting position at z!

�1 is inside or outside the dexel. The heights in the height
list are ordered from smallest to largest. The sense of
inside/outside toggles back and forth at each height. The
inside/outside state after the last height in the list is
considered to remain in effect as z!1.

Following are some examples:

� The dexel fflag ¼ inside; HeightList ¼ f10gg represents
the interval ð�1; 10�. (The starting position at �1 is
inside, and the single height in the height list therefore
represents an inside to outside transition.) This is
equivalent to a pixel with value 10 in the umbra
interpretation of an image.
� The dexel fflag ¼ inside; HeightList ¼ f0; 1; 3gg repre-
sents the union of intervals ð�1; 0� and [1,3].
� If the last height were omitted, there would be no final
transition from inside to out. That is, fflag ¼
inside; HeightList ¼ f0; 1gg represents the union of
intervals ð�1; 0� and ½1;1�.
� fflag ¼ outside; HeightList ¼ f0; 1gg represents the in-
terval ½0; 1�.
� fflag ¼ inside; HeightList ¼ fnullgg represents the uni-
versal set ð�1;1Þ. (We start inside and there is no
transition to outside.)

� fflag ¼ outside; HeightList ¼ fnullgg represents the null
set. (We start outside and there is no transition to
inside.)

Just as an image is a 2D array of pixels, a dexel object in its
simplest form is a 2D array of dexels. Additional
information may be included if desired. For example, our
implementation includes data structures to represent the
lateral coordinates of the dexel at the 0,0 position and the
lateral grid spacing (which we called dx and dy above).

2.4. Advantages of the data structure

There are two basic advantages of our data structure.

1. It easily represents umbra objects and objects with
undercuts. By allowing dexel intervals to extend to �1
it allows representations of the null or universal sets,
and it allows the complement of any set to be
represented. The infinity value is represented logi-
cally—it is implicit in the flag and number of height
values in the list—instead of as an explicit number (e.g.,
the maximum or minimum number of which the
computer is capable) stored as a boundary height. This
makes the representation compatible with any of the
common data types on a computer that have no explicit
representation for �1. (Simply using a large magnitude
number to represent �1 in such a data type is machine-
dependent and can lead to overflow during dilation or
erosion.)

2. The second advantage of such representation is the
efficiency of the set-theoretic complement operation.
The complement of a dexel is obtained by toggling its
flag from inside to outside or vice versa. The rapidity of
this operation makes it possible to develop only two
basic operations: union and dilation. All other set
operations can be efficiently obtained as described in the
next section using the complement operation and
duality. This also makes the code compact and robust.

3. Set and morphology operations on dexel-represented

objects

3.1. General considerations

We build the set and morphological operations on a few
primitive operations: dexel complement, dexel union and
block–block dilation. All other set operations such as
intersection and subtraction, and dilation and erosion
operations between dexel objects are derived from these
three.
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Fig. 3. Dexel data structure: linked ordered height list.

Fig. 2. Dexel representation of an object.
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The usual erosion and intersection operations may lead
to dangling boundaries. For example, the intervals ½�1; 0�
and ½0; 1� overlap at the single point, f0g, on the boundary
of both. If we were strict we would therefore need to keep
careful track of whether each dexel height value in the
height list represents the boundary of an open or closed
interval. This would increase the complexity of the
implementation without a compensating reward—in a real
SPM a ‘‘0-width’’ feature (if such a thing could exist) would
doubtless be broken unobserved by any tip that made
contact with it. Nothing is lost by forbidding such features,
since any actual small feature can still be represented by a
small but finite size. We therefore implement regularized set
operations [15]. Regularization closes intervals to the
interior—so e.g., ð0; 5Þ becomes ½0; 5�—and prunes away
boundaries that are not associated with any interior region
(like the single f0g in our first example). Among other
conveniences, this choice insures that the set and morpho-
logical operations have the closure property. That is, the
resulting object after the set and morphological operations
remains a valid object in dexel representation and can
participate in subsequent set operations.

3.2. Primitive set operations

3.2.1. Dexel complement

The dexel complement is accomplished by toggling the
value of the dexel flag. Since the sense of inside/outside
toggles at each boundary this changes all inside–outside
transitions into outside–inside transitions and vice versa.
Within the conventions of regularized set operations
(where boundaries are closed) this is exactly what is meant
by the complement. So, for example, the interval ½a; b� is
expressed in dexel form as foutside; fa; bgg. Its regularized
complement is ð�1; a� [ ½b;1Þ, which in dexel form is
finside; fa; bgg.

