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Abstract

The recent advancement of solid freeform fabrication, design techniques and fundamental understanding of material properties in functionally
graded materials has made it possible to design and fabricate multifunctional heterogeneous objects. In this paper, we present an integrated design
and analysis approach for heterogeneous object realization, which employs a unified design and analysis model based on B-spline representation
and allows for direct interaction between the design and analysis model without laborious meshing operation. In the design module, a new approach
for intuitively modelling of multi-material objects, termed heterogeneous lofting, is presented. In the analysis module, a novel graded B-spline
finite element solution procedure is described, which gives orders of magnitude of better convergence rate in comparison with current methods,
as demonstrated in several case studies. Further advantages of this approach include simplified mesh construction, exact geometry/material
composition representation and easy extraction of an isomaterial surface for manufacturing process planning.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Heterogeneous objects (known as functionally graded
materials) are composed of different constituent materials and
can exhibit continuously varying material composition and/or
microstructure, thus producing gradation in their properties.
Heterogeneous objects often possess better mechanical, thermal
or electrical performances when compared with the traditional
homogeneous objects [1–4]. Moreover, heterogeneous objects
can fulfill the critical functional requirements since they
can synthesize different properties and various advantages
of multiple materials into one monolithic component.
In addition, heterogeneous objects can resolve traditional
material limitations such as material incompatibility (stress
concentration, non-uniform thermal expansion etc.). Due to all
the above advantages, heterogeneous objects are being adopted
in the design of high efficiency engines, ceramic turbine
components, biomaterials, mould and die tools for industrial
use, armour and armament components [4–6].

The wide application of heterogeneous objects necessitates
a need for using a computer model to represent them.
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Various representation schemes, each with its pros and cons,
have been proposed [3]. For example, the recent researches
on heterogeneous object modelling show that B-spline-based
method has excellent representation coverage due to the
large number of control points [6,7]. On the other hand,
the large degrees of freedom make it inconvenient to edit
the model. Hence, an intuitive and efficient heterogeneous
object modelling method is needed for designing a B-spline-
based heterogeneous object model, which could alleviate
the inconvenience induced by the large number of design
variables [6,8].

Based upon the computerized object model, finite element
methods are often used to analyze these objects [1,9–11].
In homogeneous objects, such analysis typically involves
lengthy analysis model setup time, i.e. mesh construction,
mesh refinement, boundary condition setup and so on. It is
estimated that analysis model setup takes more than 80%
of the overall analysis time. In the context of heterogeneous
object analysis, this issue is further exacerbated. Besides
geometry discretization, material composition also needs to
be approximated. Moreover, the separation of design and
analysis model makes the design and analysis iteration more
complicated.

Therefore, in this paper, we present an integrated design
and analysis approach for heterogeneous objects based on
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Fig. 1. Flowchart of the integrated design and analysis system.

B-spline representation. It allows efficient heterogeneous
object modelling, facilitates the information flow between
heterogeneous object design and analysis and leads to orders
of magnitude better analysis efficiency. The salient features of
this approach include:

• A new heterogeneous lofting method is developed to easily
and intuitively create the B-spline heterogeneous object
model through a set of profile curves/surfaces, which is
analogous to the surface lofting method for free form surface
modeling in current CAD systems. Meanwhile such a lofting
method makes it easy to extract iso-material composition
surfaces for manufacturing process planning.

• An inherent mesh is defined in the parametric domain by
the knot vector(s) of the B-spline representation. Hence the
costly and time consuming preprocessing procedure of finite
element analysis has been simplified. Furthermore other
problems induced by the usual mesh construction process,
such as inaccurate geometry and material approximation, are
eliminated.

• A novel graded B-spline finite element method is developed,
which admits a material property gradient at the element
level. The material composition accuracy at each element
improves the performance of finite element analysis in terms
of convergence rate. Hence, the graded B-spline element
runs much faster than the traditional Lagrange element in
finite element analysis.

Fig. 1 illustrates the structure and the internal information
flow of our integrated design and analysis system, in which
B-spline unifies the geometry and material composition
representation, finite element mesh and shape function in
finite element analysis. Such unification leads to efficient
information flow from design to analysis without laborious
manual meshing operation, which also makes the automation
of design optimization possible.

The rest of the paper is organized as follows. In Section 2, we
provide a review of current literature. In Section 3, we introduce
B-spline as our underlying representation of heterogeneous
objects. In Section 4, we present a heterogeneous lofting
method for modelling geometry and material variation in
heterogeneous objects. In Section 5, we propose a graded
B-spline finite element method for the analysis of heterogeneous
objects. After presenting several case studies to illustrate the
whole integrated design and analysis process in Section 6, we
conclude this paper in Section 7.

2. Literature review

Various heterogeneous modelling schemes have thus far
been proposed to support the creation of geometry as well
as the graded material inside. A recent survey on these
heterogeneous object modelling methods is available at [3].
Here, we briefly present some prior work that is closely related
to our work. An r-m sets-based method is proposed in [12],
which handles heterogeneous objects by using r-sets as the basis
of representing the geometry and material distribution. A mesh
based method is reported in [13,14], which employs four-node
iso-parametric quadrilateral elements to model the material
distributions. An implicit function-based method is proposed
in [15,16] which parameterizes the space by distances from the
material features. A B-spline-based method is presented in [1,
6,17,18], which models the object heterogeneity by specifying
values of a set of control points and interpolating them with
the B-spline shape function. Besides the above approaches,
some more approaches are reported, such as the level set-
based method [4] and the trivariate simplex splines-based
method [19].

Meanwhile, numerous studies have been performed in
the analysis of heterogeneous objects. A shape optimization
scheme is developed in [9] to design axis symmetrical FGM
structures. A domain integral method is used in [20] for
calculating stress intensity factors of FGMs. A meshless
method is presented in [21] for calculating the fracture
parameters of a stationary crack in FGM with arbitrary
geometry. A graded element method is proposed in [10] for
isotropic and orthotropic FGM analysis under various loading
conditions.

