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Abstract

Spline paths in NC machining are advantageous over linear and circular paths

due to their smoothness and compact representation, thus are highly desirable in

high-speed machining where frequent change of tool position and orientation may

lead to inefficient machining, tool wear and chatter. This paper presents an ap-

proach for calculating spline NC paths directly from discrete points with controlled

accuracy. Part geometry is represented by discrete points via an implicit point set

surface (PSS). Cutter location (CL) points are generated directly from implicit part

surfaces and interpolated by B-spline curves. A computing procedure for calculating

maximum scallop height is given. The procedure is general and suitable for part

surfaces in various surface representations provided that the closest distance from

a point to the part surface can be calculated. Our results affirm that the proposed

approach can produce high-quality B-spline NC paths directly from discrete points.

The resulting spline paths make it possible for directly importing discrete points into

CNC machines for high-speed machining.

1 INTRODUCTION

This paper presents an approach for calculating spline NC paths directly from discrete

points by controlling the distribution and number of points interpolated by B-spline

NC paths and the size of the side step between consecutive NC paths. Discrete point

data has been widely used in product development and re-engineering due to the readily

available three-dimensional data acquisition devices. Generating NC paths directly from

discrete points avoids the time consuming and error prone tasks of surface fitting.

Among various representation of NC paths, spline NC paths are more advantageous

over linear and circular paths due to their smoothness and compact representation, thus

are highly desirable in high-speed machining where frequent change of tool position and
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orientation may lead to inefficient machining, tool wear and chatter. Current CNC

controllers can accept spline paths as input and generate motion commands on-line

[1, 2]. Spline paths need fewer parameters for representing freeform curves than linear or

circular paths to reach the same precision. Using spline paths alleviates memory burden

of CNC controllers and decreases possible transmission errors between CAD/CAM and

CNC systems. Spline paths also avoid the discontinuity between segments of linear or

circular paths. The smoothness of spline paths is especially important for high-speed

machining (HSM). The spindle in HSM has to slow down at C0 points of tool paths,

change its direction and accelerate to reach the desired maximum speed again. The

deceleration/acceleration reduces the average machining speed, increases tool position

error, and decreases motion repeatability.

Despite of the need for generating NC paths directly from discrete points and the

advantages of spline paths, no reported work has been done for generating spline paths

directly from discrete points. Existing approaches generate linear or circular paths

instead of spline paths from discrete points [3, 4, 5, 6, 7, 8], or generate spline paths

from continuous CAD surface models instead of discrete points [9, 10, 11, 12, 13].

In this paper, we present an approach that allows B-spline NC paths to be directly

generated from discrete points. An ODE (ordinary differential equation) representation

of NC paths is provided to define a nominal CC (cutter contact) path whose correspond-

ing CL (cutter locations) path lies on a given tool driving plane. The ODE representation

is amenable to computing of CC points and produces arc length parameterization of CL

paths. Solutions of the ODE are numerically obtained by the fourth-order Runge-Kutta

method and improved by our method to make sure the CL points strictly on the driving

plane. The CL points on each path are interpolated by a B-spline curve. A compact

set of interpolation points of each CL path is found by inserting or removing interpo-

lation points according to deviations between the interpolation curve and the nominal

CL path. The maximum side step between two consecutive CL paths is calculated by

restricting the maximum scallop height formed by two CL paths to be below a given

tolerance.

In our approach, the part surface is defined directly from discrete points via Amenta’s

moving least-squares (MLS) surface representation [14]. Our approach generates paral-

lel paths represented by B-splines for finish machining. The MLS surface is an implicit

representation, given in the implicit form g (x, y, z) = 0. In the past, NC path gen-

eration from implicit surfaces usually needs to go through a conversion process, which

converts the implicit form to z = f (x, y) or to a parametric form for the computation

of tool paths [15], or go through a local Taylor series approximation in order to obtain

explicit approximate representation of the implicit surface [9]. In contrast, our ODE

representation of NC paths avoids such conversion by directly calculating path points

from the implicit form. Note that our method is suitable for any point set surfaces
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(PSSs) represented by implicit forms, not restricted to Amenta’s MLS surface.