3.2.2. Dexel–dexel union

A simple model of dexel–dexel union is illustrated in
Fig. 4. Imagine the two dexels, A and B positioned side by
side as shown. Let the ‘‘depth’’ inside A at position z be 1 if
z is contained in A and 0 otherwise. The depths inside A

and B are ‘‘projected’’ onto the screen at the right, which
records their sum. The sum may be 0, 1, or 2. Obviously the
depth inside C ¼ A [ B must be 0 when the depth on the
screen is 0 (z is outside both A and B) and 1 otherwise (i.e.,
when the total depth is 1 or 2, indicating z is inside one or
both of A and B). Changes in the total depth obviously can
only happen at the z values in the height lists of A and B.

To construct an efficient algorithm to implement this
scheme, the initial depths in A and B are set to 0 or 1
depending upon whether their flag values are outside or
inside. The total depth is initialized to the sum of these. The
value of C’s flag is set to outside if this sum is 0, inside if it
is 1 or 2. One then iterates up the two height lists. At each
iteration, one examines the next available heights from the
two lists. The smaller of the two is drawn from its list, the

corresponding depth is updated, and the total depth is
updated. (If the two heights happen to be the same, they
are both drawn and all depths are updated.) If the total
depth changes from nonzero to zero or from zero to
nonzero, the drawn height is saved in C’s list. (It represents
a transition in C from inside to outside or vice versa.)
Otherwise it is discarded. When a list runs out of heights, it
is treated as though its next height is 1. That is, one
proceeds by always drawing heights from the remaining list
until it too is exhausted.

3.2.3. Block–block dilation

Each dexel can be thought of as the union of a number of
intervals, or ‘‘blocks,’’ each of which is specified by its
lower and upper boundaries. One of these blocks is labeled
in Fig. 2. In terms of these blocks the dexel object, Ad,
defined in Eq. (3) can also be written as

Ad ¼
[
i;j

[
k

bijk

 !
, (4)

where i and j are the grid indices, and k indexes the blocks
within each dexel.
This is a useful conceptual formulation because the

dilation of two blocks is particularly simple. We use the
following definition of dilation:

A� B ¼
[
b2B

ðAþ bÞ, (5)

where Aþ b with A a set and b a vector is defined by

Aþ b ¼ faþ bja 2 Ag. (6)

That is, it is the set obtained by translating every point in A

by b. When A and B are both blocks, denoted by ½hi; hiþ1�
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Fig. 4. Dexel–dexel union through keeping track of inside/outside status

change.
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and ½hj ; hjþ1�, their dilation is another block:

½hi; hiþ1� � ½hj ; hjþ1� ¼ ½hi þ hj ; hiþ1 þ hjþ1�. (7)

3.3. Set operations on objects comprised of dexels

The above primitive operators can be used in combina-
tion to generate operators for dexel-represented objects.
Reflection, complement, union, intersection and subtrac-
tion are straightforward. They also form the basis of two
algorithms that will be directly applied for SPM image
simulation and surface reconstruction: dilation and ero-
sion.

The reflection of a set, A, denoted �A, replaces every
vector a 2 A by �a. A dexel object consists of a 2D array
of dexels. The lateral (x–y) coordinates of the reflection are
accomplished the same way it is done for an image—the
order along both axes is reversed. Each dexel must then
also be reflected in the z-direction. This is done by
multiplying all heights in the height list by �1 and
reversing their order (so they are once again in increasing
order). If there are an odd number of heights in the list, the
flag must be toggled.

The complement of a dexel object is formed by taking
the complement of all the dexels forming the object.

If two dexel objects are defined on the same grid, each
grid point will be associated with one dexel from each
object. The union is formed by forming the dexel unions at
each grid coordinate using the dexel–dexel union procedure
of the last section.

Intersection is computed by means of DeMorgan’s law
using the already described union and complement
primitives:

A \ B ¼ ðAc [ BcÞ
c. (8)

Set subtraction, A� B, removes from A all parts contained
in B. Subtraction is implemented as

A� B ¼ A \ Bc ¼ ðAc [ BÞc. (9)

The first form is simplest. The second, obtained by
applying DeMorgan’s law to the first, is expressed in terms
of the union and complement primitives.

