
 1

Computer-Aided Design and Applications
© 2009 CAD Solutions, LLC

http://www.cadanda.com

Direct Digital Design and Manufacturing from Massive Point-Cloud Data

Pinghai Yang, Tim Schmidt, and Xiaoping Qian

Illinois Institute of Technology, {yangpin@iit.edu, schmtim1@iit.edu, qian@iit.edu}

ABSTRACT

In this paper, we present an approach that can enable product geometric design and
its subsequent manufacturing applications directly from massive point-cloud data,
without the usual laborious CAD model reconstruction. We term this approach direct
digital design and manufacturing (D3M).

This approach is based on a moving least-squares (MLS) formulation that defines a
continuous surface directly from a set of points. We derive formulae for differential
geometric analysis of the MLS surface based on its implicit form. From the resulting
closed curvature formulae, we develop a set of error-bounded, adaptive intersecting
algorithms that can intersect the MLS surface with lines, planes, polygonal meshes,
and NURBS surfaces. These algorithms have been successfully applied in applications
ranging from product shape design, CNC machining to rapid prototyping.

Keywords: point-sampled geometry, moving least-squares surface, CAD/CAM.
DOI: 10.3722/cadaps.2009.xxx-yyy

1. INTRODUCTION
Rapid advancement of three-dimensional (3D) scanning techniques has fueled the growing use of
point-cloud data in product design and manufacturing. It promises to revolutionalize the way digital
geometric models are created and used throughout the product development cycle. However, despite
the rapid progress in data accuracy, data density and acquisition speed from various 3D scanners, one
bottleneck issue remains in various 3D scanning applications. That is, acquired data points still need
to undergo lengthy, tedious and error-prone reconstruction of intermediate surface models, such as
CAD surface models, with substantial human-intervention and multitude of model conversions. This
has severely impeded the realization of the full potentials of 3D scanning such as mass customization
and digital inventory.

Recently research has appeared focusing on how to bypass CAD model reconstruction in digital design
and manufacturing applications involving massive point-cloud data. For example, point-based curve
drawing [3], layered manufacturing [8], [12], [15],[16], and NC machining [4], [5], [11], [13] based on
points have recently been proposed. However, these methods are ad hoc in nature, e.g. by assuming
grid structures of points, or relying on some voting schemes to “thin” the dense point cloud to
produce approximate contours. There has not been any systematic study of how points can be used to
directly represent continuous surfaces for CAD/CAM uses. The fundamental deficiency with existing
attempts is the absence of a suitable mathematical basis for representing surfaces directly with points
that can be used consistently in product development cycles.

Computer-Aided Design & Applications, 6(1-4), 2009, xxx-yyy

http://www.cadanda.com/
mailto:%7Byangpin@iit.edu
mailto:schmtim1@iit.edu
mailto:qian@iit.edu

 2

In this paper, we propose to define the surface from discrete points based on the moving least-squares
(MLS) surface definition [10, 45] due to its many desirable properties such as explicit definition in
terms of implicit surfaces, local computing, projection operation, and C∞ smoothness. The D3M
approach presented in this paper exploits these properties of the MLS surface. More specifically, we
use the MLS surface as the underlying surface representation for acquired point-sampled geometry in
the D3M. This paper summarizes three critical components in D3M.

• Mathematically, closed formulae for differential geometric analysis are derived. Through the
implicit definition of an MLS surface, we derive formulae for curvature computing for an MLS
surface and planar curves that lie on the MLS surface. This enables the development of subsequent
efficient (i.e. curvature-adaptive) and accurate (i.e. error-bounded) surface intersection algorithms.

• Computationally, algorithms for intersecting an MLS surface with lines, planes, polygonal mesh
and NURBS surfaces are given. The key to these intersection algorithms is a new algorithm for
line/MLS surface intersection, which is based on the projection property of the MLS surface. A
curvature-adaptive marching algorithm is developed for plane/MLS surface intersection. The
intersection between a triangular mesh and an MLS surface is through a curvature-adaptive
marching process that produces a series of intersection points with the separation distance
adaptive to the local curvature. The intersection between a NURBS surface and an MLS surface is
through adaptive subdivision of NURBS surfaces into polygonal meshes.

• Application-wise, we apply the above algorithms to several point-cloud data based design and
manufacturing applications, including Boolean intersection between NURBS surfaces and point-
cloud data, slicing in rapid prototyping and path generation in NC machining.

The remainder of this paper is organized as follows. Section 2 gives a brief introduction on the MLS
surface. Section 3 presents our results of differential geometric analysis on the MLS surface. Section 4
details a set of algorithms for intersecting an MLS surface with CAD geometry. Section 5 demonstrates
the D3M applications of these intersection algorithms on one point-cloud data. An example use of
D3M in rapid development of custom headmasks is given in Section 6. This paper concludes in Section
7.

2. MOVING LEAST-SQUARES SURFACE
This section gives a brief introduction on the definition of an MLS surface, which forms the basis of
our D3M approach.

