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ABSTRACT 

 
In this paper, we present an approach that can enable product geometric design and 
its subsequent manufacturing applications directly from massive point-cloud data, 
without the usual laborious CAD model reconstruction. We term this approach direct 
digital design and manufacturing (D3M). 
 
This approach is based on a moving least-squares (MLS) formulation that defines a 
continuous surface directly from a set of points. We derive formulae for differential 
geometric analysis of the MLS surface based on its implicit form. From the resulting 
closed curvature formulae, we develop a set of error-bounded, adaptive intersecting 
algorithms that can intersect the MLS surface with lines, planes, polygonal meshes, 
and NURBS surfaces. These algorithms have been successfully applied in applications 
ranging from product shape design, CNC machining to rapid prototyping. 
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1. INTRODUCTION 
Rapid advancement of three-dimensional (3D) scanning techniques has fueled the growing use of 
point-cloud data in product design and manufacturing. It promises to revolutionalize the way digital 
geometric models are created and used throughout the product development cycle. However, despite 
the rapid progress in data accuracy, data density and acquisition speed from various 3D scanners, one 
bottleneck issue remains in various 3D scanning applications. That is, acquired data points still need 
to undergo lengthy, tedious and error-prone reconstruction of intermediate surface models, such as 
CAD surface models, with substantial human-intervention and multitude of model conversions. This 
has severely impeded the realization of the full potentials of 3D scanning such as mass customization 
and digital inventory.  
 
Recently research has appeared focusing on how to bypass CAD model reconstruction in digital design 
and manufacturing applications involving massive point-cloud data. For example, point-based curve 
drawing [3], layered manufacturing [8], [12], [15],[16], and NC machining [4], [5], [11], [13] based on 
points have recently been proposed. However, these methods are ad hoc in nature, e.g. by assuming 
grid structures of points, or relying on some voting schemes to “thin” the dense point cloud to 
produce approximate contours. There has not been any systematic study of how points can be used to 
directly represent continuous surfaces for CAD/CAM uses. The fundamental deficiency with existing 
attempts is the absence of a suitable mathematical basis for representing surfaces directly with points 
that can be used consistently in product development cycles.  
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In this paper, we propose to define the surface from discrete points based on the moving least-squares 
(MLS) surface definition [10, 45] due to its many desirable properties such as explicit definition in 
terms of implicit surfaces, local computing, projection operation, and C∞ smoothness. The D3M 
approach presented in this paper exploits these properties of the MLS surface. More specifically, we 
use the MLS surface as the underlying surface representation for acquired point-sampled geometry in 
the D3M. This paper summarizes three critical components in D3M. 

• Mathematically, closed formulae for differential geometric analysis are derived. Through the 
implicit definition of an MLS surface, we derive formulae for curvature computing for an MLS 
surface and planar curves that lie on the MLS surface. This enables the development of subsequent 
efficient (i.e. curvature-adaptive) and accurate (i.e. error-bounded) surface intersection algorithms.  

• Computationally, algorithms for intersecting an MLS surface with lines, planes, polygonal mesh 
and NURBS surfaces are given. The key to these intersection algorithms is a new algorithm for 
line/MLS surface intersection, which is based on the projection property of the MLS surface. A 
curvature-adaptive marching algorithm is developed for plane/MLS surface intersection. The 
intersection between a triangular mesh and an MLS surface is through a curvature-adaptive 
marching process that produces a series of intersection points with the separation distance 
adaptive to the local curvature. The intersection between a NURBS surface and an MLS surface is 
through adaptive subdivision of NURBS surfaces into polygonal meshes.  

• Application-wise, we apply the above algorithms to several point-cloud data based design and 
manufacturing applications, including Boolean intersection between NURBS surfaces and point-
cloud data, slicing in rapid prototyping and path generation in NC machining.  