Compared with the method in [10] where B-spline path generation is based on para-

metric surfaces, our approach to calculating side steps is suitable not only for part

surfaces represented by implicit surfaces, but also for all other surfaces provided that

the closest distance from a point to the part surface can be calculated. Moreover, the

method in [10] calculates the next CL path for each possible step size and the maximum

scallop height formed by current CL path and each possible next CL path, while our

approach only calculates possible step sizes at points on current CL paths. Thus our

approach is potentially more efficient than the method in [10].

2 RELATED WORK

Substantial work has been done in the past concerning various issues of CNC machining,

such as gouge avoidance, tool path generation and orientation identification, feedrate

scheduling, and so on. The following review only covers related work of tool path

generation from discrete points and B-spline NC path generation. A general review of

recent development in CNC machining of freeform surfaces can be found in [16].

Lin and Liu [3] used a Z-map model to organize sequence points. Park and Chung

[4] generated tool paths from similar sequence points to those in [3]. Park [5] generated

iso-planar CL paths for triangular meshes. Triangular meshes can be obtained either

from a parametric surface or a set of points. Feng and Teng [6] generated iso-planar

piecewise linear CNC tool paths from discrete measured points. Input points are grouped

by a projected cutter location net (CL-net). Chui et al. [7] obtained CL points by

offsetting input points along normal vectors of 3D triangular mesh. CL paths are fitted

from these CL points by a set of 3D arc splines. However, none of above methods

discussed the specification of path parameters to control the accuracy of paths according

to user specified tolerances. One possible reason would be the difficulty of evaluating

the accuracy of tool paths when differential geometric properties such as normal vectors

and curvatures are estimated directly from discrete points.

New surface representations of discrete points have appeared recently. Point-set

surfaces (PSSs) are continuous surfaces defined directly from point sets. Since its original

inception [17, 18, 14], the PSS and its many variants have been widely used in various

graphics, visualization, geometric modeling and engineering applications (work in [19]

and [8] for example). PSS has been applied in generating tool paths directly from discrete

points [8]. However, no spline paths were generated in [8] and the path generation was

based on cutter contact points.

On the other hand, B-spline path has been explored for some time. Lartigue et

al. [10] generated B-spline paths from parametric part surfaces with the control of the

maximum scallop height. Jin et al. [11] proposed a local cubic B-spline fitting algo-

rithm with real time look-ahead scheme for consecutive micro-line blocks interpolation.
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Erkorkmaz et al. [12] presented a quintic spline trajectory generation algorithm that

produces continuous position, velocity, and acceleration profiles. Vijayaraghavan et al.

[13] took a subdivision method of curves as an interpolation method to reduce trajectory

generation time and increase feed rates. However, none of the above methods deals with

the path generation from discrete points.

3 B-spline form of CL Path generation from discrete points

In this section, we first provide an ODE (ordinary differential equation) representation

of the NC paths that defines a nominal CC (cutter contact) path whose corresponding

CL (cutter locations) path lies on a given tool driving plane. We numerically solve the

ODE by the fourth-order Runge-Kutta method and present a method that improves

the numerical accuracy and makes CL points strictly on the driving plane. We then

examine the deviation between the B-spline CL path and the nominal CL path defined

according to the ODE model and obtain a compact set of interpolation points of the CL

path by inserting or removing interpolation points.

3.1 Ordinary differential equation representation of CC and CL paths

In this paper, the part surface from discrete points is represented by an implicit MLS

surface. For detailed description of how discrete points via MLS surface can be used in

machining and rapid prototyping, please refer to our earlier work [8, 19]. In order to

compute the points on the intersection curve between a given driving plane and the CL

surface, we develop an ODE representation of corresponding CC path.

Given a point set P = {p i, i = 1, . . . , n}, let the nominal part surface be represented

by the PSS surface g (x ) = 0, where x = (x, y, z)T . The offset surface ĝ (x̂ ) = 0 of

g (x ) = 0 consists of points

x̂ = x + dn (x ) , (1)

where d is a signed offset distance and n (x ) denotes the unit normal

n (x ) =
(gx, gy, gz)

T

∥∥∥(gx, gy, gz)
T
∥∥∥

, (2)

where (gx, gy , gz) = (∂g (x ) /∂x, ∂g (x ) /∂y, ∂g (x ) /∂z). The direction of the normal is

consistent such that n (x ) points outside the surface g (x ) = 0.

