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Abstract We present an approach for controlling the undercut and the minimal overhang an-
gle in density based topology optimization, which are useful for reducing support structures
in additive manufacturing. We cast both the undercut control and the minimal overhang
angle control that are inherently constraints on the boundary shape into a domain integral of
Heaviside projected density gradient. Such a Heaviside projection based integral of density
gradient leads to a single constraint for controlling the undercut or controlling the overhang
angle in the optimization. It effectively corresponds to a constraint on the projected perime-
ter that has undercut or has slope smaller than the prescribed overhang angle. In order to
prevent trivial solutions of intermediate density to satisfy the density gradient constraints, a
constraint on density grayness is also incorporated into the formulations. Numerical results
on MBB beams, cantilever beams, and 2D and 3D heat conduction problems demonstrate
the proposed formulations are effective in controlling the undercut and the minimal overhang
angle in the optimized designs.

Keywords Topology optimization, additive manufacturing, support structure, overhang
angle, manufacturability

1 Introduction

Additive manufacturing builds part by depositing materials layer-by-layer under computer
control. It has the advantage of building parts of complex shape without part-specific tooling
or fixturing. For shape with undercuts, sacrificial support structures are usually used to
hold the subsequent layers. The fabrication of such support structures leads to the waste
of the materials, build time and energy. Removing support structures can be tedious and

1



laborious for some additive processes and can lead to the deterioration of surface quality
where the support structure meets the part. Many techniques have been developed to reduce
the support structures, including finding optimal build directions to reduce the volume of
the support structures and designing lattice and cellular support structures to reduce the
materials for the support structures. However, thus far, limited research has been done in
reducing support structures in the part design stage.

Topology optimization is a computational design method for optimally distributing ma-
terials in a design domain under governing physics. It originated as a structural optimization
method [1] and has since been applied in problems in fluids, heat transfer, electromagnetic
and multiphysics applications [2, 3]. Various methods for topology optimization have been
developed. They include density distribution [4, 5, 6], level set [7, 8], topological derivative
[9, 10], phase field [11], and evolutionary methods [12]. Incorporating traditional manu-
facturability constraints into topology optimization has been conducted for some time [13].
Recent work also includes density based explicit constraint for casting [14], projection based
constraint for milling [15], and level set based directional constraint in casting [16, 17].
Substantial work has been done in controlling the minimal thickness of topology optimized
features [18, 19, 20, 21, 22] and maximal length scale [23, 24, 25]. Method for incorporating
fabrication cost in AM has also been developed [26].

In the context of additive manufacturing, reducing the support structure volume or con-
trolling the overhang angle so the part can self-support is desirable. However, little work
has been done in considering the influence of support structures in topology optimization.
Brackett et al highlighted in 2011 [27] the need for considering support structures in topology
optimization of parts. Recently maximum overhang angle in topology optimization is consid-
ered in [28, 29], using modified projection in the optimization scheme. A layerwise filtering
scheme was developed in [30] for designing self-supporting structures. Support structure
sensitivity based topology optimization is studied in [31].

In this paper, we develop a density gradient based approach to controlling the undercut
and controlling the minimal overhang angle in topology optimization. We adopt the density
based approach to topology optimization. Figure 1(a) shows a build direction b (a normalized
vector in this paper) and density gradient ∇γ along the structural boundary. When the dot
product of the two directions is larger than zero, it corresponds to undercut. The angle
between the two directions forms the overhang angle at the boundary point. When the
minimal overhang angle of a structure is larger than a certain prescribed angle ᾱ, the design
can self-support, i.e. the support structure is not needed to fabricate the design.

The fundamental challenges in accounting for support structures in topology optimization
are how to formulate the support structures into a geometric constraint while the shape and
topology of the design is not known a priori during the optimization process. Further, such
a constraint should be amenable to efficient computation since many iterations are involved
in a typical topology optimization process, and the constraint should be differentiable with
respect to optimization variables since topology optimization usually employs a gradient
based approach due to the heavy expense of finite element solutions of partial differential
equations.
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Figure 1: A part with an overhang surface requires support structure for the build direction
b. (a) Overhang angle α. (b) Support structure characterized by the projected undercut
perimeter P . (c) Support structure characterized by the projected perimeter for boundary
with overhang angle smaller than α0.

It is clear from Fig. 1(a) that such undercut or overhang angle can be controlled via
constraints on the boundary slope. Instead of directly imposing constraints on the boundary
slope which would require explicit knowledge of the boundary, in this paper, we propose
to constrain the directional gradient of the density field volumetrically so that a priori
knowledge of the boundary shape is not needed. We take advantage of the fact that, for a
clean design with 0/1 density transition at the boundary, the gradient vanishes in the interior
of the domain. Thus the directional gradient constraint can be imposed throughout the
domain. In order to efficiently constrain such density gradient across every point in the design
domain, we cast it into a single constraint through a Heaviside Projection based Integral
(HPI) formulation. The resulting volumetric expressions for constraining the undercut and
for constraining the overhang angle are HPI based single functions. They are differentiable
and thus can be applied in gradient-based optimization.

We also show that such HPI based expressions geometrically correspond to projected
undercut perimeter (PUP) and overhang angle based projected perimeter. PUP corresponds
to the perimeter length P of boundary with undercut, projected along the build direction
b, as shown in Fig. 1(b). It represents the projected undercut length for 2D designs and
projected undercut area for 3D designs. As PUP becomes smaller, undercut volume becomes
asymptotically smaller. Thus PUP can be effectively used to control the allowed support
volume in the optimized design. Figure 1(c) illustrates the projected perimeter Pα0 under
overhang angle α0. It represents the projected perimeter of boundary with overhang angle
smaller than α0, with the projection direction along the build direction b. That is, this
projected perimeter measure Pα0 effectively controls the undercut volume that needs support.
In order to avoid possible lateral boundary induced undercut, we also use HPI to form a side
zone based projected perimeter constraint. When Pα0 and the side zone projected perimeter
Pside become zero, there is no volume that needs support and the design can therefore self-
support.
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In order to avoid the appearance of near-uniform intermediate density to satisfy the
constraints on the density gradient, a density grayness constraint is also imposed in our
formulations. Our numerical experiments demonstrate that the combination of HPI based
volumetric constraints on density gradient and the grayness constraints are effective in con-
trolling the undercut and controlling the minimal overhang angle in the optimized designs.

In the remainder of this paper, we first briefly introduce the method of constraining a
scalar function via the HPI in Section 2. We then present the directional gradient based
integral formulations for controlling the undercut and for controlling the overhang angle in
Section 3. The sensitivity of newly formulated constraints is shown in Section 4. Com-
prehensive numerical results of MBB beams, cantilever beams, 2D and 3D heat conduction
problems are shown in Section 5. This paper concludes in Section 6.

2 HPI based constraint formulation

In this paper, our methods for controlling the undercut and the overhang angles are based on
formulations that cast these constraints into the form of Heaviside projection based integral.
We here briefly describe the Heaviside function and how it can be used to enforce the relation
f(x) ≤ f̄ for a scalar function f(x) over the domain Ω.

A Heaviside function can be defined as follows.

H(ξ) =


1 ξ > 0,

1

2
ξ = 0,

0 ξ < 0.

The specific form of the Heaviside function used in this work is

H(ξ) =
1

1 + e−2βξ
. (1)

The Heaviside function value is always non-negative and between 0 and 1. The Heaviside
parameter β controls how aggressive the Heaviside function approximates the 0-1 step func-
tion. For a moderate Heaviside control parameter β, there exist two critical values ξ1 and ξ2

(Fig. 2), where H(ξ) > 0 for any ξ > ξ1 and H(ξ) < 1 for any ξ < ξ2. A larger β leads to a
sharper transition at ξ = 0.

We want to ensure that a scalar field function f(x) satisfies the following condition

f(x) ≤ f̄ , (2)

where x is in the domain Ω of the function f , f̄ is either a fixed scalar value or a scalar
function. We can cast it into the following integral form∫

Ω

H(f(x)− f̄) dΩ ≤ 0. (3)
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Figure 2: Heaviside function H(ξ).

The equations (2) and (3) are equivalent if the Heaviside function H(�) is a strict step
function. Numerically, there is a transition interval (ξ1, ξ2), where the Heavisided function
transitions between 0 and 1. Due to the non-negativeness nature of the Heaviside function,
(3) is a conservative form of (2) in the sense that any function f(x) satisfies (3), it is
guaranteed to satisfy (2). However, the reverse is not true.

3 Directional gradient based integral formulations for

controlling the undercut and the minimal overhang

angle

In this section, we first give the projected undercut perimeter based formulation for undercut
control. We then extend it to generalized projected perimeter based formulation for over-
hang angle control. Both formulations utilize Heaviside projection based domain integral to
constrain the undercut and the overhang angle of the boundary of the underlying designs.

