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Abstract

The paper introduces an approach to stress constrained topology optimization
through Heaviside projection based constraint aggregation. The aggregation is cal-
culated by integrating Heaviside projected local stresses over the design domain and
then it is normalized over the total material volume. Effectively, the normalized
integral measures the volume fraction of the material that has violated the stress
constraint. Hence with the Heaviside aggregated constraint, we can remove the
stress failed material from the final design by constraining the integral to a thresh-
old value near zero. An adaptive strategy is developed to select the threshold value
for ensuring that the optimized design is conservative. By adding a stress penalty
factor to the integrand, the Heaviside aggregated constraint can further penalize high
stresses, and becomes more stable and less sensitive to the selection of the threshold
value. Our 2D and 3D numerical experiments demonstrate that the single Heaviside
aggregated stress constraint can efficiently control the local stress level. Compared to
the traditional approaches based on the Kreisselmeier-Steihauser and p-norm aggre-
gations, the Heaviside aggregation based single constraint can substantially reduce
computational cost on sensitivity analysis. These advantages make it possible to
apply the proposed approach to large scale stress-constrained problems.

Keywords Topology optimization, Stress constraints, Constraint aggregation, Heaviside
aggregation, Three dimensional (3D)

1 Introduction

Structural topology optimization [1] aims to find the optimal material distribution within
a given design domain to improve the prescribed performance of structures. It has been
successfully used in product design, especially in conceptual design phase, for a host
of problems. Topology optimization under stress constraint remains an interesting and
challenging research topic for a couple of reasons.

The first challenge of topology optimization under stress constrains is the singularity
issue. The singularity phenomenon was first observed in truss optimization by Sved
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and Ginos [2]. They demonstrated that for a three-bar design problem, one of the bars
should vanish in the optimum solution. However, when the cross-sectional area of that
bar approaches 0, the stress in that bar would violate the stress constraint and prevent the
elimination. It was further found that the global optima of the stress constrained problem
often exists in lower dimensional subspaces of the feasible design space [3, 4], which
are often inaccessible for the gradient-based optimization algorithms. The singularity
issue also exists in the density-based topology optimization, in which elements with low
densities would have high stresses exceeding the prescribed limit. Hence it is difficult
to remove low densities and obtain black-and-white layout. One way to resolve the
singularity problem is to relax the stress constraints and make the optima accessible. The
relaxation approaches include the ε-relaxation [5] and pq-relaxation [6]. The concept of
’relaxed’ stress is also introduced in [7]. The stress for intermediate densities is penalized
to achieve black-and-white solutions. It turns out that the ‘relaxed’ stress can successfully
avoid the singularity issue since it allows zero stress state for void material. Recently, a
cosine-type relaxation scheme is proposed by [8] to relax stress constraints and it is used
in the wrinkle-free design of thin membrane structures.

The second challenge is that the stress constraint is inherently local, usually enforced,
e.g. through an element-wise measure. It thus leads to a large number of stress con-
straints. As such, the number of optimization variables for the density-based topology
optimization is of the same order as the number of local stress constraints. Hence, sensi-
tivity analysis becomes extremely time consuming whether with either the direct method
or the adjoint method [9]. To resolve this issue, active-set strategies [10] can be ap-
plied to consider only potentially dangerous stress constraints. Another resolution is to
aggregate the local constraints into a single global constraint, commonly, based on the
Kreisselmeier-Steihauser (KS) or the p-norm function [10, 11]. As the single aggregated,
global constraint cannot effectively control the local stress level, multiple global con-
straints are employed in [7, 12, 13] and different grouping strategies are also studied. To
futher improve the effectiveness of global constraints, the active-set strategy can also be
applied to reduce the number of stresses in each group [14]. Recently, a p-norm correction
method is proposed to make the aggregated constraints work efficiently [15]. Evaluation
of different aggregation approaches can be found in [16], in which the effect of the number
of constraints and the aggregation parameters are also investigated.

It should be noted that although it is straightforward to extend existing aggregation
approaches to three-dimensional (3D) problems, 3D designs considering stress constraints
rarely appear in the literature. This can in part be ascribed to the fact that, for 3D
problems, a large number of the KS or the p-norm aggregated constraints are needed in
order to efficiently control the local stress level, which leads to the tremendous computing
workload in sensitivity analysis. Therefore, a stress-constrained topology optimization
method that can be applicable to 3D problems remains an important research topic.

Existing approaches to aggregate such local constrains, e.g. through KS functions
or p-norm, are ineffective when the problem size becomes large in practical setting. The
effect of these aggregations is dominated by maximum constraint violations. However, for
fully-stressed designs in stress-constrained optimization, many elements would have same
constraint values, i.e. near the stress limit. These aggregations would lead to very coarse
approximations of the constraints. Therefore, in this paper, we choose to study Heaviside
aggregation. Heaviside function involves sharp transition at 0/1 location, i.e. precisely
at the stress limit. Larger number of stress constraints do not worsen the constraint
aggregation. Therefore, they are more effective in dealing with large number of local
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stress constraints.
In this work, we develop a Heaviside projection based aggregation approach for aggre-

gating local stress constraints into one constraint. This is inspired by the recent success
of Heaviside aggregation, i.e. Heaviside projection based integral [17], to enforce point-
wise overhang angle constraint to obtain support-free optimal designs. Here, the von
Mises yield criterion is adopted to evaluate whether the material fails or not. The relax-
ation strategy introduced in [7] is applied to remedy the singularity problem. Our main
concern is on developing a new way to enforce the element-wise local stress constraints.
We apply the Heaviside function as an indicator to show the state of the material (safe
or failed). If the stress exceeds the yield limit, the indicator function is marked as 1;
otherwise 0. Then by integrating the indicator function over the whole design domain
and normalizing over the total volume, we obtain the integral of Heaviside projection,
which effectively means the volume fraction of the yielded material. As our objective is
to make the stress constraint satisfied at every material point, all we need to do is to
push the yielded material away, which can be implemented by constraining the Heaviside
projection based integral (HPI) to be 0. Based on such Heaviside aggregation, a single
global aggregated constraint is constructed. In practice, a smoothed Heaviside function
is used as the stress state indicator for differentiability, and a small positive value ε rather
than 0 is applied to bound the integral. In addition, a stress penalty factor is added into
the integrand of the constraint to further penalize high stresses. With the stress factor,
the stress constraint has a flavor of the p-norm in low order, and dees not have to force
the material to change between two states, safe or failed. Hence, the stress constraint
becomes more stable and thus less sensitive to the selection of ε. The selection of ε is
the key to successful enforcement of the stress constraint. If ε is too large, the global con-
straint would not be tight enough to remove the yielded material volume; if ε is too small,
an over-conservative design would be obtained. In order to get an appropriate threshold
ε, an adaptive scheme based on the gap between the maximum stress and the prescribed
limit is also proposed. As the effectiveness of the global constraint is insensitive to the
number of local constraints, it is applicable to large-scale problems.