Although there are many heterogeneous object modelling
and analysis schemes available, serious issues remain,
including: design model and analysis model separation,
geometry discretization, material composition discretization
and so on. In this paper, we propose a B-spline-based integrated
design and analysis system for heterogeneous objects, which
can reduce the costs induced by the separation of design and
analysis model. A similar approach limited in the homogeneous
object domain was reported in [22,23]. Our approach differs
from it in two important aspects: (a) we use heterogeneous
lofting to create B-spline-based heterogeneous object model;
(b) we develop a novel graded B-spline finite element method
for efficient finite element analysis.

3. B-spline representation for heterogeneous objects

B-splines have been widely used in computer aided design
and computer graphics community, which are comprehensively
described in CAD and computer graphics literature [24]. In
this paper, B-spline representation is used to represent both
geometry and material composition of heterogeneous objects.
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It is also extended to represent other physical properties of
heterogeneous objects [6], which are independent from the
material composition, such as temperature field.

Generally speaking, if a heterogeneous object is composed
of n2 different materials and attached with n3 different physical
properties, the modelling space of heterogeneous solid can be
denoted as the tensor product of n1 dimensional geometry space
En1 , n2 dimensional material space Mn2 and n3 dimensional
property space IEn3 .

3.1. Heterogeneous B-spline curve

Given a set of n control points, we can obtain the
components of the piece-wise polynomial B-spline curve C(u)

by taking the linear combination of the basis functions weighted
by the components of control points, so:

C(u) =

n∑
i=0

Ni,p(u)pi

where pi ∈ En1 × Mn2 × IEn3 are control points for the
heterogeneous B-spline curve. Ni,p(u) are the pth degree B-
spline functions, which are defined as:

Ni,0(u) =

{
1 if ui ≤ u ≤ ui+1
0 otherwise

Ni,p(u) =
u − ui

ui+p − ui
Ni,p−1(u) +

ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u)

where U = {u0, u1, . . . , un+p+1} is the knot vector. If n1 = 2,
this B-spline curve C(u) presents a 2D heterogeneous curve; If
n1 = 3, this B-spline curve C(u) presents a 3D heterogeneous
curve.

3.2. Heterogeneous B-spline tensor surface and solid

By means of tensor products, B-spline surfaces can be
constructed starting from a bidirectional net of (n+1)×(m+1)

control points and knot vectors:

S(u, v) =

n∑
i=0

m∑
j=0

Ni,p(u)N j,q(v)pi, j .

Then we obtain a bivariate surface over the two independent
parameters u and v, where pi, j are control points of the
heterogeneous surface. Ni,p(u) and N j,q(v) are the p-th degree
and q-th degree B-spline basis functions defined in u and v

directions respectively.
Similarly, a tri-variate B-spline volume can also be

constructed by means of tensor products:

M(u, v, w) =

n∑
i=0

m∑
j=0

l∑
k=0

Ni,p(u)N j,q(v)Nk,r (w)pi, j,k (1)

where the definition of control points pi, j,k and B-spline basis
functions Ni,p(u), N j,q(v) and Nk,r (w) are similar to the
bivariate B-spline surface, which are defined by the knot vectors
of U = {u0, u1, . . . , un+p+1}, V = {v0, v1, . . . , vm+q+1} and
W = {w0, w1, . . . , wl+r+1}.
3.3. Representation for material properties of heterogeneous
objects

In heterogeneous objects design and analysis, controlling
heterogeneous object’s properties can be more direct and
beneficial in design specification than controlling the mate-
rial composition [6]. The problem of determining the effective
properties of a mixture of materials has been extensively stud-
ied [25,26]. Many equations are given to approximate relation-
ships between material properties and material composition in
those work. In this paper, for the sake of briefness, we choose a
linear rule, which uses a volume-fraction-weighted sum of the
material property to predict the property of the composite. For
example, suppose a heterogeneous object is composed of two
materials. Then we can define the value of the material prop-
erty as:

e = e1m1 + e2m2 (2)

where m1 and m2 are the volume fraction of the two composite
materials at each point, e1 and e2 are the property values of
these two materials. The B-spline representation for material
properties could be derived by combining this material property
equation and Eq. (2).

Note, the linear rule (Eq. (2)) is adopted solely for simplicity
reason. Other more complex equations, such as inverse rule, can
be used as well, where only Eq. (2) needs to be updated for each
control point.

4. Heterogeneous object modelling through heterogeneous
lofting

In this section, we present our new heterogeneous lofting
method for modelling geometry and material variation in
heterogeneous object modelling, which is analogous to the
lofting method for free form surface modelling in current
CAD systems. In freeform surface modelling, the homogeneous
surface lofting can be defined as follows:

Homogeneous lofting: Given a set of n + 1 profile curves
C0(u), C1(u), . . . , Cn(u) ⊂ E3, construct a skinned surface
S(u, v) that passes through all these profile curves. More
precisely, we have S(u, vi ) = Ci (u) for 0 = v0 < v1 < · · · <

vn = 1.
The developed heterogeneous lofting method can be derived

from homogeneous lofting directly, which is defined as:

Heterogeneous lofting: Given a set of n + 1 geometry/material
profile features, construct a heterogeneous object passing
through both geometry and material compositions of all the
profile features. More precisely:

• in univariate heterogeneous lofting, we have C(ui ) = qi ∈

En1 × Mn2 × IEn3 for 0 = u0 < u1 < · · · < un = 1, where
C(u) is the lofted heterogeneous curve, qi are heterogeneous
profile points;

• in bivariate heterogeneous lofting, we have S(u, vi ) =

Ci (u) ⊂ En1 ×Mn2 ×IEn3 for 0 = v0 < v1 < · · · < vn = 1,
where S(u, v) is the lofted heterogeneous surface, Ci (u) are
heterogeneous profile curves;
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Fig. 2. A typical homogeneous lofting example. (a) Profile curves. (b) Lofted
surface.