Dilation may be implemented in steps. Since the dilation
primitive defined above is for block–block dilation, the first
(and only new) step is to implement dilation of two dexels.
We can think of a dexel as a union of blocks so that if a
dexel D has n blocks and D has m

D ¼
[n
i¼1

Di,

D ¼
[m
j¼1

Dj, ð10Þ

Di, i ¼ 1; . . . ; n are D’s blocks and similarly for D. It is a
general property of dilation that

ðA [ BÞ � C ¼ ðA� CÞ [ ðB� CÞ. (11)

See for example Ref. [25, proposition 15]. Using this
rule, the dilation of dexels D and D defined by Eq. (10) can
be written as the union of dilations of blocks.

D�D ¼
[n
i¼1

Di �
[m
j¼1

Di ¼
[
i;j

ðDi �DjÞ, (12)

where the final union is over all pairings of blocks in the
two dexels. The dilations on the right side of Eq. (12) are all
instances of the previously defined block–block dilation
primitive, and unions of blocks are a special case of the
union of dexels primitive. Hence Eq. (12) defines dex-
el–dexel dilation in terms of operations we already know
how to do.
The second step is to define dilation of the 2D arrays of

dexels that comprise dexel objects. This part is completely
analogous to grayscale dilation of images. (See Ref. [8,
Appendix C].) In grayscale dilation, pixel–pixel dilation
amounts to a single sum—the upper interval bound in Eq.
(7)—since for pixels there is never more than one block,
and that block’s lower bound is always �1. The union of
two pixels is a pixel with value equal to the maximum of
the two input values. Dilation of dexel objects can use the
same algorithm except that the sum (pixel dilation) is
replaced by dexel dilation as in Eq. (12), and the maximum
(pixel union) is replaced by dexel union as described in
Section 3.2.
The erosion operation between two dexel objects is done

using dilation based on their duality property Ref. [25,
Theorem 25]:

A� B ¼ ½Ac � ð�BÞ�c. (13)

4. Discussion

As defined above, we can think of a dexel as a set of
intervals along a line. Like a line, the dexel has extent in
only one dimension. It has no width. This is a useful feature
inasmuch as the dilation of two columnar objects, each
with width w, is an object with width 2w. Consequently, if
we attempted to associate some nonzero fixed width with
dexels, the dilation of one dexel with another would not
produce a dexel, but rather an object two dexels wide. By
defining dexels to have no width, this is avoided; closure of
dilation and erosion with respect to dexels is preserved.
This choice is analogous to the usual convention with pixel-
represented objects. In grayscale morphology pixels are
also commonly treated as having height but no width for
the purpose of computing dilation and erosion.
As computationally convenient as this may be, it

nevertheless raises questions about the sense in which a
dexel or pixel representation can approximate a real object.
Fig. 5 illustrates the problem. Suppose the curved solid line
labeled A represents the boundary of an extended object.
The dexel object, Ad, associated with A is an array of dexels
on a regularly spaced grid. This is represented by the thick
vertical line segments. Ad differs from A inasmuch as the
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space between dexels is not filled—its total volume is 0.
Furthermore, as we have just discussed, dilation of real
objects results in an object of width greater than either of
the original objects alone. Is some part of this width
increase neglected due to the treatment of dexels as having
no width? Intuitively, it seems that the importance of these
concerns should diminish as the grid spacing grows finer.
In the following discussion, we sketch one way this
intuitive insight might be placed on a firmer footing.

Define an object, R, to be a horizontal rod of length r in
the x direction (left to right in Fig. 5). We consider its
origin to be at its center. Then defineeA ¼ Ad � R. (14)

If we choose r to be the grid spacing in the x direction, theneA is as shown in the figure. The dilation sweeps each dexel
by r=2 to the left and right. The occupied intervals in each
dexel, originally 0-width line segments, are widened by this
procedure into rectangular blocks that span the full width
of the grid cell occupied by the dexel. This closes the gaps
between dexels and widens the object by r=2 on each side.