The remainder of the paper is organized as follows. Section 2 reviews stress constraints
in topology optimization and the traditional approaches based on the KS or the p-norm
function. In Section 3, our approach to stress-constrained problem through the Heaviside
projection based integral is proposed. Section 4 presents the optimization formulation.
The sensitivity analysis of the stress constraint is described in Section 5. In Section 6,
both the 2D and 3D numerical examples are studied to demonstrate the effectiveness of
the proposed approach. Finally, conclusions are drawn in Section 7.

2 Stress constraints in density-based topology opti-

mization

In this section, we introduce the criteria to measure the failure of the material and briefly
review the state-of-the-art of the stress constraints in density-based topology optimiza-
tion.
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2.1 Stress measure

The von Mises stress is commonly used to predict the yielding of ductile materials under
a complex loading condition. It is chosen as the stress measure in our work. The von
Mises stress can be evaluated through tensor manipulations of the deviatoric stress as

σv = (
3

2
σd · σd)

1
2 ,

where σd can be expressed in terms of the full stress tensor as

σd = σ − 1

3
tr(σ)I,

where the stress tensor σ is defined as

σ(u) = 2µ∇u + λ(∇ · u)I, (1)

where µ and λ are the Lamé constants and u represents the displacement vector.
For the material with intermediate densities ρ̄, the von Mises stress can be penalized

to achieve black-and-white layouts [7]. The penalized σv reads

σv = ηs(ρ̄)σv
0 , (2)

where σv
0 is the von Mises stress of solid material. For the selection of the penalization

term ηs(ρ̄), it should first ensure that σv yields the proper values for void and solid ma-
terials, then make the appearance of intermediate densities unproportionately expensive
[12, 13]. In our work, ηs(ρ̄) is selected as suggested in [7, 12]

ηs(ρ̄) = ρ̄
1
2 . (3)

It should be noted that this kind of selection of ηs(ρ̄) aims to obtain black-and-white
designs and has no physical meaning as discussed in [10]. But it can successfully avoid
the singularity issues in stress-based topology optimization since it allows for zero stress
state of void material [7].

2.2 Stress constraints

As the strength of a material is considered in the density-based topology optimization,
the stress should satisfy constraint at every point in the design domain. When the finite
element method is used to conduct analysis, it requires that stress of each element should
be smaller than the prescribed limit σ̄. That is

σv
e ≤ σ̄, e = 1, 2, · · · , N, (4)

where the lower case e represents the element index and N is the total number of finite
elements. Equation (4) indicates that the number of stress constraints is equal to the
number of finite elements. In addition, the number of optimization variables is also
comparable to that of elements in the density-based topology optimization. As a result,
whether the direct or the adjoint method is utilized for sensitivity analysis, it would be
time-consuming to calculate sensitivities of the element-wise stress constraints. This is
because we need to conduct N pseudo analyses in the direct method or solve N adjoint
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equations in the adjoint method [9]. Further, a large number of stress constraints can
also make the optimization problem highly nonlinear and difficult to converge. Therefore,
different schemes have been introduced to reduce the number of stress constraints.

A single global constraint is introduced in [10, 11] to replace local stress constraints
in (4). The global constraint reads

σv
max = max

e=1,··· ,N
(σv

e ) ≤ σ̄. (5)

In practice, the maximum operation is approximated by the KS or the p-norm function
for differentiability. The KS function is defined as

σKS =
1

η
ln

N∑
i=1

eησ
v
i , (6)

where η is the aggregation parameter of the KS function. And the p-norm function reads

σPN =

[
N∑
i=1

(σv
i )P
] 1
P

, (7)

where P is the p-norm parameter. Both the KS and the p-norm functions can approach
the maximum stress σv

max by using large aggregation parameters η and P . That is

lim
η→∞

σKS = σv
max,

lim
P→∞

σPN = σv
max.

(8)

The large parameters η and P can reduce approximation error, but can simultane-
ously make the optimization problem difficult to solve with a gradient-based optimization
algorithm [16]. Therefore, relative small η and P are preferred in practice. However, us-
ing one global stress with the small parameters η and P cannot efficiently control the
local stresses due to rough approximation of the maximum stress. As a compromise, the
local constraints are divided into multiple groups and aggregated with the KS or the
p-norm functions [7, 12, 13]. The grouping strategy and the selection of group number
can influence the final design. With more groups applied in the optimization, a more
precise approximation of the local constraints can be achieved, however, the computa-
tional cost would be increased accordingly. Hence, one has to make a trade off between
the computational cost and the approximation accuracy with the KS function based or
p-norm based approach.

3 Stress aggregation through Heaviside projection

based integral

In this section, we introduce our Heaviside aggregation form for a single, integral form
of stress constraint. It is through Heaviside projection based integral (HPI). First, a
Heaviside function is introduced as an indicator to show whether the stress constraint
is violated. Then, a single constraint is constructed based on the HPI and its physical
meaning is explained. Finally, we analyze the computational time saving of the proposed
approach compared with the conventional approaches based on the KS and p-norm ag-
gregations.
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Figure 1: A smooth Heaviside function with different α.

3.1 Stress state indicator

When the von Mises yield criterion is adopted, we need to determine whether the stress
exceeds the safe limit of the material. Then the state (safe or failed) of the material can
be indicated from the Heaviside function as

H(
σv − σ̄
σ̄

) =

{
1 σv > σ̄

0 σv ≤ σ̄,
(9)

where σ̄ is the prescribed limit. If the von Mises stress exceeds the limit, the indicator
function H(σ

v−σ̄
σ̄

) returns 1; otherwise returns 0. As the stress state indicator function
(9) is utilized to form the stress constraint, we use a smooth Heaviside function for
differentiability. It is defined as

Hα(x) = 0.5(1 +
2

π
arctan(

x

α
)), (10)

where α is the Heaviside parameter to control the sharpness of Hα(x). The smooth
Heaviside function with different α is shown in Fig. 1. It can be observed that the
smooth function becomes steeper when α gets smaller and it converges to the exact
Heaviside function when α approaches 0.

Figure 2 plots the von Mises stress for the optimized design of the 2D L-bracket
problem (see Section 6.1) and the corresponding indicator functions. We select σ̄ = 200
herein for better visualization. For the stress distribution in Fig. 2(a), by using the exact
Heaviside function, Figure 2(b) clearly indicates where the material has failed. The stress
states based on the smooth Heaviside function of different α are shown in Fig. 2(c) and
(d). We can observe that, when using very small α, the smooth Heaviside function can
also clearly indicate the stress state as shown in Fig. 2(d). When a relative large α is
applied in Fig. 2(c), blur regions appear in the stress state indication. In the case, the
indicator faction (10) cannot accurately represent the state of the stresses that are close
to the limit.
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(a) Von mises stress (b) H(σ
v−σ̄
σ̄ )

(c) H0.1(
σv−σ̄
σ̄ ) (d) H0.001(

σv−σ̄
σ̄ )

Figure 2: Von Mises stress and its Heaviside projections. (a) The von Mises stress
distribution, (b) the stress state indication based on the exact Heaviside function, (c)(d)
the stress state indication based on the smooth Heaviside function with α = 0.1 and
α = 0.001.
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3.2 HPI based stress constraint