• in trivariate heterogeneous lofting, we have M(u, v, wi ) =

Si (u, v) ⊂ En1 × Mn2 × IEn3 for 0 = w0 < w1 < · · · <

wn = 1, where M(u, v, wi ) is the lofted heterogeneous
volume, Si (u, v) are heterogeneous profile surfaces.

For implementing the homogeneous surface lofting algo-
rithm, we assume that all n + 1 profile curves have a com-
mon degree p and knot vector U. If not, the common de-
gree elevation and knot insertion algorithms can be used [24].
Then, for the v direction a degree q is chosen, parameters
tk , k = 0, 1, . . . , n, can be calculated, for example, by the
chord length method, and a knot vector U can be computed,
for example, by averaging parameters [24]. Suppose qi j ∈ E3

is the i-th control point of j-th curve and pi j ∈ E3 is the
i j-th control point of the lofted surface S(u, v). The control
points of S(u, v) are computed by solving the following linear
equations:

1 0 0 · · · 0
N0,q(t1) N1,q(t1) N2,q(t1) · · · Nn,q(t1)
N0,q(t2) N1,q(t2) N2,q(t2) · · · Nn,q(t2)

...
...

...
. . .

...

0 0 0 · · · 1




pi0
pi1
pi2
...

pin



=


qi0
qi1
qi2
...

qin


which can be abbreviated as NP = Q. Hence, we get a
lofted surface with degree (p, q), knot vectors U and V and
control points P = {pi j ∈ E3

}. An example of modelling
a surface with the homogeneous lofting method is shown in
Fig. 2.

If we convert modelling space from E3 to E2
× M1,

i.e. treating the z coordinates of all the control points as
material compositions, we can get the new profile curves
shown in Fig. 3(a) from the old ones shown in Fig. 2(a).
Then, by applying the same lofting algorithm introduced
above, we obtain a 2D heterogeneous surface, as shown
in Fig. 3(b). The main difference comes from the physical
constraint of the third component (coordinate) in heterogeneous
lofting, i.e. it should be a positive value and less than
1, since it means the volume fraction of one material
composition.
Fig. 3. A typical heterogeneous lofting example. (a) Profile curves. (b) Lofted
heterogeneous object.

Fig. 4. A univariate heterogeneous lofting example. (a) Profile points. (b)
Lofted heterogeneous curve.

4.1. Algorithms

As discussed in the previous section, we could directly
extend current B-spline geometry modelling methods to
heterogeneous objects modelling. In uni-variate heterogeneous
lofting, we are given a set of points Q = {qk ∈ En1 ×

Mn2 × IEn3}, k = 0, . . . , n, and we want to interpolate these
points with a p-th degree B-spline curve. Reviewing the curve
interpolation algorithm in freeform curve/surface modelling,
we find that the univariate heterogeneous lofting algorithm is
similar to the curve interpolation algorithm. Hence, we extend
the univariate heterogeneous lofting algorithm from the curve
interpolation algorithm:

Algorithm 1 (1D Heterogeneous Lofting Algorithm).

Input: n + 1 data points qk ∈ En1 × Mn2 × IEn3 and a
degree p

Output: A heterogeneous B-spline curve of degree p that
passes all data points

Procedure:
Computing a set of n + 1 parameters t0, . . . , tn ;
Computing the knot vector U;
for i := 0 to n do

for j := 0 to n do
Evaluating into row i and column j of matrix N;

end
end
for k := 0 to n do

Placing data point qk on row i of matrix Q;
End
Using a linear system solver to solve for control points P
from Q = NP.

An example of univariate heterogeneous lofting is shown in
Fig. 4.

Similarly the bivariate heterogeneous lofting algorithm is
an analogy of homogeneous surface lofting. The following
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Table 1
Bivariate heterogeneous lofting examples

Index Profile curves Lofted surfaces Description

Geometry Material

Case 1 Design of a heterogeneous surface with a set of iso-material circles.

Case 2 Design of a heterogeneous surface with an S-shaped hole.

Case 3 Design of a section of heterogeneous turbine blade.
algorithm summarizes the required steps for bivariate
heterogeneous lofting:

Algorithm 2 (2D Heterogeneous Lofting Algorithm).

Input: n + 1 heterogeneous B-spline curves
Ck ⊂ En1 × Mn2 × IEn3

Output: A heterogeneous B-spline surface that passes all
input curves

Procedure:
Computing the unified degree p for input curves Ck by
degree elevating algorithm;
Computing the unified knot vector U for input curves Ck
by knot inserting algorithm;
Defining the degree q in v direction (q < # of curves);
Computing a set of n + 1 parameters t0, . . . , tn ;
Computing the knot vector V;
for i := 0 to number of control points in u direction do

Retrieving the i-th control points in all input curves Ck ;
Applying uni-variate heterogeneous lofting algorithm on
these points to get the i-th column of control points Pi ;

end

Examples implemented using bivariate heterogeneous lofting
are illustrated in Table 1.

The trivariate heterogeneous lofting algorithm is also an
analogy of homogeneous solid lofting. Hence, the trivariate
heterogeneous lofting algorithm can be summarized as:
Algorithm 3 (3D Heterogeneous Lofting Algorithm).

Input: n + 1 heterogeneous B-spline surfaces
Sk ⊂ En1 × Mn2 × IEn3

Output: A heterogeneous B-spline volume that passes all
input surfaces

Procedure:
Computing the unified degree p, q (u, v direction
respectively) for input surfaces Sk by degree elevating
algorithm;
Computing the unified knot vector U, V for input surfaces
Sk by knot inserting algorithm;
Defining the degree r in w direction (r < # of surfaces);
Computing a set of n + 1 parameters t0, . . . , tn ;
Computing the knot vector W;
for i := 0 to number of control points in u direction do

for j := 0 to number of control points in v direction do
Retrieving the i j-th control points in all input
surfaces Sk ;
Applying univariate heterogeneous lofting algorithm
on these points to get the i j-th column of control
points Pi j ;

end
end

Examples implemented using trivariate heterogeneous
lofting are illustrated in Table 2.
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Table 2
Trivariate heterogeneous lofting examples

Index Profile surfaces Lofted volumes Description

Case 1 Design of a heterogeneous block.