We chose to define the individual blocks within Ad such
that the blocks coincide with the intersection of grid lines
with A, as described in Section 2.2. That is, the boundaries
of the blocks in Ad coincide with the boundaries of A. With
this choice Ad � A. Dilation is increasing with respect to
both its arguments. See, e.g., Proposition 12 and Corollary
13 in Ref. [25], which says that

A � B implies A�D � B�D. (15)

(Dilation is commutative, A� B ¼ B� A, so the increas-
ing property stated here for the first argument applies
equally well to the second.) Since Ad � A this proposition
means in the present case that Ad � R ¼ eA � A� R. ThuseA is bounded above by an object that differs from A only
by something on the order of the grid size. It is similarly
bounded below. Since the blocks in Ad terminate exactly on

the boundary of A, the same argument can be made with
respect to the complements of eA and A, leading to the
result that eAc � Ac � R. Since R is symmetrical ðR ¼ �RÞ,
Eq. (13) then implies eAc � ðA� RÞc, or eA 	 A� R. The
upper and lower bounds are summarized as

A� R � eA � A� R. (16)

Now suppose we choose finer and finer grid spacings for
our description. As r! 0 the horizontal rod, R, ap-
proaches a single point, {0}, so A� R and A� R both tend
to A. eA is squeezed between outer and inner bounds that in
this limit both approach the same value (A), and thereforeeA! A. It is in this sense that eA is an approximation for A.
It can be made as close to A as desired by choosing the grid
spacing fine enough.
Similar relationships hold if we use these dexel-approxi-

mated sets to calculate objects that are interesting for SPM.
Given a sample, S, and tip, P, the image is given by

I ¼ S � P. (17)

Suppose we approximate S and P as dexel objects dilated
with R as in Eq. (14), so that S � R � eS � S � R and
P� R � eP � P� R. We can then compute an approx-
imate image according toeI ¼ eS � eP. (18)

Because dilation is increasing with respect to both inputs,
we can derive lower and upper bounds for eI by replacing eS
and eP in Eq. (18) with their lower and upper bounds

ðS � RÞ � ðP� RÞ � eI � ½S � R� � ½P� R�. (19)

The bounds on eI are not as tight as those on A in Eq. (16).
There are two appearances of R on each side instead of
only one. This is owing to the fact that both inputs eS and eP
were approximate.
The other calculated quantity of interest to us here is the

reconstructed sample from the measured image, I, and a
known tip shape P. This reconstruction is formed by
erosion:

Sr ¼ I � P. (20)

If we define the approximation eSr ¼ eI � eP one can find
upper and lower bounds similarly to the previous
examples. The only difference is that eI � eP is increasing
in eI and decreasing in eP, so the upper bound of eSr must be
formed by using the upper bound of eI and the lower bound
of eP while the opposite is done to form the lower bound. In
this way one arrives at

ðI � RÞ � ðP� RÞ � eSr � ðI � RÞ � ðP� RÞ. (21)

Eqs. (19) and (21) behave similarly to Eq. (16) as r gets
small, in the sense that the upper and lower bounds both
approach the true value of the object we are approximat-
ing. In all cases the approximation can be made as close as
one likes by choosing the grid spacing fine enough.
This discussion was limited to a 2D example for

simplicity and ease of illustration. However, it is equally
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Fig. 5. The sense in which a dexel object approximates a real one. The

dexel object Ad consists of an array of dexels (the thick vertical bars), each

terminating on the real object, A, it is intended to approximate. Dilation

by a horizontal grid element, R, expands Ad into rectangular blocks ( eA,

shown with thinner lines). eA is bounded above and below by A�R (outer

dashed) and A�R (inner dashed) as shown.
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applicable in 3D. The only difference is that instead of a
horizontal rod, R must be a horizontal rectangular element
with dimensions rx and ry equal to the 2D grid size.

As a consequence of this discussion, we see that the
errors associated with the discreteness of the representation
are initially of the order of the grid spacing. Errors
may accumulate to a few times larger than this
during calculations. One should choose a grid spacing
small enough that the associated uncertainties are
smaller than those associated with other sources of
error. With this choice, the dexel-represented objects
can for all practical purposes be substituted for the
real ones.

5. Validation using test data

Note that in all the examples below, the simulated AFM
images were obtained through the dexel dilation operation,
as presented in this paper. All the reconstructed sample
surfaces were obtained through the dexel erosion opera-
tion.

The data files in these examples are in the dexel
representation. Even though the actual AFMs capable of
bi-directional servo control and imaging undercut
features may have the output format as ðx; zÞ pairs, it is
not difficult to convert such pairs into the dexel representa-
tion through various interpolation methods, such as linear
interpolation.

5.1. Validation for surfaces without undercut features

We first show examples that demonstrate the consistency
between the new dexel-based method and grayscale
mathematical morphology-based method [8] for a set of
surfaces without undercut features. A grayscale- or umbra-
represented object is a special case of a dexel-represented
one, in which the dexel at index ði; jÞ has only a single
block, ð�1; hij � with hij the value of the pixel at index ði; jÞ.
Consistency of the methods requires that given equivalent

inputs, the results will be representations of the identical
output.