A single stress constraint can be constructed based on the indicator function (9) as

g ≡
∫
H(

σv − σ̄
σ̄

)dΩ = 0. (11)

This constraint integrates the indicator function (9) over the design domain Ω. When
the constraint is satisfied, it can guarantee the von Mises stress in all finite elements to
be within the safe limit. However, this constraint is not differentiable. Hence, the global
stress constraint is relaxed based on the smooth Heaviside function as follows

gH ≡
∫
Hα(

σv − σ̄
σ̄

)dΩ ≤ ε. (12)

When the smooth Heaviside function is used, even if the stress is smaller than the limit,
it would still contribute a small positive value to the integral gH . This is to say, gH would
be positive while all the local stress constraints are satisfied. That is why a small positive
number ε is used to bound the integral gH . The selection of the integral bound ε is the key
to effectively enforce the stress constraint and it determines whether a conservative design
can be obtained. For better selection of ε and penalization of high stress concentration,
we develop a general stress constraint as

gH ≡
∫
Hα(σ

v−σ̄
σ̄

)(σ
v

σ̄
)ηhdΩ∫

dΩ
≤ ε, (13)

where ηh is the stress penalty factor. By normalizing the numerator with the total volume
of the design domain, the selection of ε would be less sensitive to design problems. Then
the parameters of a benchmark problem can be used as a reference for other problems.
Further, defined in this way, gH will have physical meanings. By choosing ηh = 0, the gH
approximately represents the volume fraction of the material that would yield. Similarly,
we can define gH as volume fraction of the the squared von Mises stress that exceeds the
limit when ηh = 2. In the following, we will briefly discuss the physical meaning and the
selection of the parameters α, ε and ηh in the stress constraint (13). The effects of these
parameters will be explicitly illustrated by numerical examples in Section 6.1.

The Heaviside parameter α The parameter α controls the sharpness of the Heaviside
function Hα. With large α, since the 0/1 transition occurs slowly, Hα(σ

v−σ̄
σ̄

) cannot
precisely represent the stress state of the elements. In such a case, a large number of low
stresses would contribute a relatively large value to the integral gH in (13). As a result,
when the constraint (13) is applied to push the maximum stress to be lower than the
limit, low stresses have to be very small. This means a excessively conservative design
would be obtained. When α approaches 0, Hα(σ

v−σ̄
σ̄

) can clearly identify the stresses
exceeding the limit. Hence, the constraint (13) can efficiently control the local stress
level. However, too small α would make the Heaviside function very steep. This would
lead to high nonlinearity of the stress constraint and make the optimization algorithm
unstable. On balance and through numerical experiments, a relative small value (i.e.
0.005) is suggested in our work.
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The integral bound ε For the given ηh and α, one can find an appropriate ε in (13)
to guarantee all the local stress constraints to be satisfied. If the ε is too large, the local
stress constraints would be violated; if the ε is too small, a excessively conservative design
would be obtained. Based on the fact that smaller ε gives more conservative design, an
adaptive scheme is proposed to select an appropriate ε. The ε is initially set to ε0 in the
first fifty iterations and then it is updated every ten iterations as

εk+1 = min(
σ̄

σ̂v
max

εk, εk), (14)

where εk+1 and εk represent the value of ε in the successive steps and σ̂v
max is the average

of the maximum stresses in the previous five iterations. We select an average value of
the maximum stress rather than a value at one iteration in order to avoid oscillations in
the optimization convergence. This unpdate stragegy would make the stress constraint
tighter during the optimization and keep pushing failed materials away from the design.
Finally, as the maximum stress maintains within the prescribed limit, ε would keep as a
constant value, and make the algorithm converged.

The penalty power ηh As we set ηh > 0, the parameter ηh is similar with the ag-
gregation parameter P in the p-norm aggregation and then Hα(σ

v−σ̄
σ̄

) can be seen as the
weights. The constraint (13) now also has a flavor of the low-order p-norm. Large ηh
can be used to penalize high stress concentration, but it will increase the nonlinearity
of the optimization problem as well. Hence small ηh is preferred for better convergence.
However, if ηh is set to zero, the stress constraint (13) will force the material to change
between two states, safe or failed. This fact will make the optimization algorithm un-
stable and more sensitive to the selection of ε. Therefore, unless otherwise specified,
ηh = 2 is suggested in our work for both low nonlinearity and stable convergence of the
optimization problem.

3.3 Multiple load cases

In realistic situation, it may need to consider multiple load cases [18, 7, 19]. The proposed
stress constraints can also be easily extended to multiple load cases. A straightforward
scheme is to define a global constraint as in (13) for each load case. For a structure
subject to a number Nl of load cases, we define stress constraint for each load case l,
l = 1, ..., Nl, as

glH ≡
∫
Hα(

σv
l −σ̄l
σ̄l

)(
σv
l

σ̄l
)ηhdΩ∫

dΩ
≤ εl, for l = 1, ..., Nl. (15)

In our work, the stress limit σ̄l is assumed to be the same for all load cases. But it is
straightforward to consider different σ̄l for different load cases. In the first scheme, we
may need to define the bound εl for each load case if the design is asymmetric under
different load cases.

Another scheme is to group all the stress constraints for different load cases into a
single global constraint. That is, we define the global stress constraint as

gH ≡
Nl∑
l=1

∫
Hα(

σv
l −σ̄l
σ̄l

)(
σv
l

σ̄l
)ηhdΩ∫

dΩ
≤ ε. (16)
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In the second scheme, we only need to define one bound ε to guarantee effectiveness of
stress constraint. However, as the number of load cases increases, a single stress constraint
can lose its ability to control local stresses.

In our work, both schemes are implemented and applied to the design a L-bracket
with multiple load cases (see Section 6.2).

3.4 Computational cost analysis

From the view point of computational cost, the HPI based approach has an advantage
over the conventional approaches based on the KS and p-norm aggregations. In the
following, the average time at each iteration are estimated for the HPI based approach
and the KS and p-norm aggregations. As the KS and p-norm aggregations work in a
similar way, we only analyze the computational cost for the p-norm function. When
doing computational cost comparison, it is assumed that based on the HPI approach, one
single constraint can work as effective as multiple groups with the p-norm aggregation.
The computational cost is mainly spent on solving the forward equation, the adjoint
equation and the optimization system. It reads

T = Tfwd(N) + Tadj(ng, N) + Topt(ng, N), (17)

where Tfwd, Tadj and Topt represent the time for the forward equation, the adjoint equation
and the optimizer, respectively. Both Tadj and Topt depend on the number of groups for
stress constraints, ng, and the total number of elements, N . Since the time for solving
each adjoint equation are equal, we have

T = Tfwd(N) + ngTadj(N) + Topt(ng, N). (18)

In practice, the time for solving the forward and adjoint equations are comparable. Fur-
ther, the time for solving the optimization system is negligible compared with the time
for solving state equations. That is

Tfwd(N) ≈ Tadj(N), (19)