Case 2 Design of a heterogeneous fuselage body.

Case 3 Design of a heterogeneous turbine blade.
4.2. Homogeneous vs. heterogeneous profile curves/surfaces

4.2.1. Homogeneous material profile curves/surfaces
In previous examples, all of the profile curves/surfaces are

composed of constant material compositions. By using these
iso-material profile curves/surfaces, the lofted surface/volume
possesses a nice feature that all iso-parametric curves/surfaces
on the surface/volume are iso-material, which can benefit
the process planning in heterogeneous object manufacturing
process. Since the iso-material property of the iso-parametric
surfaces can be helpful to discretize the whole FGM object
into iso-material layers, which is necessary in heterogeneous
object fabrication such as powder processing and thermal
spraying [27].

4.2.2. Heterogeneous material profile curves/surfaces
However, to make the heterogeneous lofting more flexible,

we can bypass this iso-material constraint and use hetero-
material profile curves/surfaces, as shown in Table 3. These
two examples are corresponding to examples in Table 1. A
comparison between these two sets of examples demonstrates
the flexibility of heterogeneous lofting in terms of modelling
material composition variation.

5. Analysis of heterogeneous objects

In the previous sections, we have presented the B-spline-
based model and modelling methods for heterogeneous objects
design. Now, we will apply the B-spline finite element analysis
based on the same model. Unlike the traditional Lagrange
element, B-spline element has an inherent mesh defined by the
product of knot vectors. For example, in bivariate B-splines, a
mesh is given by U×V. These knot spans subdivide the domain
into ‘elements’ (or ‘patches’ in CAD community).

Another major difference between Lagrange element and
B-spline element is the ‘node’ (or ‘control point’ in CAD
community) distribution. For example, we illustrate this
difference between bi-quadratical Lagrange element and
uniform biquadratical B-spline element, as shown in Fig. 5. The
difference includes: 1. In Lagrange element, the nodal points
are on the boundary of the element, which means the element
interpolates the nodes; while in B-spline element, this statement
is not always valid; 2. In Lagrange element, the neighbour
elements only share the nodes on the boundary; while in B-
spline element, neighbor elements share more nodes, which
results in an elegant feature of higher inter-element continuity.
A detail comparison of univariate Lagrange element and B-
spline element is presented in Table 4.

5.1. Mesh refinement

Despite all the above differences, there are also many
similarities between Lagrange element and B-spline element.
For example, the knot insertion operation in B-spline finite
element is an analogue of h-refinement in Lagrange element,
which increases the number of elements but keeps the degree
constant; the degree elevation operation in B-spline finite
element is an analogue of p-refinement in Lagrange element,
which increases degree but keeps the number of elements
constant. The knot insertion operation and the degree elevation
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Fig. 5. Comparison of node distribution. (a) Biquadratical Lagrange. (b) Biquadratical B-spline.
Table 3
Heterogeneous lofting examples with hetero-material profile curves

Index Profile curves Lofted surfaces Description
Geometry Material

Case 1 Design of a heterogeneous surface with a set of hetero-material curves.

Case 2 Design of a section of heterogeneous turbine blade with strength at the tip.

Table 4
Comparison of univariate Lagrange element and B-spline element

Items Quadratical B-spline Cubic B-spline Quadratical Lagrange Cubic Lagrange

Nodes per element 1 1 2 3
Common nodes of neighbour 2 3 1 1
Element continuity C1 C2 C1 C2

Inter-element continuity C1 or less C2 or less C0 C0

Basis interpolates nodal points No No Yes Yes

Inter-element continuity

Basis interpolates nodal points
operation are well-developed techniques in the area of free
form surface modelling. For the sake of brevity, we just briefly
introduce the basic ideas of these two operations in 1D case.
For further investigation, please refer to Piegl’s book [24].
In curve knot insertion, a new knot is added into the
existing knot vector without changing the curve geometrically
or parametrically [24]. Meanwhile, the knot inserting operation
will cause a new control point to be added. In most cases,
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Fig. 6. B-spline element refinement. (a) Initial heterogeneous surface. (b) Uniform knot insertion. (c) Adaptive knot insertion. (d) Hierarchical knot insertion. (e)
Uniform degree elevation (control points are denoted by •).
several existing control points will be removed and replaced
with new ones by corner cutting. Given a degree p and a
knot vector U = {u0, u1, . . . , un+p+1}, assume a new knot
ū ∈ (uk, uk+1] will be inserted. Then the new knot vector can
be defined as Ū = {u0, u1, . . . , uk, ū, uk+1, . . . , un+p+1}, and
the new n+1 control points P̄ = {p̄0, p̄1, . . . , p̄n+1} are formed
from the original control points P = {p0, p1, . . . , pn} by:

p̄i = αi pi + (1 − αi )pi−1

where

αi =


1, i ≤ k − p

ū − ui

ui+p − ui
, k − p + 1 ≤ i ≤ k

0, i ≥ k + 1.

In curve degree elevation, the degree of a B-spline curve
is increased without changing the curve geometrically or
parametrically. To accomplish this, there is a straightforward
algorithm [24], which splits the B-spline curve into Bézier
curve pieces, raises the degree of each piece, and then
recombines the degree-elevated Bézier curves to produce the
new B-spline curve. And the Bézier curve degree elevation
algorithm is very simple: Given n-th degree Bézier curve
defined by a set of original control points P = {p0, p1, . . . , pn},
the new control points P̄ = {p̄0, p̄1, . . . , p̄n+1} can be
computed by:

p̄i =
i

n + 1
pi−1 +

(
1 −

i
n + 1

)
pi 1 ≤ i ≤ n.

These element refinement procedures (knot insertion and
degree elevation) are very important in finite element analysis,
which can effectively reduce the local element size. The
reduction in element size is helpful to capture the local physical
property and improve the element quality, which induce the
analysis result converging to the true solution. They are also
important for lofting a series of profile curves/surfaces that may
be of different degrees or parametrizations.