The CL surface is the offset surface from g (x ) = 0 with offset distance d = R, where

R is the cutter radius. The CL path is defined as a series of intersection curves between

the CL surface and tool driving planes [10]. Let the current tool driving plane be defined

by

αx + βy + γz + δ = 0, (3)
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Figure 1: CC points and CL points defined by Eq. (4) along a path of a wavy surface.

where (α, β, γ)T is the unit normal vector of the driving plane. A point x̂ on the CL

path should satisfy both Eq. (1) and Eq. (3). Then we have the following implicit

representation for the CC points





g (x ) = 0〈
(α, β, γ)T ,x + Rn (x )

〉
+ δ = 0

(4)

where 〈〉 denotes the dot product, the first equation means that the CC points lie on

the part surface, and the second equation means that the offset points of the CC points

by the cutter radius R lie on the driving plane. Note that Eq. (4) and Eq. (1) together

define the nominal CL path on the given driving plane.

Fig. 1 shows CC points and CL points defined by Eq. (4) and Eq. (1) along a path

of a wavy surface, where the green points, the blue pentacles, the blue points denote the

input data, CC points, CL points respectively, the three spheres center at corresponding

CL points and with the radius equal to the cutter radius. In the figure, each CL point

is connected with corresponding CC point by a line segment. Eq. (4) possesses the

following interesting properties:

1. Part surfaces are represented by implicit surfaces instead of parametric surfaces

as in previous work [10].

2. The unknowns of Eq. (4) are coordinates of CC points. The CL points can be

obtained immediately from these CC points by Eq. (1).

3. CL points determined by Eq. (4) lie on the driving plane, while in previous work

[9] and [8] CC points instead of CL points lie on the driving plane. Since machine

tools are driven along the CL path plane (the driving plane), our approach thus

avoids potential jerk and ensures dynamically smooth paths.

Let the curve corresponding to the CC path be represented by c (t) = (x (t) , y (t) , z (t))T .

From Eq. (1), we have
dĉ (c (t))

dt
= (1 + R∆n (x ))

dc

dt
. (5)
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where dc/dt = (dx/dt, dy/dt, dz/dt)T ,

∆n (x ) =




dnx
dx

dnx
dy

dnx
dz

dny

dx
dny

dy
dny

dz
dnz
dx

dnz
dy

dnz
dz




(6)

Differentiating Eq. (4) with respect to the parameter t yields




gx
dx
dt

+ gy
dy
dt

+ gz
dz
dt

= 0
〈
(α, β, γ)T , (1 + R∆n (x )) dc

dt

〉
= 0

(7)

The solution to Eq. (7) is given by




dx
dt

= ξ (bgz − cgy)

dy
dt

= ξ (cgx − agz)

dz
dt

= ξ (agy − bgx)

(8)

where (a, b, c) = (α, β, γ) + R (α, β, γ) ∆n (c), ξ is an arbitrary non-zero factor. Eq.

(8) constitute the ODE representation of the CC path. The ODE representation of

the CL path is obtained by substituting Eq. (8) into Eq. (5). The non-zero factor

ξ can be chosen to provide the arc length parameterization of the CL path by letting

‖dĉ/dt‖2 = 1. Then from Eq. (5) and Eq. (8),

ξ = ±
1∥∥∥(1 + R∆n (c)) (bgz − cgy, cgx − agz, agy − bgx)T

∥∥∥
. (9)

3.2 Numerical procedure for computation of CL points

A sequence of CC points (xk, yk, zk)
T , k = 0, 1, . . . can be computed by integrating the

nonlinear differential Eq. (8) using, for example, the fourth-order Runge-Kutta method.

CL points are obtained by substituting these CC points into Eq. 1. However, these CC

points may not strictly satisfy Eq. (4) due to limited accuracy of numerically integrating

Eq. (8). A method is introduced to improve the accuracy of the resultant CL points

and make the CL points be strictly on the driving plane.

Without loss of generality, we assume driving planes are perpendicular to the y-

direction of the part coordinate system and the current driving plane is defined by

y = yc, where yc is a constant. Let the forward direction be parallel to the x-direction.

Assume the coordinates of a CL point near y = yc are given and the x coordinate of the

CL point is xc.

Our method restricts the unknown CL point on the intersection line between planes

x = xc and y = yc. Let the intersection line be denoted by L (xc, yc). Then the unknown

CL point is the intersection point between L (xc, yc) and the CL surface (shown in Fig.