Topt(ng, N)� Tfwd(N). (20)

The number of stress constraints for the HPI based approach and the p-norm aggregation
reads

ng =

 1 for HPI

N

M
for p-norm,

(21)

where M is the number of local constraints in each aggregation group. Hence, the ratio
between the time of the p-norm aggregation and the time of the HPI based approach
reads

T pnorm

THPI
≈ 1 +N/M

2
. (22)

As N is fixed for any specific problem, the time for the HPI based approach is also fixed
and the time for the KS or p-norm aggregations depends on the number of local con-
straints in each aggregation group, i.e. M . In order to effectively control the local stress
level efficiently, M should not be too large. In density-based topology optimization con-
sidering stress constraints, M should be close to 1000 based on our numerical experiments
and observations in literatures [7, 13]. Therefore, for a large-scale problem, as N/M in
(22) becomes large, the time saved by the HPI approach would be tremendous. In Section
6.1, the computational cost is further investigated through numerical experiments.
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4 Optimization formulations

In our work, we minimize the volume subject to stress constraints. Based on the Heaviside
projection based integral, the proposed approach only has one stress constraint (13) and
the optimization formulation reads

min
ρ

J =

∫
ρ̄dΩ (23a)

s.t.

∫
Ω

E(ρ̄)s(u) · ∇ũdΩ =

∫
Ω

b · ũdΩ +

∫
Γt

t · ũdΓ, ∀ũ ∈ Ṽ (23b)

(13) (23c)

0 ≤ ρ ≤ 1. (23d)

In this formulation, (23a) and (23c) denote the material volume and the stress constraint,
respectively. (23b) defines the weak form of the linear elasticity problem. b is the body
force, t is the traction applied on boundary Γt. ũ is the test function of the displacement,
and Ṽ is the space of ũ. It reads

Ṽ =
{
ũ ∈ [H1(Ω)]3 : ũ = 0 on ΓD

}
,

where ΓD is the Dirichlet boundary on which the displacement is prescribed.
In our work, the Solid Isotropic Material interpolation with Penalization (SIMP)

method [20] is applied to solve the optimization problem (23). And the stress tensor (1)
is denoted as

σ(u) = E(ρ̄)s(u), (24)

where s(u) is the stress tensor for unit Young's modulus. E(ρ̄) denotes the Young's
modulus for the physical density ρ̄ and it reads

E(ρ̄) = Emin + (E0 − Emin)ρ̄q, (25)

where E0 is the Young's modulus for the solid material, Emin is a small number to
avoid the singularity in finite element matrices and q is the SIMP power factor. In our
implementation, Emin and q are set to 1e−9 and 3, respectively.

To avoid numerical instability and control the minimum length scale, we use the
density filter based on the Helmholtz PDE [21]

− r2∇2ρ̃+ ρ̃ = ρ, (26)

where ρ̃ is the filtered density and r controls the length scale. The parameter r corre-
sponds to the filter radius 2

√
3r in the classic density filtering [21].

In order to obtain clear topology without intermediate materials, the Heaviside filter
proposed in [22] is also adopted in our work. Then the physical density ρ̄ is given by

ρ̄ =


ξ

[
e−β(1− ρ̃

ξ
) + (1− ρ̃

ξ
)e−β

]
0 ≤ ρ̃ ≤ ξ

(1− ξ)
[
1− e−β

ρ̃−ξ
1−ξ + (

ρ̃− ξ
1− ξ )e−β

]
ξ ≤ ρ̃ ≤ 1,

(27)

where ξ is the threshold and β is the parameter to control the sharpness the Heaviside
projection in (27). When a large value of β is given, the Heaviside filter (27) forces the
filtered density ρ̃ smaller than ξ moving towards to 0 and ρ̃ larger than ξ to 1.
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In order to show the validity and advantages of our approach to stress constrained
problem, we compare it with the KS and p-norm aggregations. In our implementation
of the KS and p-norm approaches, the active-set based strategy introduced in [14] is
employed to aggregate local stresses and the adaptive normalization scheme proposed in
[7] is utilized to narrow the gap between the maximum stress and the stress limit.

5 Sensitivity analysis

For the gradient-based optimization method, sensitivity analysis of the objective function
and constraints is necessary. In this section, we discuss the sensitivity derivation of the
Heaviside projection integral gH in (13), based on which we construct the stress constraint.
The sensitivity of gH can be derived by using the chain rule. As the sensitivity of physical
density ρ̄ with respect to optimization variables ρ can be easily obtained by differentiating
(26) and (27), we only explain in detail the sensitivity analysis of gH with respect to
physical density ρ̄ herein.

The Lagrange functional adjointing the Heaviside projection integral gH in (13) and
the linear elasticity equation reads

L =

∫
Hα(σ

v−σ̄
σ̄

)(σ
v

σ̄
)ηhdΩ∫

dΩ
+

∫
v · (∇ · σ + b)dΩ, (28)

where v ∈ Ṽ is the adjoint variable for the elasticity equation. Similar with the deviation
of the weak formulation (23b), we have

L =

∫
Hα(σ

v−σ̄
σ̄

)(σ
v

σ̄
)ηhdΩ∫

dΩ
+

∫
Ω

∇v · E(ρ̄)s(u)dΩ −
∫

Ω

bvdΩ −
∫

Γt

tvdΓ. (29)

By setting the directional derivative of L with respect to the state variable u, ∂L
∂u

, to
be zero, the adjoint equation can be obtained and it reads∫

H ′α(
σv − σ̄
σ̄

)
σv
,u

σ̄
(
σv

σ̄
)ηhdΩ +

∫
Hα(

σv − σ̄
σ̄

)ηh(
σv

σ̄
)ηh−1

σv
,u

σ̄
dΩ

+

∫
Ω

∇v · E(ρ̄)s(ũ)dΩ = 0. (30)

In (30), σv
,u denotes the directional derivative of σv with respect to u

σv
,u =

∂σv

∂u
=

3

2σv
σd(u) · σd(ũ),

and H ′α(x) represents the derivative of Hα

H ′α(x) =
α

π(x2 + α2)
. (31)

By solving the adjoint equation (30), we can obtain the adjoint variable v. Then the
sensitivity of the Heaviside projection integral gH reads

L′,ρ̄ =

∫
H ′α(

σv − σ̄
σ̄

)
σv
,ρ̄

σ̄
(
σv

σ̄
)ηhdΩ +

∫
Hα(

σv − σ̄
σ̄

)ηh(
σv

σ̄
)ηh−1

σv
,ρ̄

σ̄
dΩ

+

∫
Ω

∇v · E ′,ρ̄(ρ̄)δρ̄s(ũ)dΩ, (32)
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where δρ̄ denotes the variation of ρ̄. The derivative of σv over ρ̄ can be obtained from
(2) as

σv
,ρ̄ = η′,ρ̄(ρ̄)δρ̄σv

0 .