An implemented example of knot insertion and degree
elevation for a 2D heterogeneous object is shown in Fig. 6,
which includes the following parts:

• Fig. 6(a) gives an initial bi-cubic B-spline surface with knot
spans of 12 × 8;

• Fig. 6(b) gives the result surface by applying uniform knot
insertion on the initial B-spline surface, which is still bi-
cubic but with knot spans of 24 × 16;

• Fig. 6(c) gives the result surface by applying adaptive knot
insertion on the initial B-spline surface, where two new
knots of ū1 ∈ (u4, u5] and ū2 ∈ (u5, u6] are inserted
in u direction and two new knots of v̄1 ∈ (v4, v5] and
v̄2 ∈ (v5, v6] are inserted in v direction. Hence the knot
spans become 14 × 10 but the degrees are kept constant;



P. Yang, X. Qian / Computer-Aided Design 39 (2007) 95–111 103
• Fig. 6(d) gives the result surface by applying hierarchical
knot insertion on the initial B-spline surface, which refines
each of the central four patches by halving but keeps the
degrees constant. Hence in this region, the knot spans is
refined from 2 × 2 to 4 × 4;

• Fig. 6(e) gives the result surface by applying uniform degree
elevation on the initial B-spline surface, which is a bi-quartic
surface but keeps knot spans constant.

The initial heterogeneous B-spline surface shown in
Fig. 6(a) defines both the geometry and material composition
of the heterogeneous object. In the analysis process, the initial
mesh defined by the knot vectors is not dense enough to obtain
a FEM solution with a prescribed accuracy, especially for the
spot with large material gradient as shown in Fig. 6(a). To
solve this problem, we can apply uniform knot insertion as
shown in Fig. 6(b). However, this uniform method always
induces unnecessary d-o-fs at other areas, which could be
significantly reduced by the adaptive knot insertion method
as shown in Fig. 6(c). But this method still suffers from the
local refinement propagating to undesired areas along the knot
curves. An alternative is the hierarchical knot insertion method
as shown in Fig. 6(d), which is to utilize the constraints for the
hanging control points to attain the element compatibility [28].
In degree elevation, similar methods are used to solve the local
refinement problem, as shown in Fig. 6(e).

5.2. Graded B-spline element

In this section, we improve the performance of B-spline
element by adopting the concept of graded element used in
traditional Lagrange element analysis, which was presented in
several previous works [10,11]. We term our new approach as
graded B-spline finite element.

In finite element analysis, we interpolate the trial function
by the shape functions and the nodal values, which is called
finite element approximation. For example, the displacement
within an element is defined by the shape functions and the
nodal displacements:

u = Ne · ue =

n∑
i=1

Ni ui

where Ne is the matrix containing the element shape functions,
ue is the vector containing the local nodal displacements. In
our approach, as a benefit of unified B-spline representation
of geometry and material composition, the element material
property distribution can be represented by the same shape
functions and nodal properties. For example, the thermal
conductivity k could be defined as:

k = Ne · ke =

n∑
i=1

Ni ki (3)

where Ne is the matrix of element shape functions, ke is the
vector of thermal conductivities. Since this kind of element has
a property variation represented by B-splines, it is termed as
graded B-spline element.
Fig. 7. Homogeneous versus graded finite element. (a) Property height field
represented by a rendered surface. (b) Homogeneous element (property value
defined by the centroid value). (c) Graded element (property value defined by
the weighted sum of nodal values).

In the traditional analysis method for heterogeneous
materials, the variational material properties need to be
discretized and approximated to an element level. For example,
the homogeneous element employs stepwise constant values
to approximate the property value, as shown in Fig. 7(b). But
in our integrated design and analysis approach, since material
property distributions are already represented in B-splines, it
does not need to go through a discretization process and can
be represented exactly in B-spline element. A comparison
of graded B-spline element and widely used homogeneous
element is shown in Fig. 7.

We further illustrate this through a heat conduction problem.
According to the conservation of energy, the steady heat
conduction problem of the above elements is governed by
Laplace’s equation:

∇
T(k∇T ) = 0 (4)

where k is the thermal conductivity tensor. Then we derive the
weak form from Laplace’s equation:∫

Ω
(K∇T )T

∇wdΩ = 0. (5)

By applying the Galerkin procedure and assuming an isotropic
condition, we get a new equation which is a finite element
approximation of Eq. (5):

wT
e

∫
Ωe

kBT
e BedΩTe = 0. (6)

In the homogenous element as shown in Fig. 7(b), we use the
centroid thermal conductivity value ke to approximate the value
of k, which will bring a discretization error of e1 = k − ke.
Substituting k = ke into Eq. (6), we have:

kewT
e

∫
Ωe

BT
e BedΩTe = 0. (7)

In the graded element, the thermal conductivity is exactly
defined by Eq. (3). Substituting Eq. (3) into Eq. (6), we have:

wT
e

∫
Ωe

BT
e NeKeBedΩTe = 0. (8)

Comparing Eqs. (7) and (8), we can conclude that the graded
element is better than the homogeneous element, since the
graded element eliminates the discretization error, which exists
in the homogeneous element and is harmful to the analysis



104 P. Yang, X. Qian / Computer-Aided Design 39 (2007) 95–111
Fig. 8. Cylindrical FEM bar.

Table 5
Mechanical properties of composite materials

Material Young’s modulus (Pa) Density (kg/m3)

1 310e9 2000
2 10e9 2000

convergency. We will illustrate the detailed implementation
of graded B-spline element in the following section with
numerical examples.

6. Approach illustration

6.1. One-dimensional elasticity problem

This one-dimensional elasticity problem is an extension of a
similar problem presented in Gosz’s FEM book [29]. Here we
consider a FGM bar which has a solid circular cross section, as
shown in Fig. 8. Let us suppose that the bar has a total length
L = 4 m and is subjected to the force of gravity acting in the
axial direction. And this FGM bar is composed of two primary
materials: material 1 and material 2. The mechanical properties
of these two materials are given in Table 5:

The Young’s modulus distribution of the bar is subjected to
the following function:

E = x3 E1/64 + (1 − x3/64)E2.