2). And the problem to find the unknown CL point can be formulated by

min
zc

[∣∣∣Dis
(
(xc, yc, zc)

T , S
)∣∣∣ − R

]2

, (10)
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Figure 2: A point on a CL path.

where S denotes the part surface, (xc, yc, zc)
T is a point on the line L (xc, yc), Dis ( , S)

is the closest distance from a point to the part surface.

The above problem contains the subproblem to find the closest point of (xc, yc, zc)
T

on the implicit part surface g (x ) = 0. Since g (x ) = 0 is defined on point set P =

{p i, i = 1, . . . , n}, the initial closest point is specified by the closest point from (xc, yc, zc)
T

to points of P . The initial closest point can be found efficiently by a data structure such

as k-d tree.

Let the initial closest point be denoted by p. The implicit surface g (x ) = 0 near p

is parameterized locally by a plane passing through p and perpendicular to n (p), where

n (p) is calculated by Eq. (2). Let p (u0, v0) be a point on the plane and has a parameter

(u0, v0). And assume u and v are two orthogonal unit vectors in the plane. Then

p (u0, v0) = p + u0u + v0v.

The corresponding point of p (u0, v0) on the part surface is specified by the same pa-

rameter as p (u0, v0) and is denoted by x (u0, v0). The point x (u0, v0) is obtained from

p (u0, v0) by the MLS projection process. The problem to find closest points on the part

surface is formulated as

min
u,v

[
(xc, yc, zc)

T − (x (u, v) , y (u, v) , z (u, v))T
]2

(11)

s.t. g (x (u, v) , y (u, v) , z (u, v)) = 0

where (x (u, v) , y (u, v) , z (u, v))T are coordinates of a point with parameter (u, v) on

the part surface.

3.3 B-spline curve interpolation of CL paths

For a fixed-degree B-spline path (cubic in this paper), the number of B-spline segments

can be determined from the number of B-spline interpolation points. In order to make

the resulting B-spline representation compact, the number of CL points to be interpo-

lated needs to be controlled. The initial number of interpolation points is determined
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by the increment tinc of the parameter t of Eq. (8).The tinc is specified to be equal to

the value of the cutter radius R in our experiments, which makes initial interpolation

points be evenly distributed.

Let x̂ k, k = 1, 2, . . . be initial CL points which are strictly on the corresponding

driving plane after applying our method introduced in Section 3.2. Let ĉ (u) be the

interpolation curve of these initial CL points. Then ĉ (u) is also on the driving plane.

Assume ĉ (uc) is a point on ĉ (u) and c (uc) is the closest point of ĉ (uc) on the part

surface g (x ) = 0. According to the nominal CL path defined by Eq. (1) and Eq. (4),

the distance between ĉ (uc) and c (uc) should be equal to the cutter radius R. Then the

deviation of interpolation curve ĉ (u) at point ĉ (uc) from the nominal CL path needs

to satisfy

|‖ĉ (uc) − c (uc)‖ − R| ≤ hinter. (12)

where ‖‖ denotes Euclidean norm, and hinter is the given tolerance.

The accuracy of curve ĉ (u) is usually checked at each midspan of the two successive

parameter values [10], i.e. uc = (uk + uk+1) /2 in Eq. (12), k = 1, 2, . . ., where uk and

uk+1 are the curve parameters of interpolation points x̂k and x̂k+1 respectively. How-

ever, the accuracy of the curve segment between ĉ (uk) and ĉ (uk+1) is not guaranteed

by only examining the midspan point. In order to get an interpolation curve bounded by

the tolerance hinter, a point with the maximum deviation on the curve segment between

ĉ (uk) and ĉ (uk+1) is explicitly obtained by solving

max
uk≤u≤uk+1

|‖ĉ (u) − c (u)‖ − R| (13)

Assume the solution of the above problem is umax
k and the maximum deviation is

hinter (umax
k ) = |‖ĉ (umax

k ) − c (umax
k )‖ − R| . (14)

The curve segment between ĉ (uk) and ĉ (uk+1) is bounded by the tolerance hinter if

and only if

hinter (umax
k ) ≤ hinter. (15)

The interpolation points are inserted in an iterative process. In each iteration, let

the curve segment with the highest deviation be the curve segment between ĉ (uk) and

ĉ (uk+1). If the maximum deviation of the curve segment satisfies Eq. (15), the process

is ended. Otherwise, a new CL point is calculated by taking ĉ ((uk + uk+1) /2) as an

initial point for the method introduced in Section 3.2. Then old CL points and the new

CL point are interpolated by a planar cubic B-spline curve again. The above process is

repeated until there is no new CL point that needs to be inserted.