In (32), E ′,ρ̄ denotes the derivative of E over ρ̄ and it reads

E ′,ρ̄ = q(E0 − Emin)ρ̄q−1. (33)

It should be noted that for each stress constraint, one adjoint equation as (30) has
to be solved to calculate its sensitivities. Therefore, to derive the sensitivities of stress
constraints, we solve only one adjoint equation in our approach. But for the KS and the
p-norm based approaches, we need to solve ng number of adjoint equations.

6 Numerical examples

In this section, details on numerical implementation are discussed. Numerical examples
are also presented to demonstrate the effectiveness and efficiency of the proposed approach
to stress-constrained topology optimization.

The work is implemented in FEniCS [23], which is an open source finite element solver
and can automatically solve differential equations based on the defined weak formulations.
In our implementation, linear triangular or tetrahedral elements are used to discretize the
design domain. All the optimization variables ρ, the filtered density ρ̃ and the physical
density ρ̄ are finite element nodal based. The initial optimization variables are set to 0.5
for all the numerical examples.

The method of moving asymptotes (MMA) [24] is used as the optimizer. Since the
stress constraints are highly nonlinear, a relative small move limit is selected to make the
optimizer more conservative. The move limit is set to 0.1 in our implementation. The
optimization algorithm terminates when the maximum change of optimization variables
is less than 0.01 or else when the number of iterations exceeds 350.

For the Helmholtz filtering (26), the length-scale control parameter r is selected such
that the effective filter radius corresponds to 1.5 times the element size in the classical
density filtering. For the Heaviside filtering (27), ξ is set to 0.5. As β controls the
steepness of the Heaviside filter, it is initialized to be 1.0 and increases by 1.0 every
25 iterations until reaching 10. As mentioned before, the stress constrained problem is
highly nonlinear. Hence, we choose a relative small upper bound of β to achieve stable
convergence. It turns out that this selection of β suffices to obtain black-and-white
layouts.

In the following, a 2D L-shaped bracket is first studied to verify the HPI based stress
constraint (13), to investigate the selection of its parameters and to show its advantages
over the classical KS and p-norm aggregations. Then a 2D L-bracket subject to multi-
ple load cases is presented. In the third example, a 2D MBB beam is investigated to
further validate the proposed approach. Finally, we use the design of a 3D L-bracket to
demonstrate that the proposed stress constraint is applicable to 3D problems.

6.1 2D L-bracket

The 2D L-bracket design is a popular test problem in stress constrained topology opti-
mization. It is because that the final design of the L-shaped bracket will contain a sharp
corner that can lead to high stress concentration if the stress constraints are invalid. This
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Figure 3: Design specification of the 2D L-Bracket problem.

problem is also used here to show the effectiveness and efficiency of the HPI based stress
constraint. If the constraint is effective, the maximum stress in the optimized design
would be smaller than the prescribed limit. Further, if the constraint is efficient in con-
trol local stress states, the optimized design would be fully-stressed. As we minimize the
volume under stress constraints, this fully-stressed design would have a smaller volume.

The design model for the 2D L-bracket is shown in Fig. 3. For verification, the same
dimension, loading conditions and material properties are used as in [13]. The plane
stress assumption is applied for the problem and the thickness of the structure is 1 mm.
The top boundary of the design domain is totally fixed. A load of magnitude 750 N is
applied to the right corner of the L-shaped bracket. To avoid the stress singularity at
the right corner, the load is distributed over a length of 4 mm in our implementation.
The chosen material is aluminum 7075-T6, which is widely used in aircraft and aerospace
structures. The Young's modulus is 68.9 GPa and the Poisson's ratio is 0.33. The yield
stress is 275 MPa. The design domain is discretized with 6456 linear triangular elements.
The mesh contains 3356 vertices, that is, the number of optimization variables is also
3356.

In the following, we first study the selection of parameters in the Heaviside projection
integral based stress constraint (13). With all the parameters appropriately selected, a
conservative and near fully-stressed design is obtained . Then we optimize the L-bracket
by using the KS and p-norm aggregations and show the advantage of our approach by
comparison.

6.1.1 Parameters selection

The effectiveness of the stress constraint in (13) depends on the selection of the Heaviside
parameter α, the integral bound ε and the stress penalty factor ηh. The α controls the
slope of the smoothed Heaviside function and thus exacts the level of the conservativeness
of the final design. The ε is the most important parameter which determines whether
the local stress constraints can be guaranteed or not. With different ηh, the Heaviside
projection integral gH (13) would have different physical meanings. The ηh is somewhat
similar to the aggregation parameter P in the p-norm function, which reflects the domi-
nation of the high stresses. In our implementation, it turns out that ηh = 2 can already
work efficiently. For a large problem, a larger ηh may be required to further penalize high
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stresses. In the following, we first investigate the effects of α and ε on the optimization
results with ηh = 2. Then the selection of ηh is explained.

The Heaviside parameter α For the given ε = 0.001, the optimization results with
α = 0.01, α = 0.005, and α = 0.0025 are shown in Fig. 4. We can observe that with
large α, more conservative design is obtained. That is, as α increases, the final design will
use more material and have smaller stresses. The reasons can be explained as following.
The larger α reduces the sharpness of the smoothed Heaviside function (10). Then the
stresses smaller than the prescribed limit will contribute more to the Heaviside projection
integral gα. As a result, for the given right hand side bound ε, the overall stress level has
to be reduced in order to satisfy the stress constraint (13). It can also be observed from
Fig. 4 that with a very small α (e.g. 0.0025), the final design is near full-stressed. This
is because small α increases the steepness of the Heaviside function, and then the global
stress constraint can efficiently control the local stresses. However, too small α will lead
to high nonlinearity of the stress constraint and thus make the optimization convergence
unstable. Therefore, in our work α is set to 0.005, with which the final design is near
fully-stressed and the optimization convergence is stable.

The integral bound ε In the following, the effects of ε on the final design are first
investigated, then an adaptive scheme is presented to select ε. With α = 0.005 and
ηh = 2, Figure 5 shows the final designs for the different values of ε. We can observe that
with a smaller ε, the optimized design has a smaller maximum stress and larger volume.
Although non-zero ε allows for a certain amount of violation of stress constraint, since
the Heaviside function provides high penalization to stresses that violate the given limit,
a smaller ε would be more likely to push the violated stresses away from the design.
Also, we can see from Fig. 5 that the maximum stress is very sensitive to the selection of
ε. The final design becomes unacceptable when ε only changes from 0.0005 to 0.0025. We
can observe form Fig. 5(b) with ε = 0.0025 that the maximum stress is larger than the
prescribed limit. Therefore, the selection of ε is very important to obtain a conservative
and full-stressed design. In practice, it is difficult to preset an appropriate ε. If the ε
is too small, the final design would be excessively conservative; if the ε is too large, the
highest stress would exceed the prescribed limit.