3.1 Projected undercut perimeter based formulation for undercut
control

In this subsection, we describe in detail how the HPI form of PUP allows us to characterize
the undercut without explicit knowledge of the boundary shape. We describe it in the con-
text of a common minimal compliance problem. Our formulation for topology optimization
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considering undercut is as follows

min
u∈U,E

C(u) Compliance (4a)

s.t. aE(u,v) = l(v),∀v ∈ U0 Equilibrium (4b)∫
Ω
γ̃ dΩ

V
≤ θ̄, γ[0, 1] Volume fraction constraint (4c)∫

Ω

H(b · ∇γ̃)b · ∇γ̃ dΩ ≤ P Projected undercut perimeter constraint (4d)∫
Ω

4γ̃(1− γ̃) dΩ

V
≤ ε̄ Density grayness constraint. (4e)

In this formulation, equations (4a), (4b), (4c) form the standard formulation of density based
topology optimization for a minimal compliance problem with (4a) as the cost function under
an equilibrium constraint (4b) and the volume constraint (4c), where u is displacement,
γ ∈ [0, 1] is the optimization variable representing the density before filtering, and γ̃ is the
filtered density field, V̄ represents the volume of the design domain, and θ̄ represents the
allowed volume fraction of the material. For density filtering, a Helmholtz partial differential
equation (PDE) based filtering is used. The Helmholtz filtering approach [32, 33] is a PDE-
based realization of the common density filtering for ensuring length-scale control in topology
optimization and it can be conveniently implemented [21, 34] in generic finite element based
software such as COMSOL and FEniCS. Isotropic Helmholtz PDE filtering can be described
as

− r2∇2γ̃ + γ̃ = γ, (5)

where r controls the size of the integral kernel, γ is the input design variable field and γ is
the filtered density. The integral kernel size r in (5) effectively corresponds to 2

√
3 times the

filter size in the usual density filtering [33].
For topology optimization, we adopt a power law based solid isotropic material with pe-

nalization (SIMP) procedure to interpolate material property. The resulting energy bilinear
form is noted as

aE(u,v) =

∫
Ω

E(γ)σ(u) : ε(v) dx,

where σ(u) is the stress tensor and ε(v) is the symmetric gradient, and Young’s modulus
E(γ) = Emin + γ̃qE0. The power coefficient q = 5 is used in this work unless otherwise noted
.

In order to control the amount of undercut, we here add two additional constraints with
(4d) constraining the undercut and (4e) constraining the possibly excessive grayness in the
density distribution. In (4d) P represents the allowed projected undercut perimeter, and ε̄
in (4e) represents the specified grayness measure. Clearly the integral forms of both (4d)
and (4e) are easy to compute and differentiate. Now we detail the formulations of these two
constraints.
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Projected undercut perimeter constraint For convenience, we note the left hand of
the PUP constraint (4d) as

P ≡
∫

Ω

H(b · ∇γ̃)b · ∇γ̃ dΩ, (6)

which measures the projected undercut perimeter. In (6), b is the normalized build direc-
tion, γ̃ is a density field and H(�) is the Heaviside function. Equation (6) represents the
integration of the directional gradient b·∇γ̃ multiplied with the Heaviside function H(b·∇γ̃)
over the design domain. The term H(b · ∇γ̃) has the following values

H(b · ∇γ̃) =


1 b · ∇γ̃ > 0,

1

2
b · ∇γ̃ = 0,

0 b · ∇γ̃ < 0.

Therefore, (6) represents the integral of the Heavisided directional gradient. Intuitively,
equation (6) has contribution only from the boundary for a 0/1 (void/solid) design since
density gradient ∇γ̃ vanishes at the interior. As such, the volume integral of directional
gradient b · ∇γ̃ leads to projected perimeter. Due to its 0/1 switch occurring where the
density gradient is orthogonal to the build direction b , the use of Heaviside (step) function
H(b · ∇γ̃) thus leads to the measure of projected undercut perimeter. When the directional
gradient b ·∇γ̃ is negative at the boundary, i.e. there is no undercut, this term does nothing.
When it has undercut, i.e. the directional gradient is positive, it has contribution to the term
in (6).

By constraining this term within a pre-specified value, we control the allowed projected
undercut perimeter and thus partially constrain the amount of undercut allowed. The ge-
ometric meaning of (6) is that it corresponds to the perimeter length of the portion of the
boundary with undercut as shown in Fig. 1(b). Therefore, by controlling this term, we
control the amount of the perimeter of the boundary with undercut, thus the term under-
cut perimeter. This undercut perimeter asymptotically represents the amount of undercut
volume in the sense. When this undercut perimeter is zero, there would be no undercut.
When the undercut perimeter becomes smaller for a given topology, the resulting topology
typically has smaller undercut volume. This undercut perimeter does not directly measure
the volume of undercut per se, but a simple characterization of the undercut volume.

Grayness constraint The PUP constrains the density gradient, which on its own could
lead to optimized designs consisting of intermediate density with zero density gradient. The
grayness constraint (4e) is thus imposed to prevent the appearance of such trivial solutions
of gray density. In this work, we define the grayness measure as

ε ≡
∫

Ω
4γ̃(1− γ̃) dΩ

V
. (7)
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When γ̃ = 0 or 1 representing a design that is either completely void or solid, the integrand
in (7) vanishes. When γ̃ = 0.5, the integrand becomes 1. So (7) or the LHS of (4e) give a
measure of grayness of the resulting design.

It should be noted that the grayness constraint in and of itself does not restrict the
design space since any design with good density contrast and meeting the undercut constraint
naturally meets the grayness constraint.

(a) No constraint (b) b · ∇γ̃ (c) H(b · ∇γ̃)b · ∇γ̃

(d) P=2.0 (e) b · ∇γ̃ (f) H(b · ∇γ̃)b · ∇γ̃

(g) P=2.0, ε̄ = 0.15 (h) b · ∇γ̃ (i) H(b · ∇γ̃)b · ∇γ̃

Figure 3: The proposed method for constraining undercut structures through projected
undercut perimeter constraint (P ≤ P ) and grayness constraint (ε ≤ ε̄).

Graphical illustration of the two constraints Figure 3 illustrates the essential idea of
the proposed formulation: using projected perimeter to control the undercut structure and
using grayness measure to suppress intermediate density. In the first row are the optimized
design without the projected perimeter constraint or grayness constraint, the corresponding
directional gradient of the density, b · ∇γ̃, along the vertical build direction b = (0, 1) and
the Heavisided directional gradient H(b · ∇γ̃)b · ∇γ̃. In the second row are the optimized
design with the projected perimeter constraint P = 2.0 and no grayness constraint, and the
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corresponding directional gradient and Heavisided directional gradient. In the third row are
the optimized design with projected perimeter constraint P = 2.0 and grayness constraint
ε̄ = 0.15, and the corresponding directional gradient and the Heavisided directional gradi-
ent. The resulting compliance of the three designs is 208.57, 353.85 and 299.71, respectively.
Note, due to the existence of multiple local minimums, the incorporation of grayness con-
straint ε̄ = 0.2 actually leads to smaller compliance in this particular case. The detailed
parameters for obtaining these designs are available in Section 5.2. This figure suggests the
following.

1. Geometric meaning of Heavisided directional gradient H(b · ∇γ̃)b · ∇γ̃. For a vertical
build direction b, location A, B and E in the optimized designs correspond to the
boundary with undercut and location C without undercut. Location D has vertical
sidewall. This is reflected in the 2nd column of the figure, where undercut regions
have positive directional gradient b · ∇γ̃ and are shown as yellow. On the other
hand, in regions without undercut, the directional gradient b · ∇γ̃ is negative and the
regions are shown as blue. Vertical sidewalls corresponds to zero directional gradient.
After Heavisiding the directional gradient, only regions with undercuts, i.e. positive
directional gradient, retain the directional gradient value and regions without undercuts
become zero, as shown in the 3rd column of the figure. The numerical value of H(b ·
∇γ̃)b ·∇γ̃ corresponds to overhang angle, assuming a clear boundary between the solid
and the void. This can be seen by comparing the directional gradient at locations A,
B, C, D and E. Location B has highest value in Fig. 11(b) and (c) since it has 90◦

overhang. Location A and E have smaller value due to the smaller overhang angle.
Location D corresponds to a vertical sidewall, thus its boundary does not contribute
to the integral of directional gradient.

2. Geometric meaning of the integral of Heavisided directional gradient as in (6),
∫

Ω
H(b ·

∇γ̃)b ·∇γ̃ dΩ. The integral of such Heavisided directional gradient shown in the third
column measures the overall perimeter of the boundary with undercut projected along
the build direction, thus the term projected undercut perimeter. Geometrically, the
projected perimeter corresponds to integral of the quantities in the third column. For
example, for the third design in Fig. 11(g), projected perimeter corresponds to the
sum of horizontal length of two boundary segments with undercut. The first design
has projected perimeter P = 6.48. Both the second and third design meet the projected
perimeter constraint, with P = 2.0. It is clear that the first design has about three
times longer projected perimeter and the second and the third design have the same
projected perimeter.