 
The remainder of this paper is organized as follows. Section 2 gives a brief introduction on the MLS 
surface. Section 3 presents our results of differential geometric analysis on the MLS surface. Section 4 
details a set of algorithms for intersecting an MLS surface with CAD geometry. Section 5 demonstrates 
the D3M applications of these intersection algorithms on one point-cloud data. An example use of 
D3M in rapid development of custom headmasks is given in Section 6. This paper concludes in Section 
7. 
 
2. MOVING LEAST-SQUARES SURFACE 
This section gives a brief introduction on the definition of an MLS surface, which forms the basis of 
our D3M approach.  
 
Levin [9],[10] defined an MLS surface S as the stationary set of a projection operator , i.e., Pψ

{ }xxx =∈= )(ψ|3
PRS                                              (2.1) 

Upon such a projection operation, a point on the MLS surface is projected onto itself. Such projection 
based MLS surfaces are referred to as projection MLS surfaces. Amenta and Kil [1],[2] gave an explicit 
definition for projection MLS surfaces as the local minima of an energy function  (y is a position 

vector and a is a direction vector) along the directions given by a vector field , as shown in 
),( aye

)(xn Fig. 1. 

Based on this definition, they derived a projection procedure for taking a point onto the MLS surface S 
implied by n and e, which can be summarized and intuitively illustrated in Fig. 1. 
 

 
Fig. 1: Illustration of the MLS projection process. 
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For details of this projection procedure, please refer to [1],[2]. Here we briefly present two key points in 
this procedure: evaluating the normal direction through a vector field  and searching for the local 

minimum of an energy function . 
)(xn

))(,( xnye
 
When evaluating the normal vector, we assume that the normal information at each input point data is 
available. This assumption is naturally true, when the input data is a set of surfels. When the normal 
information is not readily available as in some applications, we can easily compute this normal 
information, for example through eigen analysis. Then we can compute a normal vector for any point 
with the normals of the nearby sample points, i.e., define a normal vector field as the normalized 
weighted average of the normals at the sample points. Suppose a normal vector  is assigned to each 

point  of an input point set Q , we have: 
iv
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where 
22 /),( h

i
ie qxqx −−=θ is a Gaussian weighting function, where h is a scale factor that determines the 

width of the Gaussian kernel. 
 
In the j-th iteration of the overall projection process, we need to search the local minimum  of an 

energy function along a line  given by and , as shown in 
1+jx

)(, jj
l xnx jx )( jxn Fig. 1. Such an energy function 

 can be defined as RRRe →× 33:
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To facilitate the search of the local minimum, we can substitute )( jj t xnxy ⋅+=  into Eqn. (2.3) and 

restate it as a function of variable t: 
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With a vector field  and an energy function e , we now have an elegant scheme to project a point 

onto an MLS surface.  
)(xn

 
3. DIFFERENTIAL GEOMETRIC ANALYSIS OF THE MLS SURFACE 
To calculate the principal curvatures of an MLS surface, we first convert the native form of MLS into an 
implicit form. It has been proved in [1],[2] that the MLS surface is actually the implicit surface given by 
the zero-level set of the implicit function 
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where  is the vector field defined by Eqn. 33: RR →n (2.2) and  is the energy function 
defined by Eqn. 

RRRe →× 33:
(2.3). Applying the curvature formulas for implicit surfaces given in [6], we have the 

Gaussian and mean curvatures of this implicitly defined MLS surface as 
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is the Hessian matrix of . Notice that Det(A) and  Trace(A) denote the determinant and the trace of 

the matrix A correspondingly. 
)(xg

 

Note, the principal curvatures can be derived from the Gaussian curvature and mean curvature. To 
further expand the formula of Eqn. (5), we first take the derivative of Eqn. (2.3) with respect to y and 
setting y equal to x, which gives 
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Suppose that 
22 / hieA qx−−=  and , then Eqn. )()( xnqx T
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Hence, the Hessian of  can be expressed as )(xg
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For further expansion of this formula, please refer to [19]. Substituting the above expressions of 
gradient and Hessian of  into Eqn. (3.5), we can obtain closed formulas for direct computing of 

surface curvatures for MLS surfaces.  
)(xg

 
The curvature form for the planar curves can be derived similarly, i.e. by converting the planar curves 
into an implicit form. The details are available in [17]. 
 