The adaptive scheme to select ε presented in Section 3 is investigated. This kind of
adaptive selection of ε not just can guarantee a conservative design but also can narrow
the gap between the maximum stress and the prescribed limit. In our implementation, ε
is set to 0.005 at the fist 25 iterations and to 0.0025 in the following 25 iterations. Then
it is updated every 10 iterations by using (14). The selection of values 0.005 and 0.0025 is
based on the results shown in Fig. 5. As the stress constraint (13) has been normalized by
the volume of the design domain, this kind of selection can be extended to other numerical
examples. Figure 6 shows the optimized results by adaptively choosing the parameter ε.
We can observe that the maximum von Mises stress is smaller than the yield limit and
the gap between them is quite small. The final design is comparable to that in [13]. In
the Fig. 7, the convergence history of the volume fraction, the maximum von Mises stress
and ε is plotted. It can be observed that although oscillations happen in the beginning,
the optimization algorithm finally converges. The converged ε is 1.03× 10−3.

The penalty factor ηh The parameter ηh determines the physical meaning of the
Heaviside projection integral gα and controls the nonlinearity of the stress constraint (13).
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(a) α = 0.01, Vf = 0.303, σvmax = 263.29

(b) α = 0.005, Vf = 0.257, σvmax = 274.0

(c) α = 0.0025, Vf = 0.251, σvmax = 285.07

Figure 4: Optimized 2D L-bracket designs based on the HPI approach for different Heavi-
side parameters α. The integral bound ε is set to ε = 0.001. On the left the density distri-
bution, right the corresponding von Mises stress with the prescribed limit σ̄ = 275 MPa.
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(a) ε = 0.005, Vf = 0.223, σvmax = 550.86

(b) ε = 0.0025, Vf = 0.234, σvmax = 426.33

(c) ε = 0.0005, Vf = 0.297, σvmax = 268.30

Figure 5: Optimized 2D L-bracket designs based on the HPI approach for different integral
bounds ε. The Heaviside parameter is set to α = 0.005. On the left the density distribu-
tion, right the corresponding von Mises stress with the prescribed limit σ̄ = 275 MPa.
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(a) Vf = 0.276, σvmax = 272.2 (b) Von Mises stress

Figure 6: Optimized 2D L-bracket designs based on the HPI approach with the adaptively
selected integral bound ε. (a) Vf = 0.276, (b) σvmax = 272.2. The prescribed limit of the
von Mises stress is σ̄ = 275 MPa
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Figure 7: The convergence history for the 2D L-bracket design in Fig. 6 with the adap-
tively selected integral bound ε.
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(a) ηh = 0, Vf = 0.329, σvmax = 263.95

(b) ηh = 4, Vf = 0.244, σvmax = 273.57

Figure 8: Optimized 2D L-bracket designs based on the HPI approach with the different
penalty factors ηh. On the left the density distribution, right the corresponding elemental
von Mises stress with the prescribed limit σ̄ = 275 MPa.

Since large ηh will cause high nonlinearity of the stress constraint (13), ηh should be as
small as possible if the stress constraint can efficiently remove high stress concentration.
Therefore, two more cases with ηh = 0 and ηh = 4 are investigated herein. In the study
of the ηh, the α is set to 0.005 and the ε is adaptively selected.

Figure 8 shows the optimization results for ηh = 0 and ηh = 4. For the designs
in Fig. 8, the stress constraint is satisfied. The corresponding convergence history for
ηh = 0 and ηh = 4 are shown in Fig. 9. We can observe that when ηh is set to 0, a
relative conservative design is obtained. This is because without the term (σ

v

σ̄
)ηh , the

stress constraint (13) cannot control local stresses efficiently. Hence, to guarantee the
maximum stress to be smaller than the prescribed limit, all other local stresses should be
much smaller. Therefore, in our implementation, although ηh provides better convergence,
we still set ηh to a non-zero value to further penalize high stresses. Also, a non-zero ηh can
make the stress constraint (13) more stable because the stress state of one element does
not have to change between two states, i.e. safe or failed. Hence, the stress constraint
would be less sensitive to the selection of ε in (13).

When ηh > 0, the role of ηh is similar to that of the aggregation parameter P in the p-
norm aggregation. With a large ηh used, the global constraint (13) can efficiently control
the local stress constraints and a fully-stressed design can be obtained. This explains why
the minimum volume fraction by using ηh = 4 (see Fig. 8) is smaller than that by using
ηh = 2 (see Fig. 6). By comparing the convergence history shown in Fig. 9 and Fig. 7, it
can also be observed that the algorithm takes more iterations to become stable and get
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Figure 9: Convergence history of 2D L-bracket designs based on the HPI approach with
the different penalty factors ηh.

converged in the case of ηh = 4. This makes sense since the large power parameter ηh can
make the stress constraint (13) highly nonlinear. In addition, with the large ηh, the right
hand side of the adjoint equation (30) will also become highly nonlinear and need a large
number of quadrature points to assemble precisely. This means the computational cost
spent on solving the adjoint equation would increase for large ηh. In summary, ηh should
be as small as possible as long as it can allow the stress constraint to work efficiently.
Therefore, unless otherwise specified, ηh is set to 2 in our implementation.

6.1.2 Comparison with the KS and p-norm based aggregations

In this section, the proposed approach is compared with the conventional approaches
based on the KS and the p-norm aggregations. Since the KS and p-norm aggregations
are the most commonly used approaches to deal with local stresses, this comparison
would help to further illustrate the efficiency of the HPI approach. Based on the results
in [7, 12, 13, 14] and our own numerical tests, the local stress constraints are subdivided
into ng = 10 aggregation groups. The aggregation parameters for the KS and the p-norm
functions are set to η = 10 and P = 8, respectively.

The optimization results of the L-bracket based on the KS and the p-norm aggrega-
tions are shown in Fig. 10. We can observe that the maximum stress is close to the stress
limit and the designs are near fully-stressed. By comparison, the design in Fig.6 has a
smaller volume fraction and lower stress level. This further demonstrates the efficiency of
the proposed approach in controlling the local stresses. The convergence history for the
optimization algorithm based on the KS and the p-norm aggregations is plotted in Fig.
11. The convergence of the KS and the p-norm aggregations are more stable than that
of the Heaviside projection integral as shown in Fig. 7. This is because the KS and the
p-norm functions approximate the maximum value in each aggregation group while the
Heaviside projection integral measures the summation of the violated stresses. In this
sense, the stresses smaller than the maximum value in each group will have little effects
on the KS and the p-norm aggregations. However, all the stresses close to the prescribed
limit will affect the Heaviside projection integral.