3. The role of grayness constraint. Both design two and design three meet the projected
perimeter constraint, but the second design has grayness ε = 0.43, a relatively large
value due to intermediate density in the middle of the design. The near-uniform distri-
bution of intermediate density between locations D and E leads to low density gradient.
This suggests that a projected perimeter constraint alone can lead to designs with near-
uniform intermediate density. When the grayness constraint ε̄ = 0.15 is imposed as
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shown in the third design, the intermediate density disappears. The resulting design
has better compliance value than the second one.

3.2 Projected perimeter based formulation for minimal overhang
angle control

The formulation in (4) can be extended to a new formulation for minimal overhang angle
control as follows

min
u∈U,E

C(u) Compliance (8a)

s.t. aE(u,v) = l(v),∀v ∈ U0 Equilibrium (8b)∫
Ω

¯̃γ dΩ

V
≤ θ̄, γ[0, 1] Volume fraction (8c)∫

Ω

Hᾱ

(
b · ∇

¯̃γ

||∇¯̃γ||2

)
b · ∇¯̃γ dΩ ≤ P ᾱ Projected perimeter (8d)∫

Ω
4¯̃γ(1− ¯̃γ) dΩ

V
≤ ε̄ Density grayness. (8e)

The first three equations in this formulation are the cost function (8a), equilibrium constraint
(8b) and the volume constraint (8c). The next two equations are similarly the projected
perimeter constraint (8d) and density grayness constraint (8e). However, the density field ¯̃γ
represents the density after density filtering and Heaviside filtering. The projected perimeter
now uses a shifted Heaviside function Hᾱ(�). We now detail the two differences below.

Heaviside projection of density To alleviate the grayscale transition between the black
and white density in the optimized designs, density projection schemes have been used in
the past [19, 35, 32]. The goal of the Heaviside projection of density is to use a threshold η
to force a density ρ̃ into either solid (1) or void (0). The projected density, also referred to
the physical density [20] used in the analysis, ¯̃ρi, are controlled by two parameters βd and η.
The density projection function can be expressed as

¯̃γ =


η[e−βd(1−γ̃/η) − (1− γ̃/η)e−βd ], (0 ≤ γ̃ ≤ η)

(1− η)[1− e−βd(γ̃−η)/(1−η)

+ (γ̃ − η)/(1− η)e−βd ] + η, (η < γ̃ ≤ 1)

(9)

where the parameter η is the threshold and γ̃ is the density field after filtering (5). Density
values γ̃ larger than η are forced to be 1 in ¯̃ρ and smaller than η are forced to be 0 in ¯̃ρ. In
this paper, η = 0.5. The parameter βd controls the level of aggressiveness in the Heaviside
projection of density. This Heaviside projection of density is separate from the Heaviside
projection of directional gradient as in (4d) and (8d), where we use a separate parameter β
defined in (1) to control the Heaviside projection of density gradient.
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It should be noted that both Heaviside projection of density and grayness constraint have
the effect of reducing intermediate density. However, their utilities differ in the context of
overhang angle control. The grayness constraint (8e) is an integral form. Its effect on
controlling the grayness is thus global and it also has the effect of controlling the topology
in the resulting design. The density Heaviside density filtering controls the density in a
point-wise fashion. More details on the effects of the two techniques are available in Section
5.3.2.

Overhang angle based Heaviside projection of directional gradient As shown in
Fig. 1(c), when the minimal overhang angle α is larger than certain allowed overhang angle
ᾱ, the structure can self-support during additive manufacturing processes. That is, a self-
supporting boundary satisfies the following

b · ∇
¯̃γ

||∇¯̃γ||2
≤ cos(ᾱ).

We therefore extend the projected perimeter formulation (6) by modifying the Heaviside
function so that the 0/1 transition of the Heaviside thresholding occurring at cos(ᾱ). That
is, we impose a Heaviside function at angle ᾱ. We note such a Heavisided function Hᾱ as

Hᾱ

(
b · ∇

¯̃γ

||∇¯̃γ||2

)
≡ H

(
b · ∇

¯̃γ

||∇¯̃γ||2
− cos(ᾱ)

)
=


0 b · ∇γ

||∇¯̃γ||2
< cos(ᾱ)

0.5 b · ∇γ
||∇¯̃γ||2

= cos(ᾱ)

1 b · ∇γ
||∇¯̃γ||2

> cos(ᾱ),

(10)

where the directional gradient b · ∇
¯̃γ

||∇¯̃γ||2
is normalized. The new overhang angle based

projected perimeter can be represented as

Pᾱ ≡
∫

Ω

Hᾱ

(
b · ∇

¯̃γ

||∇¯̃γ||2

)
b · ∇¯̃γ dΩ. (11)

In practice, a small value P̄ᾱ approaching 0 is imposed as a projected perimeter constraint
in the RHS of (8d). With this formulation, if the angle from directional gradient of the
density is smaller than ᾱ, it contributes to the term Pᾱ in (11). If the angle is larger than
ᾱ, i.e. self-supporting, it does nothing. Therefore, when this constraint is satisfied, there
is no directional gradient that has overhang angle smaller than ᾱ. That is, the design self
supports.

Figure 4 shows an optimized cantilever design, its directional gradient b ·∇¯̃γ, normalized

directional gradient b · ∇
¯̃γ

||∇¯̃γ||2
, the Heaviside function Hᾱ

(
b · ∇

¯̃γ

||∇¯̃γ||2

)
, and the directional

gradient’s projection based on the minimal overhang angle ᾱ = 30, i.e. Hᾱ

(
b · ∇

¯̃γ

||∇¯̃γ||2

)
b ·

11



(a) An optimized design

(b) b · ∇¯̃γ
(c) b · ∇

¯̃γ

||∇¯̃γ||2

(d) H30◦

(
b · ∇

¯̃γ

||∇¯̃γ||2

)
(e) H30◦

(
b · ∇

¯̃γ

||∇¯̃γ||2

)
b · ∇¯̃γ

Figure 4: Directional gradient projected based on minimal overhang angle ᾱ = 30.
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∇¯̃γ. It can be seen that nearly all boundaries disappeared in the Heaviside projected di-
rectional gradient plot in Fig. 4(e). Only points circled in Fig. 4(a) appear in 4(e), where
the normal of the structural boundary points downward. The boundary edge in the low
right part of the design domain as highlighted in Fig. 4(a) appears lightly in 4(e) since
its slope is close to 30◦. Therefore, when the integral of such projected directional gradi-

ent Hᾱ

(
b · ∇

¯̃γ

||∇¯̃γ||2

)
b · ∇¯̃γ approaches zero, the boundary of the resulting design has no

overhang angle smaller than ᾱ and thus can self-support.

Constraint for side-boundary induced undercut The overhang angle based projected
perimeter constraint controls the slope of the boundary in an integral form. However, it may
not be effective in obviating the need for support at the lateral sides of the design domain.
For example, the design shown in Fig. 4(a) satisfies the overhang angle based projected
perimeter constraint. However, the top feature in the dashed region in Fig. 4(a) cannot
self-support, even though its slope meets the overhang angle condition. We provide remedy
to such side-boundary induced undercut through a constraint, again based on HPI.

x
ynL nR

Dx
Dx
L Dx

R

ΩL ΩR

(a) Size zones for imposing side projected perime-
ter constraint

(b) H(b · ∇¯̃γ)H(nL · ∇¯̃γ)b · ∇¯̃γ (c) H(b · ∇¯̃γ)H(nR · ∇¯̃γ)b · ∇¯̃γ

Figure 5: Side zone constraint for constraining the lateral boundary induced undercut.

In order to prevent such side-boundary induced undercut, we have the following proposi-
tion, i.e. a structural feature adjacent to the lateral boundary of the design domain cannot
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self-support if and only its density gradient points outward and upward. This enables us to
develop the following constraint:∫

ΩSide

H(b · ∇¯̃γ)H(nside · ∇¯̃γ)b · ∇¯̃γ dΩ ≤ P̄Side Side projected perimeter, (12)

where ΩSide represents the collection of small zones near the lateral boundary. It should be
noted that the normal direction is technically defined only on the domain boundary and not
for the interior of the domain. So it is noted as nside. That is, for each side, there is a small
side domain and there is one corresponding normal direction nside. For three-dimensional
problems, multiple lateral size zones can be defined. All these boundary zones are cast into
one constraint. Figure 5(a) gives an example where ΩSide is a collection of left side zone ΩL

and right side zone ΩR. So the LHS of (12) includes the following two terms∫
ΩL

H(b · ∇¯̃γ)H(nL · ∇¯̃γ)b · ∇¯̃γ dΩ +

∫
ΩR

H(b · ∇¯̃γ)H(nR · ∇¯̃γ)b · ∇¯̃γ dΩ.