4. ALGORITHMS FOR INTERSECTING AN MLS SURFACE WITH CAD GEOMETRY 
In this section, we present a set of algorithms that can intersect an MLS surface with common 
analytical geometry such as lines, planes, and solids bounded by polygonal meshes and NURBS 
surfaces. The basis of these algorithms is two-fold: a) a projection based approach for obtaining 
intersection points between a line and an MLS surface, and b) a curvature-adaptive marching process 
that intersects a set of lines on a plane with the MLS surface. We describe these algorithms in the 
following subsections. 
 
4.1 Line/MLS Surface Intersection 
Recall the definition of the MLS surface in Eqn. (2.1) that the MLS surface S is the stationary set of a 
projection operator . We can easily realize that for any point  on the MLS surface S, we have Pψ x

0)(ψ =− xxP
                                                   (4.8)                

Then the problem of computing the intersection point p  of a line l  with the MLS surface S can be 

transformed to finding a root of Eqn. (4.8) over the set l∈x . Suppose the line l  can be defined by a 
point  and a directional vector n , this root finding problem can be further reduced to a one-
dimensional problem by substituting 

c
ncx ⋅+= t  into Eqn. (4.8), where t is the only variable. In this 

paper, Brent’s method is implemented to solve this one-dimensional root finding problem, which 
combines root bracketing, bisection, and inverse quadratic interpolation to converge from the 
neighborhood of a zero crossing and is suitable for this kind of one-dimensional root finding problems 
[14]. 

0ε

  
Fig. 2: Strategy for generating different initial points for locating multiple line/MLS surface intersection 
points: points that are 0ε distance away from the line are projected onto the line and the projected 
points are then used as the starting points to find the intersection points between the line and the MLS 
surface.  

 
When multiple intersection points exist, different initial points are needed to find all intersection 
points of a line l  with the MLS surface S. We use the following strategy to generate these initial points:  
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• Find all points of the input point data inside a query range, i.e., having a distance to the line l  
within a prescribed distance 0ε  (e.g., blue circles shown in Fig. 2). The assumption here is that each 

projected point on the MLS surface is maximally at 0ε  distance away from its closest sample in the 

point cloud.  

• Then project all these points onto the line l . These projected points will be chosen as initial points 
(e.g., blue solid circles shown in Fig. 2). Note that it is possible that the Brent’s algorithm started at 
several different initial points may converge to the same point, e.g., in Fig. 2, the left two initial 
points converged to the left intersection point (represented by a red star) and the right three initial 
points converged to the right intersection point. In this case, we need further check the resulting 
intersection points and remove the redundant points. 

 
4.2 Curvature-adaptive Plane/MLS Surface Intersection 
In this paper, we adopt a marching approach to computing the plane/MLS surface intersection. In this 
marching approach, the intersection curve(s) is defined in the following way: first find a starting point 
on the intersection curve and then adaptively march along this curve to get successive intersection 
points. The line/MLS surface intersection approach described in the previous section is used to 
determine both the starting points for marching and the intersection points between successive 
marching lines and the MLS surface. The separation distances between successive lines are adaptive to 
the curvature in the planar curve on the MLS surface so that the process produces the intersection 
contour with bounded error. Such curvature-adaptive step length in the marching process circumvents 
the tradeoff between the intersection accuracy which requires smaller step length and the algorithm 
efficiency which requires larger step length. This marching algorithm can be summarized as the 
following steps: 
STEP 1: Given an input point set Q , an input plane H, and an initial line  defined by a starting point 

 and a direction vector . Let ; 
0l

0p 0n 0=i
STEP 2: Determine a new line  on the plane H, based on a computed step length adaptive to the local 

curvature on the planar curve on the MLS surface; 
1+il

STEP 3: Calculate the intersection point  of the MLS surface S and the line ; 1+ip 1+il
STEP 4: Check the stop condition. If true, stop this process and output },,,{ 110 += ipppP K  as the 

resulting 2D contour. Else let 1+= ii  and go back to STEP 2. 
 