Let us assume that the normal stress distribution on any cross
section along the length of the bar is uniform and all points
within the bar can displace in the axial direction only. These as-
sumptions make the problem one-dimensional. Applying one-
dimensional Hooke’s law and strain–displacement relationship
yields the following governing function:

(E(x)u′)′ + ρg = 0 (9)

along with two Dirichlet boundary conditions: u(0) =

0, u(L) = 0. Solving this ODE with Maple, we can get the
exact solution of this problem, as shown in Fig. 9, where the
normalized displacement u, is plotted versus the dimensionless
length x/L .

To get the graded B-spline element solution, we have the
following steps:
Step 1. Specify a set of material feature points as algorithm
input, as shown in Fig. 4(a). For every input point qk(xk, mk) ∈

E1
× M1, mk is the volume fraction of material 1 at point qk ,

which is defined by the material distribution equation.
Step 2. Apply the uni-variate heterogeneous lofting algorithm.
Then we get the integrated design and analysis model, i.e. a
heterogeneous B-spline curve C(u), as shown in Fig. 4(b).
Fig. 9. Exact solution of 1D elasticity.

Step 3. Apply graded B-spline element analysis.
In Step 3, we need to convert the differential equation of Eq.

(9) into its weak form, which is mathematically equivalent to
Eq. (9), but 2nd order derivative of u has been removed:∫ L

0
E(x)u′w′dx = ρg

∫ L

0
wdx (10)

where w is the test function. When plugging the finite element
approximations into the weak form of Eq. (10), we have several
choices:

1. If we choose homogeneous element method, the Young’s
modulus of each element is set as a constant: E(x) = Ei ,
where Ei is the Young’s modulus at the centroid of the
element. Then the finite element approximation of Eq. (10)
becomes:
nel∑

e=1

EewT
e

∫ le

0
BT

e Bedx̂ue = ρg
nel∑

e=1

wT
e

∫ le

0
NT

e dx̂

where Ne is the matrix containing the element shape
functions. If Ne is Lagrange shape functions, the finite
element is the traditional Lagrange element; if Ne is B-spline
shape functions, the finite element is the B-spline element;

2. If we choose graded element method, the Young’s modulus
of each element is interpolated by nodal Young’s moduli
weighted via shape functions: E(x) = Ne · Ee. Then the
finite element approximation of Eq. (10) becomes:
nel∑

e=1

wT
e

∫ le

0
BT

e NeEeBedx̂ue = ρg
nel∑

e=1

wT
e

∫ le

0
NT

e dx̂ .

Similarly, the type of the graded element is defined by the
type of shape functions Ne.

Hence, we get four methods of finite element analysis,
namely, homogeneous Lagrange element, homogeneous B-
spline element, graded Lagrange element and graded B-spline
element. In order to compare the convergence rates of these four
methods, we employ bi-quadratic elements and calculate the
errors of finite element solutions by comparing with the exact
solutions. The errors are computed versus the number of d-o-fs,
as shown in Fig. 10(a).

In the this paper, we use the number of d-o-fs as a parameter
to compare the convergence rate of the finite element analysis



P. Yang, X. Qian / Computer-Aided Design 39 (2007) 95–111 105
Fig. 10. Comparison of the four methods. (a) Convergence rates. (b) Elapsed time of homogeneous Lagrange element. (c) Elapsed time of homogeneous B-spline
element. (d) Elapsed time of graded Lagrange element. (e) Elapsed time of graded B-spline element. (f) Combined elapsed time.
solvers, because it is a good indicator of both the storage and
time costs of the solvers. This is shown here both analytically
and experimentally. The memory capacity required can be
estimated by the amount of memory required to store the entire
stiffness matrix, whose size is defined by the number of d-o-fs,
for example, if the number of d-o-fs is n, then the size of the
stiffness matrix is n × n. And the elapsed time can be estimated
from the time for the inverse operation of the stiffness matrix.
In our solver, the memory capacity is linear (because of sparse
matrix) and the elapsed time is cubic (or less because of sparse
LU decomposition) to the number of d-o-fs [30]. To illustrate
this, Fig. 10(b)–(e) compare the actual and predicted (dashed
line) elapsed time of the four methods separately. For clear
identification, Fig. 10(f) combines these four figures together,
which shows that the four methods consume approximately
same amount of time for the same d-o-fs. Therefore, d-o-fs is a
good indicator of convergence efficiency.

From Fig. 10(a), we can find that the graded elements (B-
spline and Lagrange) perform much better than the homogene-
nous elements in terms of convergence rate. Especially, graded
B-spline element gives the highest convergence rate, which
gains a nearly two order of magnitude better accuracy in com-
parison with the traditional homogeneous Lagrange element
with the same d-o-fs. When d-o-fs equal 300 and the solutions
become convergent, the error magnitude of homogeneous La-
grange element is 10−2 while that of graded B-spline element
is 10−4. Hence, we can conclude that both B-spline and graded
element techniques are more efficient than the traditional finite
element method.

Also, we make another three experiments by changing
the Young’s moduli of the two primary materials and the
material distribution equation, as shown in Table 6. These
results consistently demonstrate that graded B-spline FEM is
two orders of magnitude more efficient.
Fig. 11. 2D domains for heat conduction. (a) Domain D before transformation.
(b) Domain Ω after transformation.

6.2. Two-dimensional heat conduction problem

In the previous section, we presented a 1D case study to
illustrate the detailed procedures of graded B-spline element
analysis. In this section, we will extend the graded B-spline
element analysis to 2D with higher degrees of shape functions.

Here we consider a 2D heat conduction problem, and the
goal is to determine the temperature distribution due to heat
conduction between two isothermal circles that pass through
the origin, as shown in Fig. 11(a).

This steady heat conduction problem is governed by
Laplace’s equation of Eq. (4). The thermal conductivity tensor
for this 2D heat conduction problem could be assumed as:

k =

[
kx 0
0 ky

]
kx = ky = k1eln(k2/k1)(x/(x2

+y2)−1).