This form in (12) is applicable to both 2D and 3D domains. In this constraint, H(b · ∇¯̃γ)
filters out any upward density gradient (i.e. b · ∇¯̃γ < 0) and H(nside · ∇¯̃γ) filters out any
inward density gradient, where nside represents the outward normal direction of each lateral
boundary. Thus the LHS of (12) represents the projected perimeter of the boundary in the
side zone that has normal outward and downward. When this perimeter is 0, or in practice
a very small value P̄side, the resulting design is free from such undercut induced by the
side-boundary. For the design in Fig. 4(a), the two integrands H(b · ∇¯̃γ)H(nL · ∇¯̃γ)b · ∇¯̃γ
and H(b · ∇¯̃γ)H(nR · ∇¯̃γ)b · ∇¯̃γ are plotted in Fig. 5(b) and (c). It can be seen that the
region corresponding to the undercut feature requiring support in Fig. 4(a) appears in high
intensity in the dashed region in Fig. 5(b). Thus, constraining such projected perimeter in
the side zones can avoid lateral boundary induced undercuts.

4 Sensitivity analysis

Our topology optimization uses a gradient based optimization approach. Therefore the
sensitivity of the cost function and constraints with respect to optimization variable γ is re-
quired. The sensitivity of the cost function (minimal compliance) and the volume constraint
are common knowledge within the topology optimization community. We here focus on the
sensitivity analysis for the PUP constraint (4d), density grayness constraint (4e), overhang
angle based projected perimeter constraint (8d), and side zone based projected perimeter
constraint (12).

Our implementation is based on FEniCS [36], an open source finite element package.
FEniCS is a class of finite element analysis package that can automatically assemble the weak
form of PDEs into discrete stiffness matrix and load vector. Other example of such class
of FE software include commercial software COMSOL. So here we provide the variational
expressions for the sensitivity of these constraints, from which the sensitivity vector of each
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constraint with respect to the nodal optimization variable γ can be obtained automatically
through FEniCS. In the following, we note the variation of the nodal optimization variable
γ as δγ, the variation of the Helmholtz PDE filtered density as δγ̃ and the variation of the
Heaviside density filtering after the PDE filter as δ ¯̃γ. The relationships between δγ, δγ̃ and
δ ¯̃γ can be obtained from differentiation of (5) and (9).

The sensitivity of the PUP constraint (4d) is∫
Ω

H(b · ∇γ̃)b · ∇δγ̃ +H(b · ∇γ̃)′b · ∇δγ̃b∇γ̃ dΩ, (13)

where the gradient of the Heaviside function (1) with respect to its argument � is as follows

H ′(�) =
−1

(1 + e−2β�)2
(−2β)e−2β�. (14)

The sensitivity of the grayness constraint (4e) is

1

V̄

∫
Ω

4(1− 2γ̃)δγ̃ dΩ. (15)

The sensitivity of the overhang angle based projected perimeter constraint (8d) is∫
Ω

Hᾱ

(
b · ∇

¯̃γ

||∇¯̃γ||2

)
b·∇δ ¯̃γ dΩ+

∫
Ω

Hᾱ(�)′
(

b · ∇δ
¯̃γ

||∇¯̃γ||2
− b · ∇¯̃γ

||∇¯̃γ||3/2
∇¯̃γ · ∇δ ¯̃γ

)
b·∇¯̃γ dΩ

(16)

where Hᾱ(�)′ follows (14) with � representing b · ∇¯̃γ
||∇¯̃γ||2 .

The sensitivity of the side zone projected perimeter constraint (12) is∫
ΩSide

(H(b · ∇¯̃γ)H(nside · ∇¯̃γ)b · ∇δ ¯̃γ

+H(b · ∇¯̃γ)′b · ∇δ ¯̃γH(nside · ∇¯̃γ)b · ∇¯̃γ

+H(b · ∇¯̃γ)H(nside · ∇¯̃γ)′nside · ∇δ ¯̃γb · ∇¯̃γ) dΩ.

(17)

5 Numerical results

We present below our numerical implementation and numerical results for optimized designs
with undercut control based on PUP constraints and with minimal overhang angle con-
trol based on generalized projected perimeter constraints. Both minimal elastic compliance
problems and minimal thermal compliance problems are presented.

5.1 Numerical implementation

The formulations have been implemented based on FEniCS [36]. The optimizer is the method
of moving asymptotes [37]. Our formulations essentially involve the computation of two den-
sity based quantities: integrals of density gradient as in undercut based PUP (4d), overhang
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based PUP (8d) and sidezone perimeter (12), and integral of density as in the grayness mea-
sure (4e). In our implementation, we adopt a finite element node based representation of
density distribution. Our FE elements are linear triangular elements. Thus the density dis-
tribution is piecewise linear and the density gradient is piecewise constant. So both projected
perimeter measures based on density gradient and grayness measure based on the density
can be calculated through integration of piecewise constant and piecewise linear functions.

Besides the integral quantities such as projected perimeter and grayness measure used in
our optimization formulation, it can be useful to visualize point-wise density gradient such
as those in figures 3, 4, and 5. In our FE node based density representation, density gradient
is piecewise constant. For the ease of visualization, we project such piecewise constant
quantities into FE space, i.e. piecewise linear quantities. This way, the projected density
gradient can be visualized just as the usual piecewise linear FE solutions. The specific
implementation of such projection is through FEniCS [36]. For example, if we are interested

in visualizing the discretized, piecewise constant b · ∇¯̃γ
|∇¯̃γ|2 , we seek a piecewise linear FE

function w ∈ V h to approximate the discrete b · ∇¯̃γ
|∇¯̃γ|2 where V h represents the space of the

piecewise linear triangular elements. The variational problem for the projection operation
reads: find w ∈ V h such that

a(w, v) = L(v) ∀v ∈ V h
0 (18)

where

a(w, v) =

∫
Ω

w · v dx,

L(v) =

∫
Ω

(
b · ∇

¯̃γ

|∇¯̃γ|2

)
· v dx.

The solution to (18) is thus a piecewise linear approximation to the piecewise constant

b · ∇¯̃γ
|∇¯̃γ|2 . Thus overshoot or undershoot approximation of b · ∇¯̃γ

|∇¯̃γ|2 may occur. For example,

in Fig. 4(b), the values of b · ∇¯̃γ
|∇¯̃γ|2 exceeds the expected range [−1, 1]. However, such a

projection operation is only used for visualizing the density gradient. It is not used in the
calculation of either projected perimeters or density grayness.

Although our implementation is based on the FE node based density representation,
our formulations are also applicable to other density representations. In the alternative
density representation such as element based piecewise constant density representation, the
density gradient can be computed through finite difference schemes [2, 38, 39]. In the B-
spline based smooth density representation [40], the density gradient can even be computed
exactly without approximation.

5.2 PUP based optimized designs for undercut control

In this subsection, we present our numerical results based on optimized designs of MBB
beams (2D) and cantilever beam (3D) under various PUP and grayness constraints. The
model specifications are displayed in Fig. 6. We first present 2D designs, including the
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optimized various MBB beams under different projected perimeter constraints, under dif-
ferent grayness constraints, and under different build directions. The optimized 3D designs
are shown in Section 5.2.3. In all examples below, the convergence criteria is the maximum
change of nodal density γ should be smaller than 0.01 or the number of iterations reach 350.
The Heaviside parameter β in (1) is 2 for all 2D designs.

L

LL/5

f 3L

L

f

2L

L

(a) MBB beam (2D)

based on Eq. (19). Therefore, the cost for storing the indicies for
each ~qe is 3� 4 B.

Therefore, the total cost of storing the tensor form of B-spline
weights is the sum of the cost for storing univariate B-spline basis
functions in all directions and the storage for the indicies as

Sb
t ¼ ne 8ðpþ qþ r þ 3Þ þ 12ð Þ
¼ 8neðpþ qþ r þ 4:5ÞB (22)

Thus, the total cost for storing the B-spline weights is linear with
respect to B-spline degrees p, q, and r.

It is important to note that the storage cost for both evaluated
form (21) and tensor form (22) of B-spline weights only depends
on the number of finite elements ne and B-spline degrees p, q, and
r, but not on the number of knots. We can use this property to
make B-spline filtering even more efficient when large filter size
is desired in topology optimization. That is, we can simply use
fewer knots so each knot interval d becomes larger since the total
length of knot intervals must equal the domain size. The domain
size of the optimization problem does not change and fewer knots
lead to fewer but larger knot intervals d. Thus, with fewer knots,
the effective filter size D¼ (pþ 1)d in each axial direction
becomes larger. We will show such compact storage requirement
of B-spline filters in the following examples.