Example 1. Fig. 6 shows an SPM image simulation and
surface reconstruction for a 2D profile based on the new
software. The set of translated probes graphically illus-
trates the dilation and erosion relations among the true
profile, SPM image, and reconstructed profile. The
simulation is done through the dilation of the 2D profile
with a parabolic tip. The reconstruction is obtained
through the erosion of the simulated SPM image by the
tip. The profile is a cross-section of a rough phosphor thin
film (more in Example 3).

As expected [8], the reconstructed surface approximates
and correctly bounds the specimen surface. Both the
dilation and erosion results are identical to those from
the grayscale morphology software.

Example 2. Fig. 7 shows an AFM image simulation and
surface reconstruction for a spike surface. For this simple
structure the dexel and grayscale software produced
identical results.

Example 3. The structure labeled ‘‘sample’’ in Figs. 8 and 9
is actually an AFM image, available from a previous study
[26], of a rough phosphor thin film. For the purpose of this
test we pretend this represents the actual surface of a rough
sample. In this way we generate a test in which the sample
has a more realistic variety of structures than in the
previous test. An image is simulated by dilating the sample
with a parabolic tip, as shown. The sample is then
reconstructed by erosion of the tip from the simulated
image. The reconstructed surface differs from the original
one due to information loss in the dilation process (a
known phenomenon). The new dexel algorithms and the
older grayscale algorithms produced identical results for
the simulated image and reconstructed surfaces in this test.

Thus, the new mathematical morphology software based
on dexel representation supports image simulation and
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Fig. 6. SPM image simulation and surface reconstruction through morphological operations for a 2D profile. (a) SPM image formation through

morphological dilation, (b) specimen surface reconstruction through morphological erosion.
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surface reconstruction for structures without undercut
features.

5.2. Validation for surfaces with undercut features

The dexel method is also capable of simulating the SPM
imaging of undercut structures and capable of reconstruct-
ing the specimen surface of undercut shapes. Since this
cannot be accomplished in grayscale morphology, the
existing software cannot be used for validation as was done
in the last section. Instead we use two other methods, one
each in Examples 4 and 5.

Example 4. In Fig. 10 are pictures of image simulation and
surface reconstruction for a profile with undercut areas.
They are obtained through the dilation and erosion
operations by a tip of undercut shape. As Fig. 10a
demonstrates, the envelope of the translations of the
reflected tip forms the SPM image. As shown in the
figure, if dilation is correctly implemented the tip should
just touch the simulated image and not go beyond it when
the tip apex point is translated to any point along the
undercut profile. Likewise, if erosion is properly imple-
mented the tip should touch the reconstructed surface
without penetrating beyond it when tip moves along the

simulated image. Satisfaction of these requirements was
manually verified for a large number of points along rough
and realistic profiles like the one shown. As expected, the
reconstructed surface approximates and bounds the
original surface.

Example 5. Fig. 11 shows an artificial sample surface,
simulated AFM data through dilation with a spherical tip,
and the reconstructed surface through erosion for a 3D
structure with undercut features. Each 3D surface is shown
in two views (x and y cross-sections) and a 3D rendering.
To further validate the correctness of the dilation/
erosion operation, cross-sectional examination is con-
ducted. Fig. 12 shows a cross-section of the dilation/
erosion operation for this 3D structure and the overlay of
image, true surface and reconstructed surface. As the figure
demonstrates, the probe at the image point just touches the
surface but not coincide with the sample surface due to the
finite dimension of the tip. However, the tip shape
coincides exactly with part of the reconstructed surface.
The artificial sample used in for this test was deliberately
chosen to be simple—with cross-sections composed of
straight lines meeting at sharp corners. For this kind of
simple sample, the result of dilation with a spherical tip is
easy to anticipate even without a dexel-based algorithm to
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Reconstructed surfaceSimulated AFM image

Sample surface Tip

Fig. 7. AFM image simulation and surface reconstruction for a spike surface (Note: the tip is scaled differently from the surface to give a clear illustration

of the tip shape).
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compute it. Flat parts of the surface are moved by an
amount that depends only upon their orientations and the
radius of the spherical tip. Corners produce image areas

with radius equal to the tip radius. The dexel-computed
image agrees with these expectations. The reconstructed
surface approximates and correctly bounds the sample
surface.