To further investigate the difference between the HPI approach and the p-norm ag-
gregation, we plot the Heaviside projection and the p-norm function with different pa-
rameters in Fig. 12. The parameters for the Heaviside function are same with those
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(a) KS, Vf = 0.272, σvmax = 275.52

(b) p-norm, Vf = 0.291, σvmax = 275.36

Figure 10: Optimized 2D L-bracket designs based on the KS and p-norm aggregations.
On the left the density distribution, right the corresponding von Mises stress with the
prescribed limit σ̄ = 275 MPa.
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Figure 11: Convergence history of 2D L-bracket designs based on the KS and p-norm
aggregations.
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Figure 12: Penalty factor of Heaviside projection and p-norm with different parameters.

in our implementation, i.e. α = 0.005, ηh = 2. It can be observed that the Heaviside
function provides sharper transition close to the given limit σ̄ even compared with the
p-norm with large penalty parameter (e.g. P = 32). That is, the Heaviside function is
more sensitive to the change of local stresses close to σ̄. It is also should be noted that
the p-norm function gives larger penalization as the stress is away from the limit. This
explains that based on the p-norm aggregation, the high stresses can be quickly removed
during the initial stage of the optimization (Fig. 11), but it is difficult to converge to
just the limit σ̄. Hence, multiple groups are frequently introduced to improve the ability
of the p-norm function to identify the maximum stress in each group. Also adaptive
normalization schemes, e.g. Chau et al [7], are utilized to modify stress constraint and
narrow the gap between the maximum stress and the stress limit. All these strategies
would increase the convergence iterations. Conversely, for the HPI approach, it is difficult
to remove high stresses at the initial stage of the optimization due to relatively smaller
penalization. But as the stresses become close to the limit σ̄, the algorithm can also be
able to identify those stresses violating the stress constraint. Thus, one single constraint
can work and the convergence at the final stage of the optimization is fast. The above
observations on the p-norm and the HPI approach also suggest that using the p-norm
at the first stage of the optimization and the HPI approach at the latter stage could be
more efficient. This would be further investigated in our future work.

As the three approaches obtain similar final designs, it makes sense to compare the
computational cost. Since the KS and p-norm aggregations are similar, we use the p-
norm to analyze the computational complexity in the following. First, for the given
problem, we study the effects of M on the local stress level control. Figure 13 shows
the optimized results with different M . We can observe from Fig. 13(a) and (b) that
when M is large, the optimized design would be too conservative. Although the stress
constraint is satisfied, except at the reentrant corner, the stress level is much smaller
than the prescribed limit. Hence, the materials are not efficiently used and the optimized
material volume would be relatively large. In comparison, when M is smaller than 1000,
the local stress level can be efficiently controlled and the optimized designs become fully-
stressed (see Fig. 13(c) and (d)). The optimized material volume also becomes smaller.
These observations are consistent with those in [7]. Therefore, in the following, M is set
to 1000 to estimate the number of groups in p-norm aggregation. It should be noted that
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(a) Vf = 0.38, σvmax = 275.16 (b) Vf = 0.34, σvmax = 274.84

(c) Vf = 0.30, σvmax = 274.28 (d) Vf = 0.29, σvmax = 274.62

Figure 13: Optimized 2D L-bracket designs based on the p-norm aggregations with dif-
ferent M . The number of elements is 6446. (a) M = 3200, ng = 2, (b) M = 1600, ng = 4,
(c) M = 800, ng = 8, (d) M = 400, ng = 16.

the optimized topology depends on the number of stress constraints.
We use four extra meshes to investigate the mesh independence and the computational

advantage of the HPI based approach. Figure 14 shows the optimized results based on the
HPI approach for the four meshes with the number of elements 11, 913, 25, 824, 47, 652
and 103, 296. We can observe that the stress constraint is satisfied for the four designs.
Also, as the number of elements increases, the HPI based global stress constraint can still
control the local stress level efficiently. This can be observed from the stress contours in
Fig. 14 (c) and (d). Actually, the stress level of the designs in Fig. 14 (c) and (d) are
close to the prescribed limit and thus smaller material volumes are achieved. Another
observation is that the optimized designs for the first three meshes in Fig. 14 (a), (b) and
(c) are topologically close to the design in Fig. 6. This illustrates that the HPI based
approach leads to very similar designs under different mesh size.

To compare the computational cost, the p-norm aggregation is used to optimize the
L-shaped bracket based on the same four sets of meshes. The number of aggregation
groups, ng, is estimated by setting M = 1000 in (21). If the local stress constraints
cannot be efficiently controlled, ng is further increased. The optimized designs are shown
in Fig. 15. It can be observed that the stress constraint is satisfied and all the four
designs are near fully-stressed. We should note that the results are highly dependent on
the mesh size as we need different number of stress constraints for different meshes.

Table 1 lists the average time at each iteration, the convergence iterations Nc and the
total computational time for the HPI based approach and the p-norm aggregation. Five
sets of meshes are used. The corresponding optimized designs based on the HPI approach
are shown in Fig. 6 and Fig. 14 and the designs based on the p-norm aggregation are
shown in Fig. 10(b) and Fig. 15. As both methods can get near fully-stressed designs,
it can be observed that the p-norm needs more time at each iteration. Hence, we can
conclude that, for a specific problem, to achieve the same level of controlling local stresses,
the HPI approach would be computationally cheap. We can also see from Table 1 that
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(a) Vf = 0.268, σvmax = 272.38 (b) Vf = 0.261, σvmax = 272.73

(c) Vf = 0.248, σvmax = 274.02 (d) Vf = 0.24, σvmax = 272.46

Figure 14: Optimized 2D L-bracket designs based on the HPI approach for different
meshes. (a) N = 11, 913, (b)N = 25, 824, (c)N = 47, 652, (d) N = 103, 296.

(a) Vf = 0.30, σvmax = 275.24 (b) Vf = 0.28, σvmax = 275.63

(c) Vf = 0.288, σvmax = 273.92 (d) Vf = 0.277, σvmax = 274.98

Figure 15: Optimized 2D L-bracket designs based on the p-norm aggregations for different
meshes. (a) N = 11, 913, ng = 15, (b)N = 25, 824, ng = 30, (c)N = 47, 652, ng = 50, (d)
N = 103, 296, ng = 100.
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Figure 16: Computational cost(/s) of p-norm and HPI for different meshes. (a) Average
time at each iteration, (b) total time.

(22) gives a good estimation of the average time ratio between the HPI approach and the
p-norm aggregation. It can be also observed from Table 1 that for the p-norm aggregation,
it takes more iterations to converge as the number of stress constraints increases. Hence,
for large problems, the p-norm aggregation would take more iterations to converge as
more stress groups are required. This means the advantage of the HPI based approach
over the p-norm aggregation would be more obvious for large problems. For the fifth
mesh with 103,296 finite elements, the p-norm aggregation requires up to fifty times the
time for the HPI approach. Figure 16 plots both the total time and the average time
over the number of elements for the five meshes. We can observe that as the time for the
HPI approach increases linearly with the number of elements, the time for the p-norm
aggregation increases superlinearly or quadratically.

Table 1: Computational cost(/s) of p-norm and HPI for different meshes

Elements 6,456 11,931 25,824 47,652 103,296

HPI ng 1 1 1 1 1

THPI 1.02 1.63 3.66 6.70 15.04

Nc 215 259 266 274 270

p-norm ng 10 15 30 50 100

T pnorm 6.35 13.01 77.73 176.37 790.19

Nc 178 207 218 239 309

Avg. time ratio Tpnorm

THPI 6.23 7.98 21.24 26.32 52.54
Tpnorm

THPI by (22) 5.5 8 15.5 25.5 50.5

Total time ratio Tpnorm·Nc
THPI·Nc 5.44 6.38 17.41 22.96 60.128

It should be noted that, for the above computational cost comparison, we assume
that based on the HPI approach, one single constraint can work as effective as multiple
groups with the p-norm aggregation. Actually, the HPI approach could also be adapted
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Figure 17: Design specification of a 2D L-bracket subject to multiple load cases.

with multi-groups version. If we use the same number of groups in the p-norm and the
HPI, then the time spent at each iteration would be quite close. The only difference lies
in how much time spent on assembling the right hand side of adjoint equations. As both
the HPI and p-norm are high nonlinear, the difference of the assembling time is very
small.