3D Numerical Examples

We use two 3D optimization problems to illustrate the compu-
tational advantages of B-spline based topology optimization. The
specifications of the two problems are shown in Fig. 6. In Fig.
6(a), a cantilever beam with evenly distributed loads exerted on
the lower edge of the other side. The volume constraint of the
solid phase is 15% of the whole domain volume. The Young’s
modulus of solid and void phases are Esolid ¼ 1 and
Evoid ¼ 1e� 9. The Poisson’s ratio is �¼ 0.3. The problem is ana-
lyzed with 28� 36� 112 eight-node linear hexagonal elements
with element size h¼ 1. In Fig. 6(b), a cubic domain is consid-
ered. There is uniform heat generation within the design domain.
On the center of the lower surface, there is a heat sink with con-
stant temperature. All other boundary surfaces are adiabatic. The

volume constraint of the solid phase is 30% of the whole domain
volume. The goal is to maximize the heat transfer over the do-
main. The conductivity of the solid and void phase is EH

solid ¼ 1
and EH

void ¼ 1e� 3. The problem is analyzed with
100� 100� 100 hexagonal eight-node linear elements.

The implementation is based on a combination of C and
Python. To solve the finite element equations, symmetric succes-
sive over-relaxation preconditioned conjugate gradient with error
tolerance 1e� 6 is used. Sparse matrix solver [18] is used. Method
of moving asymptotes [19] is used as the optimizer. The opti-
mized results are rendered by Paraview with density threshold 0.5
unless otherwise noted. The optimization convergence criteria is
that either the maximum change of design variables less than 0.01
or the maximum iteration number is 800. A 2.3 GHz Intel CPU
laptop is used. Depending on the number of elements, it may take
several hours to a day to complete the optimization. The density
filter results are based on the implementation in Ref. [20].

Minimum Compliance: Cantilever Beam. With density rep-
resented with B-splines, both degrees p, q, and r and knot intervals
dx, dy, and dz can be used to control the filter size, which is charac-
terized by Dx¼ (pþ 1)dx in x direction with similar expressions
for other direction [2]. We demonstrate the storage cost of using
both degrees and knot intervals to control the feature size.

Controlling Filter Size via B-Spline Degrees. In Fig. 7, the
optimized results using different B-spline degrees 2, 6, and 10 are
shown. The density field is represented by B-splines of
14� 18� 56 uniform knot intervals. The number of linear ele-
ments used in FE analysis is 28� 36� 112. We see that by
increasing B-spline degrees, while fixing B-spline knot interval
numbers, the minimum feature size becomes larger. Both the
tensor-product form and evaluated form of B-spline weights are
tested and compared. Both forms of B-spline weights lead to iden-
tical optimization results. But the storage efficiency of tensor-
product form is much more different, with minor increased cost in
computing the B-spline weights from the univariate entires (10).
In Table 1, the memory for storing the B-spline weights and CPU
time for computing (17) from physical density’s senstivity @c=@~qe

are shown for both forms of storing B-spline weights, with
degrees ranging from p¼ 2 to p¼ 10. As can be seen from the ta-
ble, with the increase of B-spline degrees, the cost for storing
tensor-product form of B-spline weights increases linearly as pre-
dicted in Eq. (22), and the cost for storing evaluated B-spline
weights increases cubicly as predicted in Eq. (21). The time cost
of evaluating tensor-product form of B-spline weights increases
faster than that of evaluated B-spline weights, although they are
of the same complexity, i.e., cubic with respect to B-spline
degrees. Thus, B-splines of tensor-product form provides overall
efficient filtering. We therefore use tensor-product form of B-
spline weights in all subsequent examples.

Controlling Filter Size via the Number of Knot Intervals.
Figure 8 shows the B-spline based optimized results using the
degree p¼ q¼ r¼ 2 B-splines of different number of knot

Fig. 6 Problem specification of (a) cantilever beam and (b)
heat conduction

Fig. 7 Topology optimization results using different degrees of B-splines at 14 3 18 3 56
knot intervals. (a) p2, I326, c6470, (b) p6, I583, c5884, and (c) p10, I942, c6325.
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(b) Cantilever beam (3D)

Figure 6: Boundary conditions of MBB beams and cantilever beams

For all the 2D examples, the domain is of size 6 × 2 and is divided into 9,600 linear
triangular elements with 4,961 nodes, where two shorter and orthogonal sides of each triangle
element is of size h = 0.05. The Young’s modulus is 1 for the solid and 1.0e−9 for the void and
the Poisson ratio is 0.3. The Helmholtz filter radius r in the PDE filter (5) is characterized
in terms of the number of elements rf in the usual density filtering, i.e. r = rf/(2

√
3h). We

have chosen rf in the PDE filter (5) to be 3. The volume fraction θ̄=0.5 for the 2D examples.
In the numerical examples below, the volume constraints for all designs are active. For

projected perimeter and grayness constraints, if only P or ε̄ is given, the constraint is active.
If either one is inactive, the actual value and the constraint are reported together in a fraction
form as P/P and ε/ε̄.

5.2.1 Optimized designs under different projected perimeter and grayness con-
straints

Figure 7 shows optimized designs under different projected perimeter constraints with P
ranging from 4.0 to 1.0. The corresponding grayness constraints ε̄ and the compliance of the
resulting optimized designs are also listed. These designs demonstrate that, as P becomes
small, the projected undercut perimeter indeed becomes smaller and the compliance becomes
bigger.

Figure 8 displays various designs obtained with projected perimeter constraints ranging
from P = 1.0 to 0.1. In each design, the corresponding grayness constraint and the compli-
ance are also displayed in each subfigure. It can be seen that, as P becomes smaller, the
projected undercut perimeter indeed becomes smaller and the compliance becomes larger.
When P is 0.1 in Fig. 8(f), the resulting design has no undercut at all and the projected
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(a) P=4.0, ε̄=0.175, C=243.95 (b) P/P=3.27/3.5, ε̄=0.15,
C=267.14

(c) P=3.0, ε̄=0.15, C=269.88

(d) P=2.5, ε̄=0.15, C=275.23 (e) P=2, ε̄=0.15, C=299.62 (f) P=1.5, ε̄=0.15, C=326.31

Figure 7: Optimized MBB beams under different projected perimeter constraints, ranging
from P=4.0 to P=1.0.

(a) P=1.0, ε̄=0.12, C=417.89 (b) P=0.8, ε̄=0.12, C=466.41 (c) P=0.6, ε̄=0.10, C=493.67

(d) P=0.4, ε̄=0.10, C=530.57 (e) P=0.2, ε̄=0.09, C=605.28 (f) P/P=-0.084/0.1, ε̄=0.075,
C=651.08

Figure 8: Optimized MBB beams under different projected perimeter constraints, ranging
from P=1.0 to P = 0.1.
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undercut perimeter P = −0.084. As a general rule of thumb, as projected perimeter con-
straint becomes smaller, the grayness measure ε̄ also becomes smaller. At the boundary, the
intermediate density transitioning between the solid and the void occurs. For designs with
larger undercut perimeters, more intermediate density occurs along the boundary and thus a
larger grayness measure is desired. Otherwise, a tighter grayness measure would unnecessar-
ily tighten the perimeter and reduce the boundary or the number of holes in the optimized
design.

It should be pointed out that the proposed PUP measure only exerts partial control of the
perimeter, i.e. the projected perimeter, of the undercut boundary. In this specific example,
the build direction b is vertical, and the PUP thus effectively controls the horizontal length of
the undercut boundary. As the allowed PUP decreases from 1.0 to 0.2, the horizontal length
of the undercut area indeed becomes smaller and smaller. When the allowed projected
perimeter P̄ approaching zero, the resulting design has no undercut as shown in Fig. 8(f).
However, the full perimeter of the undercut boundary does not necessarily become smaller
as P̄ becomes smaller. For example, the design in Fig. 8(b) actually has larger undercut
perimeter, considering its perimeter in vertical direction, than that in Fig. 8(a), even though
its allowed PUP length is smaller. The perimeter along the uncontrolled direction, i.e. the
build direction b, is thus varied by the optimizer to minimize the cost function.

(a) P=2.0, ε/ε̄=0.16/0.20,
C=290.83

(b) P=2.0, ε̄=0.15, C=299.62 (c) P=1.36, ε̄=0.12, C=518.86

Figure 9: Role of grayness constraint ε̄ at P=2.0.