In STEP 1, the point  is the starting point computed in the previous section and the initial line  is 

the line used to compute . 
0p 0l

0p
 

 

a b ca b c
Fig. 3: Illustration of adaptive marching in plane/MLS surface intersection. (a) Iso-view of a point data 
with resulting 2D contour on a slicing plane. (b) Top view of the slice at 0.1=z . (c) Zoom-in. 
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Fig. 4: Computing error-bounded step length pΔ based on an osculating circle. 

 
In STEP 2, to determine a new line , we first set up a Frenet frame at point  as shown in 1+il ip Fig. 3, 

where  denotes the direction vector of . Then we can get a point  by translating  along the 

direction perpendicular to : ,where  is the unit vector perpendicular ,  is the 

step length. To compute the step length , we first approximate the planar section of the MLS surface 

S at point as an osculating circle, as shown in 

in il 1+ic ip

in iii p tpc ⋅Δ+=+1 it in pΔ
pΔ

ip Fig. 4. Then, from Fig. 4, we can derive the following 

formula to calculate the step length : pΔ

222 22)(2 sss rrrp δδδ −⋅⋅⋅=−−⋅=Δ                  (4.9) 

where sδ  is a prescribed approximation error bound for the intersection curve, kr /1=  is the radius of 

the osculating circle at  and k  is the curvature computed at  of the planar curve that lies on both 

the plane H, and the MLS surface S . Additionally, a minimum radius  and a maximum radius  

can be given to limit the permissible radius 

ip ip

minr maxr
r  to ensure the robustness of the formula in some special 

cases.  For example, setting sr δ=min  would avoid the potential negative value inside the square root in 

Eqn. (4.9); setting a value for  could prevent an over-sized step length since overly un-even 

distribution of intersection points may cripple many curve interpolation and approximation algorithms 
when a smooth intersection curve is desired. Finally, by estimating the normal  at , we can 

determine the line  with  and , i.e., 

maxr

1+in 1+ic

1+il 1+ic 1+in
11 ,1 =+li ++ ii

l nc
. 

 
In STEP 3, the intersection point  is generated by applying the line/MLS surface intersection 

algorithm. 
ip

 
4.3 Plane/MLS Surface Intersection 
With the above plane/MLS surface intersection algorithm, we can extend it to the intersection between 
a triangular mesh and an MLS surface with some minor changes. It involves two main steps: 
a) Intersect each individual triangle with the MLS surface defined by the input point cloud to get all 

the intersection curve segments in a discrete form (polyline); 
b) Sort and link the discrete curve segments to construct polylines defining the intersection curve. 
 
In the following sections, we will focus on the first step, where a triangle can be treated as a bounded 
plane. Due to the existence of the three boundary edges, the intersection curves of a triangle and an 
MLS surface can be categorized into two main types: (1) internal loops and (2) open branches, as shown 
in Fig. 5. However, there is only one type of intersection curves for a plane and an MLS surface, which 
is corresponding to the internal loops for triangle-MLS surface intersection. 
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Fig. 5: Types of intersection curves. 

 
4.3.1 Finding starting points for open branches 
For an open branch, a starting point is an intersection point between the triangle edges with the MLS 
surface, which can be obtained by the line/MLS surface intersection algorithm. Notice any starting 
points outside the range of the edges are omitted. 
 
4.3.2 Finding starting points for internal loops 
For an internal loop, we can inherit the strategy of finding starting points in plane/MLS surface 
intersection algorithm. However, notice, 1) instead of finding all points of the input point data that 
have a distance to the input plane within a prescribed distance ε , we find all points that have a 
distance to the input triangle within ε ; 2) candidate starting points outside the triangle are omitted. 
 