This property distribution equation is derived from the material
distribution equation and Eq. (2). To simplify this problem, we
firstly assume that k1 = 1 and k2 = e. Then we use a fractional
transformation w = f (z) = (1−z)/z to map the domain D into
an infinite strip in the w-plane. Now by solving the new govern-
ing function, and transforming the solution back to z-plane, we



106 P. Yang, X. Qian / Computer-Aided Design 39 (2007) 95–111
Table 6
Summary of several more examples

Index Exact solution Comparison of the convergence rates Description

Case 1
E1 = 10e9 Pa

E2 = 310e9 Pa
E = x3 E1/64 + (1 − x3/64)E2

Case 2
E1 = 20e6 Pa
E2 = 10e6 Pa

E = E1eln(E2/E1)x/4

Case 3
E1 = 10e6 Pa
E2 = 20e6 Pa

E = E1eln(E2/E1)x/4
Fig. 12. Exact solution of temperature distribution.

have the analytical solution of the original problem:

T (x, y) = T̂ (u(x, y)) = (e − e−x/(x2
+y2))/(e − 1).

The temperature contour of this analytical solution is plotted
in Fig. 12:

To get the graded B-spline element solution, we will
follow the same steps in the 1D elasticity problem. Firstly
we apply the bi-variate heterogeneous lofting algorithm to get
a heterogeneous surface S(u, v) as the integrated design and
analysis model, as shown in case 1 of Table 1. Notice that
we choose rational B-splines instead of B-splines to obtain the
geometry of the circles exactly. Following the same process of
the 2D steady heat conduction problem in Section 5, we finally
get:

nel∑
e=1

wT
e

∫
Ωe

BT
e NeKeBedΩTe = 0.
Fig. 13. Comparison of the convergence rates.

After assembling the element matrices and vectors following
the usual finite element assembly procedure, the global system
of equations can be written simply as Kt T = 0. Finally, we can
get the temperature distribution by solving this equation. Ta-
ble 7 gives several resulting temperature distributions of finite
element analysis with different element types and d-o-fs.

In order to compare the convergence rates of these four
methods, we calculate the errors of finite element solutions
by comparing them with the exact solutions. The errors are
plotted versus the number of d-o-fs, as shown in Fig. 13. The
results testify our conclusion that graded B-spline elements
give the highest convergence rate, which gains more than two
orders of magnitude better accuracy in comparison with the
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Table 7
Temperature distributions with different element types and d-o-fs

Element type D-o-fs = 100 D-o-fs = 500 D-o-fs = 1000

Bi-quadratic Lagrange

Graded bi-quadratic Lagrange

Graded bi-quadratic B-spline

Graded bi-cubic B-spline
Fig. 14. Temperature distribution of conduction analysis for 2D heterogeneous
model in (a) Table 3 case 1, (b) Table 3 case 2.

homogeneous Lagrange element. And the cubic graded B-
spline element performs the best of the four, but only by a small
margin in comparison with quadratic graded B-spline element.

Note, the above 1D and 2D results are consistent with results
in the algebraic/ experimental comparison of Lagrange element
and B-spline element described in [28].

In the above case studies, for the sake of comparison with
analytical solutions, we chose examples of relatively simple
geometrical shape. However, our approach could be applied to
more complicated cases, for example, the applications to the
models in Table 3, as shown in Fig. 14.

6.3. Three-dimensional thermal stress problem

In the current design, the cylinder contains an inner copper
core and a ceramic coating, as shown in Fig. 15. In the analysis
we will assume that the initial (or reference) temperature of
this cylinder is 20 ◦C, then the inner boundary of the copper
Fig. 15. Current design without FGM transition.

Table 8
Mechanical properties of composite materials

Material E (GPa) ν α (10−6/◦C) k (J/(m ◦C s))

Ceramic 400 0.22 5 1
Copper 110 0.33 17 400
Titanium – – – 22

core is heated uniformly to a temperature of 200 ◦C, and outer
boundary of the ceramic coating keeps the initial temperature.
Hence, there exist thermal stresses, and current research [29]
also shows that there exists a sharp discontinuity in the thermal
stresses across the interface between copper and ceramic. Now
we will redesign this cylinder with FGM to minimize the
thermal stresses and remove the discontinuity. The mechanical
properties for the copper and ceramic used in the analysis are
reported in Table 8.

Using the axisymmetric property, we can simplify this fully
3D problem to a 2D problem:
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Fig. 16. Heterogeneous lofting for modelling the axis section. (a) Profile curves. (b) Lofted heterogeneous surface. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
Fig. 17. Heat conduction analysis. (a) Quarter model and associated boundary
conditions. (b) Result temperature distribution.

1. In FGM design, instead of designing the material
distribution of entire cylinder, we just need to design an axial
cross-section.

2. In heat conduction analysis, since the temperature does not
vary in the circumferential direction, we reduce the variables
in the gradient operator.

3. In thermal stress analysis, we could simplify the Hooke’s
law.

Step 1. Design the axial cross-section surface of the FGM
cylinder by bivariate heterogeneous lofting. To achieve this,
we need to create several iso-material profile curves as input
for heterogeneous lofting, as shown in Fig. 16. First red line
represents pure copper in the core; the second yellow line is
the key feature we used to control the material composition;
the third blue line represents pure ceramic on the boundary.
Now, we set the copper composition m y of the yellow line as
the design variable. Firstly, we choose m y = 0.5, which means
that the yellow feature curve contains 50% copper and 50%
ceramic. Then applying the bivariate heterogeneous lofting
algorithm, we have a heterogeneous B-spline surface as shown
in Fig. 16(b).