Figure 9 shows the resulting design under different grayness constraint ε̄ at P = 2.0.
When the constraint ε̄ = 0.2, the resulting design contains substantial intermediate density
as shown in Fig. 9(a) and the grayness constraint is inactive with grayness ε = 0.16, but
the projected perimeter constraint with P = 2.0. When the constraint ε̄ = 0.15, both the
projected perimeter constraint and the grayness constraints are active, i.e. P = P = 2.0
and ε = ε̄ = 0.15. When the constraint becomes smaller with ε̄ = 0.12, the projected
perimeter constraint is inactive with P = 1.36 and the grayness constraint is active with
ε = ε̄ = 0.12. This example suggests, with a large grayness constraint, the design is mostly
constrained by the projected perimeter constraint. With a small constraint, the design is
constrained by the projected perimeter constraint. For an intermediate grayness constraint,
the resulting designs are constrained by both the projected perimeter constraint and the
grayness constraint.
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(a) b=(0,1), C=476.58 (b) b=(0,-1), C=88750 (c) b=(0.707,0.707), C=512.10

(d) b=(-0.707,0.707), C=315.47 (e) b=(-0.707,-0.707), C=636.11 (f) b=(0.707,-0.707), C=712.48

Figure 10: Optimized designs under different build directions b with P = 0.6 and ε̄ = 0.12.

5.2.2 Optimized designs under different build directions

Figure 10 displays various designs under different build direction b and the corresponding
compliance C under the projected perimeter constraint P = 0.6 and grayness constraint
ε̄ = 0.12 . These directions include the default up direction b=(0,1), bottom up direction
b=(0,-1), and 45◦, 135◦, 225◦ and 315◦ with respect to x-axis, respectively. In all cases, the
optimized designs are obtained with both the projected perimeter and grayness constraints
active. By comparing these designs, we can see that the design in Fig. 10(d) under 135◦ with
b = (−0.707, 0.707) gives best compliance, under the same projected perimeter constraint.
This example suggests that the proposed approach can also be used to select a build direction
with better performance under a given support constraint P .

5.2.3 3D designs under projected perimeter constraints

Figure 11 shows optimized 3D designs under different undercut perimeter constraints. The
domain is of size 4×2×2 and is divided into 96,000 linear tetrahedral elements, consisting of
18,081 nodes. The volume fraction θ̄ is 15% of the design domain. The Young’s modulus is 1
for solid and 10−9 for the void. The filter size rf is 3. The primary and adjoint state equations
are solved via an iterative solver, successive over-relaxation as a precondititioner in a conju-
gated gradient iterative solver. All designs are obtained with ε̄ = 0.2 and β = 4.0, except the
last two designs. The last two designs are obtained with ε̄ = 0.15 and β = 20. Figure 11(a)
shows two views of the optimized design without the projected perimeter constraint and the
compliance is 1.448e5. The remaining designs in Fig. 11 correspond to projected perimeter
constraint P = 2.0, 1.0, 0.5, 1.0−3, and 1.0−4, respectively. The corresponding compliances
are, respectively, 1.294e5, 1.286e5, 1.400e5, 1.656e5, and 3.583e5. This numerical example
suggests the following.

1. As the projected perimeter becomes smaller, the resulting designs have less support
volume. In the end, when the projected perimeter becomes close to zero, the result-
ing designs, Fig. 11(e) and (f), have no undercut. This suggests that the proposed
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(a) No constraint, P = 3.647, C=1.448e5

(b) P/P=1.45/2.0, C=1.294e5 (c) P = 1.0, C=1.286e5 (d) P = 0.5, C=1.400e5

(e) P = 1.0e-3, C=1.656e5 (f) P/P =-0.02/1.0e-4, C=3.583e5

Figure 11: 3D minimal compliance optimization under different undercut perimeter con-
straint ε̄ = 0.2.
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Figure 12: Boundary conditions for three overhang angle examples.

projected perimeter is an effective measure for controlling the support structures.

2. Unlike all earlier 2D numerical examples, optimized 3D designs with projected perime-
ter constraint do not necessarily lead to worse compliance since the design in Fig.
11(b), (c), and (d) all have smaller compliance than the design in Fig. 11(a). This can
be ascribed to the fact the topology optimization problem in (4) is highly non-convex.
The existence of multiple local minimums may preclude an optimizer from reaching
a better design. The same phenomenon has been observed in topology optimization
under manufacturability constraints in [13, 30].

5.3 Minimal overhang angle control in optimized designs

In this subsection, we present the optimized designs from the formulation (8) that involves
the HPI form of projected perimeter constraints for minimal overhang angle control. The
examples include 2D cantilever beam designs, 2D and 3D heat conduction examples. Figure
12 displays the boundary conditions for the three examples.

5.3.1 Minimal overhang angle control in optimal design of cantilever beams

We apply this overhang angle control method in the design of a cantilever beam. The design
objective is to minimize the compliance. The domain is of size 12 × 6. This domain is
discretized into 57,600 linear triangular elements and 29,161 vertices where two shorter and
orthogonal sides of each triangle element is of size h = 0.05. The allowed volume fraction θ̄
of the solid material is 0.5. Side projected perimeter constraint (12) is also imposed on side
zones to prevent size zone induced undercut. Two side zones on the left and right side of
width at 10% of the total width are imposed with the side perimeter constraint P̄side = 0.3.
The filter size rf is 25 in all examples in this section unless otherwise specified. The β for
the Heaviside projection of directional gradient in (1) is 10. The βd in the Heaviside filter
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(9) is applied at iteration 49 and doubles every 25 iterations until it reaches βmax
d = 32.

The grayness constraint ε̄ starts with 1.0 and decreases by 50% every 25 iterations until it
reaches 0.5 or otherwise specified. The continuation scheme for adjusting βmax

d and ε̄ is
used to ensure the smooth convergence of the optimization process. After certain iterations
and before the iteration ends, both βmax

d and ε̄ would become constant during the iteration
process to ensure the consistency of the optimization problem.

(a) P 15◦=2.0, ε̄=0.75,C=61.58 (b) P 30◦=2.0, ε̄=0.65,C=68.96

(c) P 45◦=0.5, ε̄=0.60, C=95.87 (d) P 60◦=0.1, ε̄=0.5, C=167.13

(e) P 75◦=0.1, ε̄=0.5,C=178.76 (f) Overlay of minimal overhang lines

Figure 13: Optimized cantilevers under different overhang angle ᾱ constraint.

Figure 13 shows a set of optimized designs obtained under different overhang angle con-
straints ᾱ, with ᾱ ranging from 15◦ to 75◦. Also listed are the allowed projected perimeter
length P ᾱ and grayness threshold ε̄ for each design and the corresponding compliance value
for the optimized design. As the overhang angle ᾱ increases from 15◦ to 75◦, the compliance
of the optimized design increases from 61.58 to 178.76. As a reference, the compliance for
the optimized design without any overhang angle constraint is 58.11. In each subfigure of
Fig. 13, a tangent line is drawn at the boundary point with minimal overhang angle. As

23



ᾱ increases, the minimal slope of the boundary in these designs becomes higher and the
minimal overhang angle in these designs increases from Figure 13(a) to (e), as seen in their
overlay in Figure 13(f). It can also be seen that in all cases the minimal overhang angle is
larger than the corresponding ᾱ in each design. This example demonstrates that the pro-
posed formulation is effective in controlling the minimal overhang angle in the optimized
designs.

It should be noted that different projected perimeter P ᾱ and grayness threshold ε̄ are
used for each design. As a general rule, we have found that, as the overhang angle ᾱ becomes
larger, smaller projected perimeter P ᾱ and smaller grayness threshold ε̄ are desirable. This
is because, as the overhang angle constraint becomes tighter, large projected perimeters P ᾱ

would more likely to lead to the violation of overhang angle constraint. With the tighter
angle constraint, intermediate density is also more likely to appear in the optimized design.
Thus, the grayness threshold ε̄ needs to be set smaller. In all cases, the projected perimeter
constraints are active in the optimized designs. The grayness constraints are initially active
and useful for controlling the optimized designs. However, they become inactive later when
the effect of the Heaviside filter becomes more dominant as βd becomes larger.

(a) W/O side perimeter constraint, C=68.91 (b) W/ P̄side = 0.3, C=68.96

(c) H(b · ∇¯̃γ)H(nL · ∇¯̃γ)b · ∇¯̃γ (d) H(b · ∇¯̃γ)H(nR · ∇¯̃γ)b · ∇¯̃γ

Figure 14: Optimized designs without and with side perimeter constraint under overhang
angle constraint ᾱ = 30◦.

In all the above designs, due to the imposing of side perimeter constraint (12) with
P̄side = 0.3, there are no side features that require support. Figure 14 compares two designs
without and with the side projected perimeter constraint (12). These designs are obtained
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with minimal overhang angle constraint ᾱ = 30◦. These two designs have nearly identical
compliance. Without the side perimeter constraint as shown in Fig. 14(a), the left boundary
has a feature requiring support. With the constraint, the design Fig. 14(b) is free from such
features. Figure 14(c) and (d) show the distribution of left side zone and right side zone
based Heaviside projected directional gradient for the design in Fig. 14(c). It is clear that
there is no visible directional gradient in the left side zone inFig. 14(c) or in the right side
zone in Fig. 14(d). When compared with Fig. 5(b) and (c), this example illustrates that
the side perimeter constraint is effective in preventing boundary induced undercut requiring
support.