4.3.3 Curvature-adaptive intersection  
The curvature-adaptive marching algorithm for plane/MLS surface intersection can be directly applied 
to the triangle/MLS surface intersection once the starting points are identified. Fig. 6 shows examples 
of curvature-adaptive triangle/MLS surface intersection, where the triangle is drawn in green, the point 
cloud in yellow, and the red points represent the output contours of the adaptive marching algorithm. 
We can see that the distribution of the points is curvature-adaptive. Fig. 7 shows a more complicated 
example of the intersection between a triangle and an MLS surface, which results in three open 
branches and three internal loops. 
 

         
(a)                                        (b) 

Fig. 6: Curvature-adaptive triangle/MLS surface intersection. (a) Open branches. (b) Closed loop. 
 

 
Fig. 7: Intersection between a triangle and an MLS surface resulting in multiple open branches and 
internal loops. 
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Repeated use of the triangle/MLS surface intersection would then result in the intersection contours 
between a triangular mesh and an MLS surface. Note, the connectivity of triangle edges in the mesh is 
recorded to avoid the duplicate intersection between edges from adjacent triangles and the MLS 
surface. 
 
4.4 NURBS/MLS Surface Intersection 
The intersection and Boolean operations between design geometry (NURBS surfaces) and acquired 
point-sampled geometry (approximated by an MLS surface) is achieved by first adaptively subdividing 
the designed geometry (e.g., NURBS surfaces) into a set of planar triangles and then applying the above 
triangular mesh /MLS surface intersection algorithm, which ensures the generality of our intersection 
algorithm for shape modeling from both design and acquired geometry. These are the steps of our 
algorithm. 
1. Adaptive subdivision of NURBS surfaces: 

a) Generate an adaptive quad-tree structure for the input NURBS surfaces; 
b) Create a triangular mesh for potentially intersecting regions based on this tree structure. 

2. Adaptive intersection of a triangular mesh and an MLS surface. 
 
4.4.1 Adaptive subdivision of NURBS surfaces for accurate and efficient intersection 
Since our NURBS/MLS surface intersection is based on plane/MLS surface intersection, we first 
subdivide the NURBS surfaces into a set of patches and then divide those patches that can potentially 
intersect with the MLS surface into planar triangles. Two governing factors that affect the subdivision 
process are accuracy and efficiency.  In order to assure the accuracy of the intersection, the patch 
subdivision continues until the subdivided triangle mesh represents the underlying NURBS accurately 
within a bounded error. In order to improve the efficiency of NURBS/MLS surface intersection, we 
adaptively subdivide the NURBS patches. That is, the NURBS patches are only subdivided when they 
can potentially intersect with the MLS surface and triangles are only generated from those patches that 
can potentially intersect with the MLS surface. Fig. 8 shows a triangle mesh (blue) generated from a 
NURBS surface (green) by the adaptive subdivision algorithm. The resulting mesh encompasses the 
intersection contour between the NURBS surface and a point-set surface (yellow). Gray curves represent 
the boundary curves of all leaf surface patches of the quad-tree constructed on the input NURBS 
surface. It can be seen that patches closer to the intersection contour are smaller and have gone 
though more times of subdivision. Planar triangles are only generated from the leaf patches that can 
potentially intersect with the MLS surface. 
 

   
(a)                                            (b) 

Fig. 8: Adaptive subdivision of a NURBS surface ensuring accurate and efficient NURBS/MLS surface 
intersection: patches closer to the intersection curves undergo more times of subdivision. Planar 
triangles are only generated from the leaf patches that can potentially intersect with the MLS surface. 
(a) Top-view. (b) Iso-view.  
 