Levin [9],[10] defined an MLS surface S as the stationary set of a projection operator , i.e., Pψ

{ }xxx =∈=)(ψ|3
PRS (2.1)

Upon such a projection operation, a point on the MLS surface is projected onto itself. Such projection
based MLS surfaces are referred to as projection MLS surfaces. Amenta and Kil [1],[2] gave an explicit
definition for projection MLS surfaces as the local minima of an energy function (y is a position

vector and a is a direction vector) along the directions given by a vector field , as shown in
),(aye

)(xn Fig. 1.

Based on this definition, they derived a projection procedure for taking a point onto the MLS surface S
implied by n and e, which can be summarized and intuitively illustrated in Fig. 1.

Fig. 1: Illustration of the MLS projection process.

Computer-Aided Design & Applications, 6(1-4), 2009, xxx-yyy

 3

For details of this projection procedure, please refer to [1],[2]. Here we briefly present two key points in
this procedure: evaluating the normal direction through a vector field and searching for the local

minimum of an energy function .
)(xn

))(,(xnye

When evaluating the normal vector, we assume that the normal information at each input point data is
available. This assumption is naturally true, when the input data is a set of surfels. When the normal
information is not readily available as in some applications, we can easily compute this normal
information, for example through eigen analysis. Then we can compute a normal vector for any point
with the normals of the nearby sample points, i.e., define a normal vector field as the normalized
weighted average of the normals at the sample points. Suppose a normal vector is assigned to each

point of an input point set Q , we have:
iv

3Ri ∈q

∑
∑

∈

∈=
Qq

Qq

qxv

qxv
xn

i

i

ii

ii

),(

),(
)(

θ

θ (2.2)

where
22 /),(h

i
ie qxqx −−=θ is a Gaussian weighting function, where h is a scale factor that determines the

width of the Gaussian kernel.

In the j-th iteration of the overall projection process, we need to search the local minimum of an

energy function along a line given by and , as shown in
1+jx

)(, jj
l xnx jx)(jxn Fig. 1. Such an energy function

 can be defined as RRRe →× 33:

()∑ ∈
−==

Qq
qyxnqyyxny

i
ij

T
ij ee),()()()())(,(2

θ (2.3)

To facilitate the search of the local minimum, we can substitute)(jj t xnxy ⋅+= into Eqn. (2.3) and

restate it as a function of variable t:

()∑ ∈
⋅−−⋅−=

Qq
qxnxxnqxnx

i
ijjj

T
ijj ttte)),(()())(()(2

θ

With a vector field and an energy function e , we now have an elegant scheme to project a point

onto an MLS surface.
)(xn

3. DIFFERENTIAL GEOMETRIC ANALYSIS OF THE MLS SURFACE
To calculate the principal curvatures of an MLS surface, we first convert the native form of MLS into an
implicit form. It has been proved in [1],[2] that the MLS surface is actually the implicit surface given by
the zero-level set of the implicit function

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
= =xyy

xnyxnx))(,()()(eg T (3.4)

where is the vector field defined by Eqn. 33: RR →n (2.2) and is the energy function
defined by Eqn.

RRRe →× 33:
(2.3). Applying the curvature formulas for implicit surfaces given in [6], we have the

Gaussian and mean curvatures of this implicitly defined MLS surface as

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∇

⋅∇−∇⋅⋅∇
−=

∇

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∇
∇

−=

4

2

4

)(

)()()())(()(

)(
0)(

)())((

x

xxxx

x
x

xx

g

HTracegggHg
k

g
g

ggH
Det

k

T

Mean

T

Gaussian (3.5)

Computer-Aided Design & Applications, 6(1-4), 2009, xxx-yyy

 4

where
T

z
g

y
g

x
gg ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
∂

∂
∂

∂
=∇

)()()()(xxxx is the gradient of and)(xg

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∂∂
∂

∂∂
∂

∂∂
∂

∂∂
∂

∂∂
∂

∂∂
∂

∂∂
∂

∂∂
∂

∂∂
∂

=∇∇=

zz
g

zy
g

zx
g

zy
g

yy
g

yx
g

zx
g

yx
g

xx
g

ggH

)()()(

)()()(

)()()(

)))((())((

xxx

xxx

xxx

xx

is the Hessian matrix of . Notice that Det(A) and Trace(A) denote the determinant and the trace of

the matrix A correspondingly.
)(xg

Note, the principal curvatures can be derived from the Gaussian curvature and mean curvature. To
further expand the formula of Eqn. (5), we first take the derivative of Eqn. (2.3) with respect to y and
setting y equal to x, which gives

() () ⎟
⎠
⎞

⎜
⎝
⎛ −⋅−−⋅−=

∂
∂ ∑ ∈

−−
=)()()(1)()()(2))(,(2

2
/ 22

i
T

i
T

i
h

h
ee

i

i qxxnqxxnxnqx
y

xny
Qq

qx
xy

Substituting it into Eqn. (3.4), and notice that , we have () 1)()(=⋅ xnxn T

())()()()(112))(,()()(2

2
/ 22

xnqxxnqx
y

xnyxnx
Qq

qx
xy

T
i

T
i

hT

h
eeg

i

i −⋅⎟
⎠
⎞

⎜
⎝
⎛ −−⋅=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
= ∑ ∈

−−
=

 (3.6)