5.3.2 Discussions

In this subsection, we take the above optimal design of cantilever beams as an example to
discuss our formulation for overhang angle control.

(a) q = 3, c=74, ε = 0.34 (b) q = 5, c=85, ε = 0.29 (c) q = 7, c=91, ε = 0.28

(d) q = 3, c=79, ε = 0.16 (e) q = 5, c=87, ε = 0.09 (f) q = 7, c=91, ε = 0.08

(g) q = 3, c=137, ε = 0.6 (h) q = 5, c=227, ε = 0.5 (i) q = 7, c=311, ε = 0.46

Figure 15: The effect of the SIMP penalty coefficient q and filter size rf on optimized designs.
In all designs, allowed grayness constraint ε̄ = 0.6. The designs in the top row are obtained
with filter radius rf = 3, 2nd row with rf = 15 and the bottom with rf = 25.

Due to the incorporation of the overhang angle constraint (8d) in the optimization for-
mulation, the resulting optimized designs exhibit boundary oscillation if we do not impose
grayness constraint (8e) or density Heaviside filter. Figure 15 illustrates the optimized de-
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signs under different SIMP penalty coefficient q and different filter size rf . These designs
are obtained under overhang angle constraint ᾱ = 45 and projected perimeter constraint
P 45◦ = 0.5. In all the designs, the grayness constraint ε̄ = 0.6 is imposed. In the top row
are designs obtained with filter size rf = 3, the 2nd row with rf = 15 and the bottom with
rf = 25. As can be seen, as the penalty q increases from 3 to 7, the grayness ε in the re-
sulting design reduces in all three rows, respectively. When fr = 3, the resulting designs for
all q have relatively clear density contrast except at the overhang boundary where boundary
oscillation occurs due to the overhang angle constraint (8d). The reason for such oscillated
boundary in the top row in Fig. 15 is that the optimizer leads to design with oscillating
boundary in order to meet the overhang angle constraint (8d) and the FE mesh is not dense
enough for accurately analyzing such sharp boundary change. We thus choose to use larger
filter size to ensure that the FE analysis is sufficiently accurate for the underlying feature.
When the filter size is increased to 15 in the 2nd row, the high-frequency oscillation has
faded. When the filter size is increased to 25, there is no oscillation since the underlying
feature size is sufficiently large for the FE analysis and an oscillating boundary shape no
longer represents an economic distribution of material for minimizing the compliance. When
fr = 25 (the bottom row), the resulting designs are free from boundary oscillation, but all
have relatively high grayness, regardless of q value. However, larger penalty q, e.g. q = 5 or
7, does lead to clearer contour than at q = 3. Note that, in this paper, the penalty q = 5 is
chosen in all other cases. Due to the use of larger filter size to overcome boundary oscillation,
high grayness exists in the optimized designs even with high SIMP penalty q. Therefore,
additional measures are needed to suppress the high grayness.

(a) ε/ε̄=0.67/1.0, C=250.0 (b) ε/ε̄=0.54/0.6 , C=226.82 (c) ε/ε̄=0.23/0.2 , C=7113.86

(d) ε/ε̄=0.17/1.0 , C=96.52 (e) ε/ε̄=0.09/0.6 , C=95.87 (f) ε/ε̄=0.06/0.2 , C=120.37

Figure 16: The effect of grayness constraint and/or the density Heaviside filter in suppressing
intermediate density. ᾱ = 45◦ and P45◦ = 0.5.

In order to suppress grayness in the optimized designs, in this paper, we use the density
Heaviside filtering and grayness constraints. We first compare the optimized designs with
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and without density Heaviside filtering and under different grayness constraints in Fig. 16.
The grayness ε in the converged designs and the grayness constraint ε̄ are noted as ε/ε̄.
These designs are obtained under overhang angle constraint ᾱ = 45 and projected perimeter
constraint P 45◦ = 0.5. In the top row of Fig. 16 are designs obtained without density
Heaviside filtering with grayness constraint ε̄ ranges from 1.0, to 0.6 and 0.2. It should
be noted that when ε̄ = 1.0, it effectively means there is no grayness constraint since the
maximum possible ε is 1. As can be seen, as ε̄ becomes tighter, the resulting design exhibits
clearer contrast, but also with simpler topology. That is, the combination of larger filter size
to suppress boundary oscillation and tighter grayness constraint to suppress intermediate
density leads to resulting designs of much simpler topology as shown in Fig. 16(c). It has
quite large compliance (7113.86), thus not a desirable design. Thus the grayness constraint
alone is not sufficient for obtaining designs with good compliance, clear contrast and free-
form boundary oscillation.

In the bottom row of Fig. 16, the density Heaviside filtering is used in addition to the
grayness constraint. Comparing the designs between the top row and the bottom row, it
is clear that the density Heaviside filtering is useful for suppressing the high intermediate
density. However, when there is no grayness constraint at all as in Fig. 16(d), the resulting
design still has somewhat gray regions. That is, the density Heaviside filtering alone is not
sufficient for ensuring that the resulting design has clear density contrast. The next example
further illustrates this.

(a) ε̄=1.0, P = 0.696, C=314.11 (b) ε̄=0.8, P = 0.314, C=239.02

(c) ε̄=0.7, P = 0.100, C=183.55 (d) ε̄=0.6, P = 0.100, C=184.10

Figure 17: The combination of the density Heaviside filter and the grayness constraint
is effective in suppressing the intermediate density. In this example, the overhang angle
constraint ᾱ = 75◦ and P̄75◦ = 0.1. The maximum βmax

d is 128 in all cases.

When the overhang angle constraint becomes very tight, i.e. overhang angle becomes
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very large, the density Heaviside filter alone is not sufficient for obtaining designs meeting
the overhang angle constraint and with clear density contrast. Figure 17 displays optimized
designs obtained with the density Heaviside filtering under different grayness constraint.
In this figure, all designs are obtained under the overhang angle constraint ᾱ = 75◦ and
the projected perimeter constraint P̄75◦ = 0.1. All designs are obtained under the density
Heaviside filtering. In order to obtain the maximally possible clear designs, the control
parameter of the density Heaviside filter is set to βmax

d = 128. When the grayness constraint
ε̄ is set 1.0 and 0.8 as shown in Fig. 17(a) and (b), despite the large βmax

d value, the resulting
designs still exhibit significant intermediate density and the projected perimeter constraints
are not satisfied with P equaling to 0.696 and 0.314, exceeding the allowed P 75◦ = 0.1.
These two designs suggest that the density Heaviside filter along is insufficient to obtain
designs with clear contrast. In fact, the resulting designs before the Heaviside filtering have
density mostly equal to η = 0.5. Thus, even with the Heaviside filter, the resulting designs
exhibit strong intermediate density with γ = 0.5. When the grayness constraint becomes
tighter with ε̄ = 0.7 and 0.6 as shown in Fig. 17(c) and (d), it moderates the topology and
leads to optimized designs with fewer holes. The resulting designs exhibit clear contrast and
satisfy the projected perimeter constraint. This example thus demonstrates that the grayness
constraint is useful for controlling the topology in the optimized design and its combination
with the density Heaviside filter is effective for obtaining good designs with clear density
contrast for minimal overhang angle control.

In summary, the overhang angle constraint (8d) could lead to boundary oscillation. A
larger filter size can then be used to suppress such boundary oscillation. As such, it leads to
high grayness in the resulting designs, if without explicit grayness control. The combination
of the grayness constraint and the density Heaviside filtering is particularly effective for
suppressing the high intermediate density. The grayness constraint also has the effect of
moderating the topology of the resulting designs. It should be noted that, in the undercut
control (4d), there is no boundary oscillation. Thus, there is no need for relatively large filter
size. The grayness constraint alone is sufficient to suppress potential excessive intermediate
density in the optimized designs.