We now detail the adaptive subdivision process. We first construct a quad-tree based on the adaptive 
NURBS surface subdivision algorithm. We start with one NURBS surface patch as the root node of the 
quad-tree. This node is recursively split into four children in the parametrical domain until at least one 
of the following two conditions is satisfied: 1) it deviates from a “best fit” plane within a given 
tolerance; 2) it has no intersection with the input point-set surface. Meanwhile, all the leaf nodes of the 
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quad-tree are classified into two types, i.e., non-intersection patches and intersection candidate patches 
according to the testing result of the second criterion, where non-intersection denotes a patch has no 
intersection with the input point-set surface and intersection candidate denotes a patch may intersect 
with the input point-set surface. Through this classification, the amount of actual intersection 
operation is reduced and it makes our algorithm more efficient in terms of both time and memory 
space. 
 
After the construction of the quad-tree structure, the final triangle mesh can be easily generated by 
dividing each of the intersection candidate patches into two triangles, where the two triangles share 
two diagonal points of the patch. 

 
Now we will explain the two criteria of quad-tree construction in details. For clarity, ideas presented 
here are illustrated in 2D, but they are easily extendable to 3D. Both conditions need to utilize a 
bounding volume of the input NURBS surface. In this paper, instead of an axis aligned bounding box 
for the input NURBS surface, we use a tight parallelepiped (parallelogram for 2D cases) as the bounding 
volume (as shown in Fig. 9), because the axis aligned bounding box generally overestimate the enclosed 
patches, thus leading to unnecessary subdivisions and intersection tests. Such a parallelepiped is 
constructed with the help of intervals of the partial derivatives and the mean value theorem of 
differential calculus [7]. 
 
The first condition is used to control the maximum deviation between the final triangle mesh and the 
underlying NURBS surface. To simplify the computing of such deviation, we turn to control the 
smallest distance  between all pairs of parallel planar faces of the bounding parallelepiped of the 

testing patch (parallel edges of the bounding parallelogram for 2D cases as shown in 
sd

Fig. 9(a) and Fig. 
9(b). If  is larger than a specified error boundsd 0δ , the testing patch will be divided into four sub-

patches; otherwise, this testing patch will be kept as a leaf node of the quad-tree. 
 

 

0δ<sd

 
(a)                                          (b) 

 

0ε

 
(c)                                          (d) 

Fig. 9: Two criteria for leaf node identification in quad-tree construction. (a) The patch needs to be 
further subdivided due to the larger planar distance of the bounding volume according to the 1st 
condition. (b) The patch is identified as a leaf patch due to the smaller planar distance of the bounding 
volume according to the 1st condition. (c) The patch needs to be further subdivided according to the 
2nd condition. (d) A patch is identified as a leaf patch according to the 2nd condition. 
 
The second condition is used to classify the leaf patches of the quad-tree structure. Here is an easy 
way for leaf patch classification: first set-up a bounding parallelepiped for the testing patch, then 
check if there is at least one point of the point-set surface inside an enlarged bounding parallelepiped. 
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If yes, this patch is classified as an intersection candidate patch; Otherwise it is classified as a non-
intersection patch. Note, the bounding volume is enlarged by a threshold value 0ε on each side to 

improve the robustness of the algorithm. A 2D example of such classification is shown in Fig. 9(c) and 
Fig. 9(d). Fig. 9(c) also illustrates potential false classification without the threshold 0ε  due to a 

relatively low sampling density of the input point data. 
 
4.4.2 Adaptive intersection between the triangular mesh and the MLS surface 
With the above obtained triangular mesh, the algorithm for mesh and MLS surface intersection 
described in Section 5 is then applied to obtain the intersection contours between the triangular mesh 
and the MLS surface. When needed, the intersection points can be mapped precisely onto the 
parametric domain. For details, please refer to [18].  
 
5. D3M APPLICATIONS 
We present below the applications of the above differential geometric analysis and MLS surface based 
intersection algorithms in digital design and manufacturing from one set of point-cloud data. 
 
5.1 Surface Curvature 
 Fig. 10 presents the example of applying the curvature formula derived in Section 3 on an input data 
cloud (consisting of 30, 246 points). The resulting principal curvatures are displayed in the Figure. 
Curvatures for planar curves can also be computed, which are used in the adaptive slicing and NC path 
generation in the following subsections. 
 

maximum principal curvatures minimal principal curvaturesInput data point maximum principal curvatures minimal principal curvaturesInput data point
 Fig. 10: Principal curvatures computed analytically from the MLS surface approximation of the input 
data points: (a)  30,246 data points, (b) maximum principal cuvatures; (c) minimal principal curvatures. 
 