Although the above process can produce an error bounded interpolation curve by

inserting more interpolation points, it may lead to excessive interpolation points. If all

the curve segments of the interpolation curve still satisfy Eq. (15) after removing an

interpolation point, the interpolation point is deemed unnecessary and can be removed.
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Then the interpolation points can be removed in an iterative process. In each iteration,

whether an interpolation point can be removed is examined by the maximum deviation

of the curve segments of the interpolation curve after removing the interpolation point.

Such maximum deviation is calculated for each interpolation point. The interpolation

point with the minimum value of such maximum deviations is selected to be removed.

The above process is repeated until none of points can be removed while retaining the

given tolerance.

4 Path interval generation

In this section, a method is presented to find the step size between two consecutive CL

paths such that the maximum scallop height along a scallop curve coincides with the

prescribed tolerance. A point on a scallop curve is first calculated from a point of a

known CL path such that the scallop height of the point on the scallop curve is equal to

the prescribed tolerance, where the known CL path is a B-spline curve obtained by the

method introduced in Section 3. Then a point on the consecutive unknown CL path is

obtained according to the relationship between the scallop curve and the CL path. A

step size is calculated from the two corresponding CL points on the known and unknown

CL paths. The step size between the known and unknown CL paths are obtained by

finding the minimum of the step size calculated at each point of the known CL path.

Let A and B be two points on two consecutive CL paths ĉ
A (t) and ĉ

B (σ) respec-

tively (shown in Fig. 3), where the CL paths are represented by parameter curves. The

side step lCL is defined as

lCL = 〈B − A, aside〉 , (16)

where aside is the unit side direction.

The scallop curve is an intersection curve between two pipe surfaces [20]

PA (t, α) = ĉ
A (t) + R

[
cos αbA (t) + sin αnA (t)

]
, (17)

PB (σ, β) = ĉ
B (σ) + R

[
cos βbB (σ) + sin βnB (σ)

]
, (18)

where n and b are the normal and binormal vectors of corresponding CL path respec-

tively, α (or β) is the angle from the vector bA (or bB) to the vector PA − cA (or

PB − cB). Since ĉA (t) and ĉB (σ) are on driving planes, the binormal vectors are

perpendicular to driving planes.

As shown in Fig. 3, C is a point on the scallop curve and the distance from C to its

closest point C̃ on the part surface is equal to the scallop height h. The point C can

be calculated from Eq. (17) if the h is specified. Assume h = hside, where hside is the

maximum scallop height. Then the point C can be obtained by solving

min
α

F1 (t, α) =
[∣∣Dis

(
PA (t, α) , S

)∣∣ − hside

]2
, (19)
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Figure 3: A and B are two point on two consecutive CL paths. The intersection curve

of two pipe surface PA (t, α) and PB (σ, β) is a scallop curve. C (t, α) is a point on the

scallop curve. The scallop height at C (t, α) is h.

where Dis
(
PA (t, α) , S

)
is the distance from point PA (t, α) to the part surface, t is the

parameter of the point A on the CL path.

Assume Ã is the closest point of A to the part surface. Then Ã is the CC point of

A. Assume the angle from the vector bA (t) to the vector Ã − A is α0. Then the α in

Eq. (19) is restricted by α0 ≤ α ≤ α0 + pi/2.

The side step lCL and the next tool path cB (σ) are both unknown now. Given the

point C, point B should lie on the sphere centered at C and with the cutter radius R.

The location of point B is not unique and all of them produce the same scallop hight

with respect to point A. The location of point B which corresponds to the maximum

side step is chosen since bigger side step means higher machining efficiency. Then we

let the chord connecting A and B be on the plane spanned by bA and nA at point A,

i.e. point B is on the great circle (shown in Fig. 3)

D (t, α, γ) = C (t, α) + R
[
cos γbA (t) + sin γnA (t)

]
, (20)

The point B should lie on the CL surface too. Then the point B can be obtained

by solving

min
γ

F2 (t, α, γ) = [|Dis (D (t, α, γ) , S)| − R]2 . (21)

The range of γ is specified to exclude the point A because A is also on the circle

D (t, α, γ).