5.3. Algorithm efficiency

From the algorithm description in Section 3, it is clear
that the dilation/erosion algorithms have complexity of

O
X
i¼1;m1
j¼1;m2

K ½i; j� 

X
u¼1;n1
v¼1;n2

W ½u; v�

0B@
1CA,

where Kði; jÞ and W ðu; vÞ give the number dexel blocks at
indices ði; jÞ and ðu; vÞ of the inputs.
When there is no undercut feature in the sample surface

and the tip, that is, Kði; jÞ ¼ 1 and W ðu; vÞ ¼ 1, the
algorithm complexity reduces to

Oðm1 
m2 
 n1 
 n2Þ.

We therefore expect compute time of the new algorithms
to be linearly proportional to the number of dexel blocks in
the sample surface and in the AFM tip. The extra
computing time needed to process a sample with undercut
features compared to a similar sample without undercut
features is linear in the number of extra dexel blocks
needed for representing the undercut features.
Table 2 lists the computing time for the dilation and

erosion operations in the above examples. The time shown
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Fig. 8. AFM image simulation and surface reconstruction for a sample surface: surface view.

Fig. 9. AFM image simulation and surface reconstruction for a simple

surface: top-down view.
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in the table is recorded from the tests on a PC (Dell
Optilex GX520, Pentiums CPU3.40GHz, 1.99GB
RAM).2 The sample size and tip size are also shown in
the table.
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Fig. 10. Image simulation and surface reconstruction for a profile with undercut features. (a) Dilation in image simulation, (b) erosion in surface

reconstruction.

Fig. 11. Image simulation and surface reconstruction for a 3D structure with undercut surfaces, showing cross sections through x (left column) and y

(middle column) and a solid rendering (right column). (a) Sample surface, (b) simulated AFM data, (c) reconstructed surface.

2Commercial equipment is identified in order to specify the measure-

ment procedure. Such identification does not imply recommendation or

endorsement by the National Institute of Standards and Technology, nor

does it imply that the equipment identified is necessarily the best available

for the purpose.
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A comparison has been made between dexel-based and
grayscale mathematical morphology software for struc-
tures without undercut features. The time for Example 1 is
not shown here since its time lapse is very small (0.04 s) for
both software. Our present dexel-based implementation is
about 3 to 5 times slower than the grayscale morphology
method. At least some part of this difference is the
inevitable consequence of a more general procedure. In
grayscale morphology only the upper of the two bounds in
Eq. (7) need be calculated. The lower bound is always �1.
Even when a dexel object consists of only dexels with a
single block each, the dexel algorithm still must determine
the lower boundary of this block–block dilation, since it
can in general be other than �1. The dexel code must also
check for the presence of additional blocks, even if in a
particular case they do not happen to be present.
Considering the simplicity of the grayscale block dilation
(sum) and union (max) functions, this inevitable overhead
might contribute a factor of 2 or 3 to execution time of the
more general algorithm. This suggests that some other part
of our observed speed difference might still be improved by
more efficient implementation.

The run times for structures with undercut features as in
Examples 4 and 5 are also shown in the table. The
comparison between Examples 3 (without undercut) and 5
(with undercut) demonstrates that the existence of under-
cut features only contributes marginally to the dilation/
erosion operation time for typical samples. This is because
the number of undercut dexels is usually only a small
proportion of the overall dexels in Example 5. In Example
5, there are total 165 760 blocks for the 400 
 400 grid in the
dilation and 166 068 blocks for the 400 
 400 grid in erosion
operation.

6. Conclusions

This paper presents a dexel computer representation and
its algorithm implementation for SPM image simulation
and surface reconstruction on general 3D structures.
Experimental validation on both simulated and actual
AFM data demonstrates that the dexel representation can
efficiently simulate and reconstruct various 3D structures,
including those with reentrant surfaces and undercut
features.
Our contribution in this paper is threefold:

� A dexel-based object representation and its implementa-
tion for mathematical morphology are introduced. The
representation provides an efficient and compact repre-
sentation for general 3D structures, including undercut
features.
� The implementation is complete in the sense that (a) any
3D object may be represented in a dexel form to any
desired degree of accuracy, simply by choosing the
resolution high enough, and (b) we implement all of the
basic set operations—reflection, complement, union,
intersection, subtraction, dilation, and erosion.
� We fulfill a need that has become increasingly important
in semiconductor industry: how to reconstruct surfaces
and simulate images of undercut features in SPM.
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