5.2 Boolean Intersection with NURBS Surfaces 
The above point-cloud data can now be directly intersected with objects bounded by NURBS surfaces. 
Fig. 11 presents the result from the Boolean intersection between the input data set and a flower-like 
object represented by NURBS surfaces. In Fig. 11(d) and Fig. 11(e), the red curve represents the 
intersection curve. The grey triangles are those away from the intersection curve and thus are 
discarded much earlier then the blue triangles. 
 
5.3 Slicing in Rapid Prototyping 
The plane/MLS surface intersection algorithm can be applied for slicing for rapid prototyping [17]. Fig. 
12 shows the adaptive slicing result from the same point-cloud data as shown in  Fig. 10 and Fig. 11. By 
computing the curvature of the planar curve for each slice, we can obtain curvature-adaptive 
intersection points for each slice, as shown in Fig. 12(c). That is, in corner regions, intersection points 
are denser. By computing the normal curvature along the build direction, we can adaptively determine 
layer thickness to control the stair-case effect and thus the geometric accuracy. The resulting layer 
thickness is adaptive to local geometric variation, as shown in Fig. 12(d). This adaptivity benefits both 
build accuracy and build efficiency. 
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(a) Input data point (b) Input NURBS Surfaces

(c) Results of adaptive intersection (d) Zoon-in view (e) Zoon-in view

(a) Input data point (b) Input NURBS Surfaces

(c) Results of adaptive intersection (d) Zoon-in view (e) Zoon-in view
Fig. 11: Boolean intersection between point-cloud data and NURBS surfaces 

 

(c) Slice profile (d) Layer thickness(a) Sliced model (b) Shaded slices (c) Slice profile (d) Layer thickness(a) Sliced model (b) Shaded slices
Fig. 12: Adaptive slicing from point-cloud data: (a) sliced model, (b) shaded slices, (c) profile of the 
highlighted slice in (a), (d) the adaptive distribution of layer thickness. 
 
5.4. NC path generation 
The curvature-adaptive plane/MLS surface intersection algorithm can be directly applied to NC path 
generation. Although, research has been done in the past to generate NC paths directly from data 
points, this is the first reported approach that can generate curvature-adaptive NC paths from discrete 
data points. This ensures the balance between the machining accuracy and efficiency since short step 
intervals usually mean accurate machining results and long machining time. Fig. 13 shows the 
curvature-adaptive NC paths generated directly from the point-cloud data. That is, in Y direction (feed 
forward direction), the forward steps are adaptive according to the normal curvature in Y direction. In 
X direction (side direction), the side steps are adaptive to the normal curvature in X direction. Physical 
prototypes machined based on this approach has been demonstrated in [20]. 
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(a) (b) (c)(a) (b) (c)
Fig. 13: Curvature-adaptive NC path generated directly from point-cloud data 

 
6. D3M IN HEADMASK DEVELOPMENT 
The section above presents the examples demonstrating basic capabilities of D3M from massive point-
cloud data. We now present the application of D3M on a specific custom product development: 
developing a custom headmask which involves both designed geometry and custom face geometry 
obtained as point-cloud data. 
 
This example application is shown in Fig. 14 where a customer-specific headform for chemical masks 
is to be developed for leak testing. In this example, the base template part is created in a CAD system. 
The mask surface shape comes from customer-specific faces. Existing approach would involve a 
lengthy point cloud cleaning process prior to the polygonal model reconstruction, and a laborious and 
error-prone NURBS surface reconstruction before the reconstructed head model is imported into a CAD 
system for Boolean operations with the designed template to produce the customer-specific headform. 
The D3M approach allows direct Boolean intersection between the design model and the acquired point 
cloud and it has led to substantial time reduction in design and prototyping. We now examine the 
process efficiency and the resulting model accuracy. 
 