The side step corresponding to the point A can be calculated by Eq. (16) now. A

side step is calculated similarly for each point of the current CL path ĉ
A (t). The side

step between the consecutive known and unknown CL paths is selected as the minimum
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of all such side steps, i.e.

min
t

F3 (t, α, γ) =
〈
D (t, α, γ) − ĉ

A (t) , aside

〉
, (22)

where α and γ are obtained by solving Eq. (19) and Eq. (21). Substituting Eq. (19)

and Eq. (21) into Eq. (22), the problem to calculating the side step becomes

min
t

F3

(
t, argmin

α
F1, argmin

γ

(
F2, argmin

α
F1

))
. (23)

The position of the tool driving plane of the unknown CL path ĉB (σ) is obtained by

moving the current tool driving plane along the side direction by the value of the side

step. Given the start and end positions of the tool driving plane, all the CL paths can

be calculated. The start and end positions of the tool driving plane are determined by

points on the CL surface. These points are sorted along the side direction in ascending

order. The start and end tool driving planes pass through the first and last points

respectively.

5 EXPERIMENTS

The above formulations for calculating B-spline paths’ interpolation points and side

steps have been implemented in Matlab. The optimization routines from Matlab are

used. All the experiments are carried out on a computer with Intel Pentium 3GHz CPU

and 2 GB of RAM. Experimental results on both synthetic and real scanned data are

presented in this section. The unit of the length used in this paper is millimeter.

The synthetic data used in our experiments is sampled from two nominal surfaces.

The first surface is a sinusoidal surface obtained by sweeping a sine curve along a line.

The second surface is defined by z = a cos (bx) sin (cy), where a, b, and c are constants

and are specified by 10, 0.12, 0.09 respectively. Fig. 4 shows points sampled from the

two surfaces. Table 1 gives characteristics of points sampled from the two surfaces,

including the number of points and domain range of the data.

Table 1: Characteristics of synthetic data

Size

Examples Number of points x y z

Sinusoidal surface 4,000 150.00 100.00 19.99

Wavy surface 2,500 102.63 102.63 19.98

The application of our approach on real data obtained from 3D scanners (such as

Minolta VIVID910) has also been conducted. Fig. 5 show a compound surface and

a face like surface used in the experiments. Table 2 gives characteritics of the two

surfaces, where µ and σ denote the mean and standard deviation of the Gaussian noise

respectively.

11

Xiaoping Qian
Cross-Out

Xiaoping Qian
Replacement Text
scanner

Xiaoping Qian
Cross-Out

Xiaoping Qian
Replacement Text
Synthetic data cloud

Xiaoping Qian
Cross-Out

Xiaoping Qian
Replacement Text
Surfaces

Xiaoping Qian
Inserted Text
personal 

Xiaoping Qian
Inserted Text
scan 

Xiaoping Qian
Cross-Out

Xiaoping Qian
Replacement Text
-

Xiaoping Qian
Cross-Out

Xiaoping Qian
Replacement Text
scanned data cloud



(a) (b)

Figure 4: Two sets of synthetic data used in the experiments: (a) a sinusoidal surface;

(b) a wavy surface.

(a) (b)

Figure 5: Two sets of real data used in the experiments: (a) a compound surface; (b) a

face like surface.
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Table 2: Characteristics of real data

Size Noise

Examples Number of points x y z µ σ

Compound surface 20,302 127.00 127.16 26.71 0 0.1

Face like surface 10,000 149.06 247.50 105.40 0 0.2

Table 3 gives conditions used to generate CL paths for the sinusoidal surface, the

wavy surface, the compound surface, and the face like surface, where R is the cutter

radius, εnbor defines the range of neighborhood of a driving plane, hinter is the tolerance

of B-spline interpolation, hside is the maximum scallop height, hMLS is the bandwidth

of MLS projections.

Curvatures of the sinusoidal surface, the wavy surface, the compound surface, and

the face like surface are calculated at points on PSSs corresponding to input points by

the method presented in [21]. The maximum absolute values of principal curvatures of

the sinusoidal surface, the wavy surface, the compound surface, and the face like surface

are 0.102, 0.129, 0.311, and 0.207 respectively. Then all the cutter radius R given in

Table 3 are smaller than the maximum limit of the cutter size determined by the the

minimum curvature radius of corresponding part surface.