Step 2. Perform a heat conduction analysis, which will deter-
mine the steady-state temperature distribution in the axial cross-
section of the cylinder. And then update the heterogeneous sur-
face model by attaching the nodal temperatures to the control
points. Since we have assumed that the cylinder is long, it is
only necessary to consider the quarter model of the representa-
tive section, as shown in Fig. 17(a). Applying the same process
as the 2D heat conduction problem presented in the previous
section, we finally get the temperature field as shown in Fig. 17
(b):
Step 3. Perform a thermal stress analysis. Due to the absence of
body forces, the weak form of the thermal stress problem can
be simplified as:∫

Ωe

BT
e σdΩ = 0. (11)

Using the axisymmetric property, we can simplify the Hooke’s
law as:

σrr
σθθ

σzz
σr z

 = Ê


1 − ν ν ν

ν 1 − ν ν

ν ν 1 − ν
(1 − 2ν)

2



×


εrr − α1T
εθθ − α1T
εzz − α1T

γr z

 = C ·


εrr − α1T
εθθ − α1T
εzz − α1T

γr z

 (12)

where

Ê =
E

(1 + ν)(1 − 2ν)

and α is the coefficient of thermal expansion. The quantity 1T
is the temperature change from a stress-free reference state.
Applying the concept of graded element, we have:

E = NeEe, ν = Neνe, α = Neαe, 1T = Ne1Te

where Ee, νe, αe and 1Te are corresponding nodal property
values, for example, Ee are composed of the Young’s moduli
of the nodes of element e. Substituting Eq. (12) into Eq. (11),
we have:∫
Ωe

BT
e CeBedΩde =

∫
Ωe

BT
e CeNeαeNe1TedΩ .

Finally, we can get the results for the thermal stress analysis
by solving global system. As shown in Fig. 18, the hoop stress
changes smoothly in the whole axial cross-section, i.e. the sharp
discontinuity across the interface between copper and ceramic
has disappeared. And the hoop stress in the ceramic region has
been reduced, which will decrease the risk of the fail of the
ceramic coating.

To obtain an optimized design of the axial cross-section
of the FGM cylinder, we will change the value of the design
variable m y , and run the analysis procedure again, as shown in
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Fig. 18. Results for the thermal stress analysis. (a) Distribution of strain εrr . (b) Distribution of strain εzz . (c) Distribution of hoop stress σθθ .
Table 9
Summary of other designs

Index m y Heterogeneous object model Temperature distribution Hoop stress distribution

Case 1 0.2

Case 2 0.8

Case 3 0.5
Fig. 19. Model of the FGM cylinder.

Table 9. However, the final optimization result depends on the
objective functions. For example, if the optimization objective
is to minimize the maximum hoop stress, the optimization
process will converge at the optimized design with m y =

0.61. Once we get an optimized axial cross-section, we can
finally create the FGM cylinder with heterogeneous revolution
operation, as shown in Fig. 19.
6.4. Design and analysis of three-dimensional turbine blade

We finish this section with a design and analysis problem of
a 3D turbine blade. In this example, the heterogeneous turbine
blade is composed of an inner titanium core and a ceramic
coating. The mechanical properties for the materials used in the
analysis are reported in Table 8. In the analysis for steady-state
conduction of this heterogeneous object, we assume that the
temperature of the inner and outer boundary surface is 60 ◦C
and 600 ◦C.

In the design and analysis process, we firstly design three
iso-material boundary surfaces of the turbine blade, as shown
in Fig. 20(a). Each of the result surfaces is represented by a
heterogeneous bi-cubic B-spline surface. Before applying the
trivariate heterogeneous lofting algorithm, we need to confirm
that all the profile surfaces are compatible. In this example,
the outer profile surface defined by a 22 × 4 control lattice
is not compatible with the middle and inner profile surfaces
defined 41 × 8 control lattices, as shown in Fig. 20(b). By
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Fig. 20. 3D conduction analysis for heterogeneous turbine blade. (a) Initial profile surfaces in rendered model. (b) Initial profile surfaces in curve mesh model.
(c) Refined profile surfaces. (d) Initial heterogeneous model created by heterogeneous lofting. (e) Mesh refinement created by knot inserting. (f) Analysis result of
temperature distribution.
using knot insertion, we solve the incompatible problem and
unify the degree and knot vector of all profile surfaces, as
shown in Fig. 20(c). Then we apply heterogeneous lofting and
get an initial heterogeneous volume defined by a 41 × 8 × 3
control lattice (quadratic in w direction), which represents
a quadratic transition between both heterogeneous profile
surfaces, as shown in Fig. 20(d). To assess convergence of
the analysis process, we refine the initial mesh using the knot
insertion algorithm, as shown in Fig. 20(e). Finally, we input the
refined analysis model into our solver and get the temperature
distribution of the turbine blade, as shown in Fig. 20(f). If
the analysis result does not converge, we can go back to the
mesh refinement module and regenerate the analysis model
with enough mesh density or go back to the design module and
modify the initial heterogeneous model. All these design and
analysis operations are based on the flowchart shown in Fig. 1.

7. Conclusions

In this paper, we presented a B-spline-based approach for
heterogeneous object design and analysis, which allows for
direct interaction between the design and analysis model. As
a benefit of this integrated design and analysis model, the
information flow from design model to analysis model has been
streamlined, since it does not involve the mesh construction
process and the B-spline finite element mesh is directly derived
from the design representation. Another benefit is the exact
representation of geometry and material distribution in the
analysis process.

In the design module, heterogeneous lofting algorithms are
introduced to easily and intuitively create heterogeneous object
model. Similar to the homogeneous lofting method, this method
does not require a grid of control points but a set of profile
material features to design the material distribution and/or
the geometry of heterogeneous objects. Hence, the design
process for heterogeneous object becomes more convenient
than design through B-spline control point specification.
Further, such a lofting method makes the extraction of iso-
material composition surface relatively straightforward, which
is necessary when doing process planning for heterogeneous
object manufacturing.

In the analysis module, a novel graded B-spline element
solution procedure has been described and validated with case
studies. These case studies demonstrated that graded B-spline
elements improve the efficiency of finite element analysis up to
orders of magnitude better.

The developed approach is based on tensor B-splines and is
therefore topologically limited to rectangular shapes. However,
our approach is still sufficient for most current heterogeneous
objects applications, which are simple in topology. Future
research will address such topological limitation.
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