6.1. Process Efficiency 
Fig. 15 presents the development of the headmask for two scanned geometry. The designed model has  
undergone  parametric  modification  from Head A to  Head B  in  the CAD system.   In the existing  
 

Acquired 
geometry

Designed 
geometryAcquired 

geometry

Designed 
geometry

Fig. 14: Designing and manufacturing of a customer-specific headform: (a) Physical mask, (b) Acquired 
head model and the designed mask template.  
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RP partSliced modelIntersection resultInput geometry

Head B

Head A

RP partSliced modelIntersection resultInput geometry

Head B

Head A

Fig. 15: D3M enabling mass customization: Row A and Row B are the Boolean intersection results, 
sliced models and resulting RP parts of the same D3M process on different scanned head models. 

 
Task 
Step 

Description 
Task 
Type 

Required 
Time 

Iterations 

1 Data Orientation Manual 5 min. 1 
2 Create Design Geometry as NURBS Surfaces Manual 24 min. 34.64 

sec. 
1 

3 NURBS Subdivision Automatic 2.851 sec. 1 
4 Calculate Intersection of NURBS Surfaces and Point 

Cloud 
Automatic 16.203 sec. 1 

5 Set Membership Classification for Boolean 
Operations 

Manual* 11.315 sec. 1 

6 System Calculates Contours and Generates SLC Files Automatic 16.415 sec. 1 
7 Create Manufacturing File from SLC Automatic 27 sec. 1 

Total Time 30 min. 48 sec. 
* Currently manual and its automation is being implemented. 

Tab. 1: Time for D3M on the headform development 
 
NURBS based modeling approach, it takes weeks of engineering times and due to practical logistical 
constraints about one month for a senior engineer to create a NURBS surface model from the acquired 
points. By applying the D3M approach, the above tedious model conversion processes are avoided and 
the overall modeling time, involving the point-cloud data, is dramatically reduced to less than 1 minute. 
Tab. 1 lists the specific time for each step involved in this process. As we can see, the initial creation of 
design geometry in a CAD system takes up majority of the product development time. However, the 
surface reconstruction from point-cloud data is bypassed.  
 
6.2. Resulting Model Accuracy 
The Gaussian parameter is the most important parameter in defining an MLS surface. Like parameters 
in other surface fitting methods (e.g., the number of control points in NURBS surface approximation), 
the Gaussian parameter affects smoothness and accuracy of the MLS surface. Fig. 16, depicting half of 
the scanned face corresponding to Column 3 in Fig. 15 shows the error distribution of each data point 
against the MLS surface under different Gaussian parameters. As one would expect, at large Gaussian 
parameter h, there is large smoothing effect and the resulting surface is smoother but with substantial 
and systematic bias. When h is too small, the resulting surface interpolates the data. In the middle, the 
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error approaches random and has the effect of smoothing the data noise. Hence a good choice of h can 
be determined by examining the distribution of data error. 
 

h = 5 h = .5 h = .05h = 5 h = .5 h = .05
Fig. 16: Influence of Gaussian width on the MLS surface accuracy: larger h leading to biased surface (h = 
5), smaller h leading to data interpolation and good choice of h smoothing out the noise (h = 0.05) and 
yielding near-random error distribution (h = 0.5). 
 
7. CONCLUSIONS 
In this paper, a direct digital design manufacturing (D3M) approach has been introduced for product 
development involving scanned point-cloud data. Due to the use of the moving least-squares (MLS) 
surface as the underlying surface representation for acquired point-sampled geometry, it affords us 
many desirable properties, including projection-based line/MLS surface intersection, closed formula 
for computing curvature for planar curves, which enables curvature-adaptive intersection between MLS 
surface and CAD geometry. Examples demonstrate D3M offers an effective and efficient means for 
rapid development of custom products where scanned geometry is directly used in product 
development without CAD model reconstruction. 
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