Table 4 gives some results obtained from the sinusoidal surface, the wavy surface,

the compound surface, and the face like surface, where npath denotes the number of

CL paths, ninitial denotes the average number of initial interpolation points of a CL

path, nfinal denotes the average number of final interpolation points of a CL path,

tpath denotes the average computation time of a CL path, tside denotes the average

computation time of the side step from a CL path, the unit of tpath and tside is second.

The tpath is the sum of the time to calculate the initial interpolation points and the time

to obtain a compact set of interpolation points under the given tolerance. Obtaining a

compact set of interpolation points is much more time consuming than calculating the

initial interpolation points in our experiments. The tside consists of times to solve three

similar optimization problems given by Eq. (19), Eq. (21), and Eq. (22). The time

costs of solving Eq. (19) and Eq. (21) are similar, which are included in the time cost

of solving Eq. (22) because Eq. (19) and Eq. (21) need to be solved for each possible

value of t of Eq. (22).

5.1 Distribution of interpolation points and path intervals

Fig. 6 - Fig. 9 show results obtained from the sinusoidal surface, the wavy surface, the

compound surface, and the face like surface respectively. Fig. 6 (a) - Fig. 9 (a) show

the isometric view of CL paths and positions of some CL paths that are plotted in 2D

view in Fig. 6 (b) - Fig. 9 (b). Note that only half of CL paths of the compound surface

and the face like surface are plotted for display clarity.
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Table 3: Conditions used to generate CL paths

Examples R εnbor hinter hside hMLS

Sinusoidal surface 4.5 5 0.005 0.03 4.0

Wavy surface 4.5 5 0.005 0.03 4.0

Compound surface 3 2 0.005 0.03 2.0

Face like surface 4.5 5 0.005 0.03 4.0

Table 4: Results about CL paths and side steps

Examples npath ninitial nfinal tpath tside

Sinusoidal surface 101 44 65 362.54 27.22

Wavy surface 137 27 45 259.62 24.52

Compound surface 220 48 85 312.87 33.95

Face like surface 300 40 58 148.08 39.55

As Fig. 6 (b) - Fig. 9 (b) show, the distribution of interpolated CL points is curvature

adaptive, i.e. there are more points in regions with higher absolute values of curvatures.

Fig. 6 (c), (d) - Fig. 9 (c), (d) confirm the above conclusion, where regions with high

absolute values of normal curvatures and high densities of CL points are marked by

ellipses.

The normal curvature along the side direction are similar for each path of the si-

nusoidal surface. As expected, side steps of CL paths of the sinusoidal surface are also

similar. Although the normal curvature along the side direction changes obviously for

each path of the wavy surface, the range of the normal curvature is similar for each path

of the wavy surface (shown in Fig. 7 (e)). Side steps of CL paths of the wavy surface

are similar too (shown in Fig. 7 (f)).

Fig. 8 (e) and Fig. 9 (e) show normal curvatures along side directions of the

compound surface and the face like surface. Fig. 8 (f) and Fig. 9 (f) show the top view

of CL paths of the compound surface and the face like surface. From these figures, we

observe that

1. Smaller side step is produced in regions with higher normal curvature along the

side direction.

2. Concave regions produce smaller side steps than convex regions even the normal

curvatures along the side direction have the same absolute values.

The second observation is related to the definition of the scallop height. As Fig. 3

shows, the scallop height at a point on the scallop curve is the distance from the point

to the part surface. If the side step lCL is a constant, the scallop height to a concave

region is bigger than that to a convex region. Moreover, a smaller scallop height needs a
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Figure 6: CL paths and CL points generated from a sinusoidal surface: (a) isometric

view of input points and CL paths; (b) the CL path, interpolated CL points, and

corresponding CC points; (c) normal curvatures along the forward direction; (d) top

view of CL points and CL paths.

smaller side step. Then concave regions produce smaller side steps than convex regions

if the scallop height is equal to the maximum scallop height hside.

5.2 Deviations of CL paths

Fig. 10 - Fig. 13 show deviations of CL paths, where the horizontal line at 0.005

indicates the interpolation tolerance hinter = 0.005, each dot indicates the maximum

deviation along a CL path. The examination of midspan points has been adopted by

previous work [10]. However, as Fig. 10 (a) - Fig. 13 (a) show, enforcing the tolerance

only at midspan points may produce CL paths out of given tolerance. As Fig. 10 (b)

- Fig. 13 (b) show, the CL paths obtained by our method are bounded by the given

tolerance.