5.3.3 Minimal overhang angle control for heat conduction

We have extended this minimal overhang angle control method to the heat conduction prob-
lems. Figure 18 shows a set of optimized material distributions for minimizing thermal
compliance. The domain size is 8× 8. The Dirichlet boundary condition (zero temperature)
is prescribed at the middle of the bottom edge spanning 20% of the edge length. The thermal
conductivity is E = 1.0 for the solid material and Emin =1e-3 for void. There are 51,200
triangular elements and 25,921 nodes (optimization variables). For all designs in Fig. 18,
filter radius rf is 25 and the volume fraction 0.4. The termination criteria is maximum 400
iterations or maximum change of density 0.01. The allowed projected perimeter Pα is 0.1
and allowed grayness threshold ε̄ is 0.2 in all cases. The grayness constraint starts at 1.0
and decreases by 1.5 times every 25 iterations until it reaches 0.2. The βd in the density
Heaviside filter starts at 1 and, from iteration 49, increases every 25 iterations by 1.5 times
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(a) No ᾱ constraint. C=6.537e3

(b) ᾱ = 15◦, C=7.478e3 (c) ᾱ = 30◦, C=7.505e3 (d) ᾱ = 45◦, C=7.524e3

(e) ᾱ = 60◦, C=7.722e3 (f) ᾱ = 75◦, C=8.824e3 (g) Overlay of minimal overhang
lines

Figure 18: Optimized material distributions for minimizing thermal compliance under dif-
ferent minimal overhang angle constraints ᾱ.
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until it reaches βmax
d = 32. The β for the Heaviside projection of directional gradient in (1)

is 10.
Figure 18(a) shows the optimized design without overhang angle constraint and the re-

sulting compliance is 6.537e3. Figure 18(b) to (f) show the optimized designs under overhang
angle constraints with ᾱ increasing from 15◦ to 75◦. The corresponding compliance values
also increase from 7.748e3 to 8.824e3. The tangent lines at points with minimal overhang an-
gles are highlighted in each subfigure and overlaid in Fig. 18(g). This example demonstrates
that this method is effective in controlling the minimal overhang angle in the optimized
designs.

We have also extended the method to three-dimensional heat conduction problems. The
design domain is 4 × 4 × 4. There are 3,072,000 tetrahedral elements of 531,441 nodes
(optimization variables). The Dirichlet boundary condition (zero temperature) is prescribed
at the middle of the bottom face spanning 20% × 20% of the face size. The filter size is
rf = 10 unless otherwise specified. The β for the Heaviside projection of directional gradient
in (1) is 10. All examples are obtained with projected perimeter constraint Pᾱ = 0.1. The
grayness threshold ε̄ starts with 1 and decreases to 0.2 at the rate of 1.25 times for every
25 iterations. The density Heaviside filter βd starting at 1.0, increases from iteration 48, at
the rate of 1.5 every 25 iterations until βmax

d = 16. The optimization termination criteria
is maximum 400 iterations or the maximum change of density 0.01. The volume fraction of
the solid material is 0.3.

Figure 19 shows the optimized 3D designs under different overhang angle ᾱ constraints
ranging from 15◦ to 75◦. In each subfigure, there are two views, an isometric and a cross-
sectional view, of the same design. As can be seen in Fig. 19(e), when ᾱ = 75, the resulting
design is nearly straight from the top to bottom. When viewed from the top, the top surface
is nearly of the same size as the bottom and thus one can directly see through to the bottom
for a large portion of the design. On the other hand, for ᾱ = 15 as shown in Fig. 19(a),
the top surface occupies a big portion of the domain and there is very little space from
which one can see through to the bottom. For all designs obtained with overhang angles
between 15◦ and 75◦, the areas of top surfaces gradually become smaller and the branches are
connected only at the bottom to accommodate the increasing overhang angle constraints. In
order to better visualize the change of the overhang angles, we draw the tangent line at the
boundary point with minimal overhang angle in each cross-sectional view. Comparing these
tangent lines illustrates that the resulting 3D designs exhibit clear overhang angle control.
For designs under overhang angle constraint ᾱ at 45◦ and 60◦, the cross-sectional views also
exhibit overhang bridge highlighted in ellipses in Fig. 19(c) and (d). Comparing the two
overhang bridges, it can be seen that the bridge from the overhang angle 60◦ has steeper
slope than the design from 45◦. This thus again illustrates that the overhang angle control
is effective. It is also worth noting that, unlike previous examples, the increase of overhang
angle ᾱ does not lead to the increase of the thermal compliance. This can be ascribed to the
fact that multiple local minimums exist in the proposed optimization problem.

The filter size rf in all designs in is 10 except the design in Fig. 19(a) and (b), corre-
sponding to overhang angle constraint ᾱ= 15◦ and 30◦. In these two designs, the filter size
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(a) ᾱ = 15◦, rf=11, C=5.590e3 (b) ᾱ = 30◦, rf=11, C=5.584e3 (c) ᾱ = 45◦, C=5.356e3

(d) ᾱ = 60◦, C=5.327e6 (e) ᾱ = 75◦. C=5.251e3

Figure 19: Optimized 3D designs for heat conduction under different overhang angle ᾱ
constraint.
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(a) ᾱ = 30◦, rf=10, C=5.415e3 (b) ᾱ = 30◦, rf=11, C=5.584e3

Figure 20: The increase of filter size rf is beneficial in suppressing boundary oscillation.

is rf = 11. The reason for the increase of filter size is that smaller filter size at rf = 10 leads
to boundary oscillation. The increase to rf = 11 overcomes the oscillation. This change of
boundary oscillation is shown in Fig. 20 for overhang angle constraint ᾱ= 30◦. The oscilla-
tion in Fig. 20(a) is highlighted. This increase of filter size to suppress boundary oscillation
is similar to the effect observed in the cantilever example in Fig. ??.

5.3.4 Experimental build

In order to experimentally verify that the minimal overhang angle constrained designs can
indeed be built without the support structure, the design corresponding to Fig. 19(c) with
minimal overhang angle ᾱ = 45◦ is built on two fused deposition modeling (FDM) machines.
First it was built on a Stratasys Dimension Elite with the support structure. Figure 21(a)
shows the built part before the support structure was removed. Fig. 21(b) displays the part
after the support was removed. This part volume is 1.42 in3 and the support volume is 1.26
in3. That is, the fabrication of this part takes additional 89% of material volume in support
structure. The design was also built on a second machine, XYZ da Vinci 2.0, without any
support. Fig. 21(c) shows the printed part in the machine where there is no support and
Fig. 21(d) displays a zoom-in view of the built part. This example demonstrate that the
proposed overhang based PUP formulation can indeed lead to optimized designs that can be
built without any support structures.
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(a) W/ support on Dimension Elite (b) Top view

(c) W/O support on XYZ da Vinci 2.0 Duo

(d) Top view

Figure 21: Building the optimized design (Fig. 19(c)) on FDM machines with and without
the support.
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6 Conclusions and discussions

This paper presents two formulations for controlling the undercut and for controlling the
minimal overhang angle in density based topology optimization. In both formulations, the
constraints are cast into the HPI form with explicit geometric meanings. For undercut
control, this integral form corresponds to projected undercut perimeter. For overhang an-
gle control, this corresponds to projected perimeter with slope smaller than the prescribed
overhang angle. In both formulations, in addition to the projected perimeter constraints,
a constraint on intermediate density is necessary to obtain designs of clear contrast. For
overhang angle control, density Heaviside filtering is also needed. In order to avoid requir-
ing support structure in the boundary, a side zone based projected perimeter constraint is
also imposed. Various numerical experiments, including both 2D and 3D examples of mini-
mal compliance and minimal thermal compliance, have been conducted. They demonstrate
that the proposed formulations based on the combination of the integral form of projected
perimeter constraint and the density grayness constraint are effective for undercut control
and for minimal overhang angle control.

Our numerical experiments have led to the following observations.

1. When the allowed projected perimeter approaches zero, the resulting design always
satisfies the undercut constraint or the minimal overhang angle constraint. On the
other hand a larger allowed projected perimeter can usually lead to designs of more
complex topology with better compliance since HPI formulations are conservative.
However, overly large allowed projected perimeter runs the risk of violating undercut
constraint or the minimal overhang angle constraint.

2. The grayness constraint has the effect of suppressing intermediate density. It also
regulates the topology (the number of holes). Smaller grayness value allows fewer
holes. On the other hand, larger grayness can lead to overly gray structures. This is
especially true when projected perimeter becomes tight and near-uniform intermediate
density tends to appear.

3. It is difficult to use the density Heaviside filter alone to avoid intermediate density.
This occurs especially when projected perimeter constraint is very tight. In order
to satisfy the projected perimeter constraint, intermediate density with γ = η = 0.5
appears. Thus, the grayness constraint is needed to suppress intermediate density.

4. Boundary oscillation may occur in minimal overhang angle control and relatively larger
filter size is needed to suppress such oscillation. The combination of large filter size and
tight grayness constraint can lead to poor designs consisting of overly large features.
The density Heaviside filter becomes effective and necessary in obtaining better designs
of smaller features with clean contrast. An alternative to large filter radius for minimal
overhang angle control would be to use finer meshes for FE analysis than for density
representation.
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Our study has also revealed one especially interesting finding, that is, accounting for
support structures in topology optimization can, in some 3D cases, lead to designs with
better performance.

Although the combination of HPI based projected perimeter constraint and the grayness
constraint are effective for controlling the undercut and for controlling the minimal overhang
angle, the precise perimeter and grayness threshold for obtaining a good design with clear
density contrast still require some tuning. Thus future work would study how to automat-
ically specify the parameters such as the allowed perimeter constraint, grayness constraint
and filter radius. Future work would also study how the proposed formulations might be
applicable to other manufacturability constraints in topology optimization.
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