6.2 2D L-bracket subject to multiple load cases

In the example, a 2D L-bracket subject to multiple load cases is studied. The design
specification is defined in Fig. 17. The material properties and the stress limit are same
with those in the previous example. Two load cases are considered. In both load cases,
the magnitude of load is same, and it is F = 750 N. The design domain is discretized with
16,562 linear triangular elements. The number of optimization variables is 8,501. Stress
constraints are applied in two ways. In the first way, a stress constraint is constructed
for each load case by (15). In the second way, a single global constraint is applied for two
load cases by (16).

The optimized designs and the associated stress under two load cases are shown in
Fig. 18. It can be observed that both schemes, applying stress constraint separately or
together, can work efficiently. There are no high stress concentrations, and the maximum
stresses are smaller than the given limit.

6.3 MBB beam

The MBB beam is another popular problem in stress-constrained topology optimization.
Due to symmetry, only right half of the model is studied. Figure 19 shows the dimension
and boundary conditions. The material properties and the load magnitude are same with
those in [12] for verification. The material is a typical aircraft aluminum. The Young's
modulus is 71,000 MPa, the Poisson's ratio is 0.33 and the yield limit is 350 MPa. The
load has a magnitude of 1,500 N and is distributed over a length of 5 mm on the top left
corner. The design domain is discretized with 5,022 triangular elements. The number
of optimization variables is 2,613. Only the Heaviside projection integral based stress
constraint is considered in the example and the selection of the parameters is same with
that in the 2D L-bracket example. The Heaviside parameter α is set to 0.005, the stress
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(a) Vf = 0.28, σv1,max = 271.86, σv2,max = 271.40

(b) Vf = 0.29, σv1,max = 271.24, σv2,max = 271.99

Figure 18: Optimized designs of the 2D L-bracket subject to multiple load cases based
on the HPI approach. σvl,max refers to the maximum stress for load case l. (a) Stress
constraint is applied separately for each load case, (b) one single constraint is applied for
two load cases.

100 mm

300 mm

F = 1500 N

Figure 19: Design specification of the MBB beam.

penalty factor ηh is set to 2 and the integral bound ε is adaptively selected.
The optimized topology and the corresponding stress distribution are shown in Fig.

20. We can observe that the final design from HPI is fully-stressed and the maximum
stress is smaller than the prescribed limit. This verifies the effectiveness of the proposed
stress constraint. The optimized design is similar to that in [12], and the volume fraction
is also comparable.

6.4 3D L-bracket

In order to demonstrate that the proposed approach is applicable to large-scale problems,
a 3D L-bracket is studied. The design model of the 3D L-bracket is shown in Fig. 21.
The top surface of the model is totally fixed. A pressure with a magnitude of 200 N/mm2

is applied on the right corner. The loading surface has dimensions 40 mm by 6 mm.
The material properties and the yield limit are same with those in the 2D L-bracket
example. The design domain is discretized by 124,609 tetrahedron elements. The number
of optimization variables is equal to the number of vertices and it is 24,367. Only one
stress constraint based on the Heaviside projection integral is applied. As the number of
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(a) Density (b) Von Mises stress

Figure 20: Optimized design of the MBB beam. (a) Vf = 0.354, (b) σvmax = 344.82. The
prescribed limit of the von Mises stress is σ̄ = 350 MPa.

p = 200 N/mm2

200 mm

200 mm

80 mm

80 mm

40 mm

Figure 21: Design specification of the 3D L-bracket.

local stresses is large, we apply a relatively larger penalty factor, i.e. ηh = 4, to make
the stress constraint (13) more sensitive to high stresses. The integral bound ε is set to
5 × 10−4 in the first 50 iterations, and is then adaptively updated every 10 iterations
based on (14). The selection of other parameters for the stress constraint (13) is same
with that in the previous examples.

The optimization results of the 3D L-bracket are shown in Fig. 22. The re-entrant
corner is successfully removed from the final design. We can also observe that there is no
stress concentration and the maximum stress is smaller than the given limit. This means
the stress constraint works well. From the stress distribution, it can also be observed that
the final design isn’t as fully-stressed as that in 2D examples. This makes sense because
as the number of the local stresses in the Heaviside projection integral (13) increases, its
ability to control the local stress level decays to some extent.

When a single global stress constraint is used, we just need to solve one adjoint
equation to derive the sensitivities. The computational time is 10.4 seconds for solving
the forward equation and 8.4 seconds for the adjoint equation. If the KS and the p-
norm aggregation are applied, then we need to solve about 120 adjoint equations, i.e.
120 aggregation groups are assumed, and solving each adjoint equation takes about 10
seconds. Hence, the total computational cost using the KS and p-norm aggregations
would be huge and approximately 60 times of that using the Heaviside projection integral.
Therefore, for this kind of 3D problems, it is much more efficient with our approach than
the usual KS and the p-norm aggregations. With these usual approaches, a large number
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(a) Density

(b) Von Mises stress

Figure 22: Optimized design of the 3D L-bracket. (a) Vf = 0.29, (b) σvmax = 270.29. The
prescribed limit of the von Mises stress is σ̄ = 275 MPa.
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of aggregation groups (e.g. hundreds) would be necessary in order to efficiently control
the local stresses, plus each group needs to solve an adjoint problem of the same scale as
the forward problem, hence the computational cost of the sensitivity analysis would be
hugely prohibitive.

7 Conclusion

In the paper, an approach to stress-constrained topology optimization is proposed. A
single global stress constraint is developed by using the Heaviside projection based integral
of the local stresses. Such Heaviside based aggregation effectively represents the volume
fraction of the material that violates the stress constraint. By constraining the integral
to be smaller than a threshold value ε, the material region violating the stress constraint
can be successfully removed from the final design. Hence, stress at every material point
within the design domain will satisfy the stress constraint. The effects of the slope of the
Heaviside function, the penalty factor for the local stresses and the threshold value ε are
also studied. On the basis of our investigation, appropriate parameters for the Heaviside
aggregation based stress constraint are suggested. An adaptive strategy to select ε is
also proposed to achieve a conservative design. Both 2D and 3D numerical examples are
presented to validate the proposed approach.

Compared to the traditional approaches based on the KS and the p-norm aggrega-
tions, a single global, Heaviside based stress constraint can control the local stress level
efficiently in our approach. The computational cost for the sensitivity analysis is dramat-
ically reduced as we just need to solve one adjoint equation. This advantage makes the
proposed approach applicable to large scale stress problems.
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