5.3 Numbers of interpolation points

Table 5 gives the total number of interpolation points for each example, where nIn de-

notes the number of interpolation points obtained by the process of only inserting inter-

polation points, nInRe denotes the number of interpolation points obtained by processes

of both inserting and removing interpolation points. As Table 5 indicates, unnecessary

interpolation points are reduced by the process of removing interpolation points.
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Figure 7: CL paths and CL points generated from a wavy surface: (a) isometric view of

input points and CL paths; (b) the CL path, interpolated CL points, and corresponding

CC points; (c) normal curvatures along the forward direction; (d) top view of CL points

and CL paths; (e) normal curvatures along the side direction; (f) top view of CL paths.
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Figure 8: CL paths and CL points generated from a compound surface: (a) isometric

view of input points and CL paths; (b) the CL path, interpolated CL points, and

corresponding CC points; (c) normal curvatures along the forward direction; (d) top

view of CL points and CL paths; (e) normal curvatures along the side direction; (f) top

view of CL paths.
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Figure 9: CL paths and CL points generated from a face like surface: (a) isometric

view of input points and CL paths; (b) the CL path, interpolated CL points, and

corresponding CC points; (c) normal curvatures along the forward direction; (d) top

view of CL points and CL paths; (e) normal curvatures along the side direction; (f) top

view of CL paths.
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Figure 10: Deviations of CL paths generated from the sinusoidal surface: (a) CL paths

obtained by enforcing the tolerance only at midspan points; (b) CL paths obtained by

our method.
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Figure 11: Deviations of CL paths generated from the wavy surface: (a) CL paths

obtained by enforcing the tolerance only at midspan points; (b) CL paths obtained by

our method.
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Figure 12: Deviations of CL paths generated from the compound surface: (a) CL paths

obtained by enforcing the tolerance only at midspan points; (b) CL paths obtained by

our method.
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Figure 13: Deviations of CL paths generated from the face like surface: (a) CL paths

obtained by enforcing the tolerance only at midspan points; (b) CL paths obtained by

our method.
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Figure 14: Bounded by the same interpolation tolerance, the number of interpolation

points of B-spline CL paths and the number of interpolation points of linear CL paths:

Deviations of CL paths generated from a face like surface: (a) the sinusoidal surface;

(b) the wavy surface; (c) the compound surface; (d) the face like surface.

As Fig. 14 shows, the number of interpolation points of B-spline CL paths is smaller

than the number of interpolation points of linear CL paths, where all the paths are

bounded by the same tolerance. As Table 5 shows, the total number of interpolation

points of our B-spline paths is less than 25% of that of linear paths for the sinusoidal

surface, less than 31% of that of linear paths for the wavy surface, less than 48% of that

of linear paths for the compound surface, and less than 42% of that of linear paths for

the face like surface.

6 CONCLUSION

This paper presents an approach for generating B-spline CL paths directly from dis-

crete points. The method for calculating the single tool path is suitable for any PSSs

represented by implicit forms. An ODE representation of NC paths is introduced to

produce CL points on the driving plane directly from the implicit MLS surface. By the

processes of inserting and removing interpolation points, a compact set of interpolation
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Table 5: Number of interpolation points of CL paths

B-spline paths

Examples Linear paths nIn nInRe

Sinusoidal surface 26,637 6,581 6,563

Wavy surface 19,993 6,270 6,185

Compound surface 39,951 20,276 18,785

Face like surface 42,424 18,564 17,467

points is obtained for each CL path such that the number of interpolation points is

reduced and the B-spline path interpolated satisfies a given tolerance. Our approach is

more accurate than conventional methods since it checks the point with the maximum

deviation in each curve segment of CL paths instead of the point at the midspan of each

curve segment. The method for calculating the side step between consecutive paths is

suitable for part surfaces in different forms provided that the closest distance from a

point to the part surface can be calculated. The step size is determined such that the

maximum scallop height along a scallop curve coincides with a given tolerance.

Computational experiments demonstrate that the approach produces high-quality B-

spline paths from a variety of noisy point cloud data. The resultant paths are curvature

adaptive and satisfy specified tolerances.

Our future work would be to experimentally verify this method on high-speed CNC

machines and to run the formulations of the method on parallel processes to improve

the efficiency.
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