Suppose that
22 / hieA qx−−= and , then Eqn.)()(xnqx T

iB −= (3.6) can be written as

∑ ∈ ⎟
⎠
⎞

⎜
⎝
⎛ −⋅=

Qq
x

i
B

h
BAg 3

2
12)(

Hence, the gradient of can be expressed as)(xg

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⋅⎟
⎠
⎞

⎜
⎝
⎛ −⋅+⎟

⎠
⎞

⎜
⎝
⎛ −⋅⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

⋅=∇ ∑ ∈ xx
x

Qq

BB
h

AB
h

BAg
i

2
2

3
2

3112)(

Notice that

⎪
⎪
⎩

⎪⎪
⎨

⎧

−⋅∇+=
∂
∂

−⋅−=
∂
∂ −−

)())(()(

)(2 22 /
2

i
T

i
h

B

e
h

A i

qxxnxn
x

qx
x

qx

We finally have

() () ()

() ()⎟⎟
⎠

⎞
−⋅∇+⋅⎟

⎠
⎞

⎜
⎝
⎛ −−+

−⋅⎟
⎠
⎞

⎜
⎝
⎛ −−⋅⎜

⎝
⎛ −=∇ ∑ ∈

−−

)())(()()()(31

)(1)()(1)()(22)(

2

2

2

22
/ 22

i
TT

i

i
T

i
T

i
h

h

hh
eg

i

i

qxxnxnxnqx

qxxnqxxnqxx
Qq

qx

Suppose that and , then the above equation can be written as)(iqxC −=)())(()(i
T qxxnxnD −⋅∇+=

() ⎟⎟
⎠

⎞
⋅⎟
⎠
⎞

⎜
⎝
⎛ −+⎜⎜

⎝

⎛
⋅⎟
⎠
⎞

⎜
⎝
⎛ −⋅⋅=∇ ∑ ∈

DCx
Qq

2
2

2
22

311122)(B
h

B
h

B
h

Ag
i

Hence, the Hessian of can be expressed as)(xg

Computer-Aided Design & Applications, 6(1-4), 2009, xxx-yyy

 5

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⋅⎟
⎠
⎞

⎜
⎝
⎛ −⋅+⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

⋅⋅⋅−⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⋅⎟
⎠
⎞

⎜
⎝
⎛ −⋅⋅+

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⋅⋅⎟
⎠
⎞

⎜
⎝
⎛ −⋅+⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

⋅⎟⎟
⎠

⎞
⋅⎟
⎠
⎞

⎜
⎝
⎛ −+⎜⎜

⎝

⎛
⋅⎟
⎠
⎞

⎜
⎝
⎛ −⋅= ∑ ∈

x
D

x
D

x
C

x
C

x
DCx

Qq

2
22

2
22

2
2

4
2

2
2

22

312621122

262311122))((

B
h

ABB
h

AB
h

B
h

A

B
h

B
h

AAB
h

B
h

B
h

gH

T

TT

i (3.7)

For further expansion of this formula, please refer to [19]. Substituting the above expressions of
gradient and Hessian of into Eqn. (3.5), we can obtain closed formulas for direct computing of

surface curvatures for MLS surfaces.
)(xg

The curvature form for the planar curves can be derived similarly, i.e. by converting the planar curves
into an implicit form. The details are available in [17].

4. ALGORITHMS FOR INTERSECTING AN MLS SURFACE WITH CAD GEOMETRY
In this section, we present a set of algorithms that can intersect an MLS surface with common
analytical geometry such as lines, planes, and solids bounded by polygonal meshes and NURBS
surfaces. The basis of these algorithms is two-fold: a) a projection based approach for obtaining
intersection points between a line and an MLS surface, and b) a curvature-adaptive marching process
that intersects a set of lines on a plane with the MLS surface. We describe these algorithms in the
following subsections.

4.1 Line/MLS Surface Intersection
Recall the definition of the MLS surface in Eqn. (2.1) that the MLS surface S is the stationary set of a
projection operator . We can easily realize that for any point on the MLS surface S, we have Pψ x

0)(ψ =− xxP
 (4.8)

Then the problem of computing the intersection point p of a line l with the MLS surface S can be

transformed to finding a root of Eqn. (4.8) over the set l∈x . Suppose the line l can be defined by a
point and a directional vector n , this root finding problem can be further reduced to a one-
dimensional problem by substituting

c
ncx ⋅+= t into Eqn. (4.8), where t is the only variable. In this

paper, Brent’s method is implemented to solve this one-dimensional root finding problem, which
combines root bracketing, bisection, and inverse quadratic interpolation to converge from the
neighborhood of a zero crossing and is suitable for this kind of one-dimensional root finding problems
[14].

0ε

Fig. 2: Strategy for generating different initial points for locating multiple line/MLS surface intersection
points: points that are 0ε distance away from the line are projected onto the line and the projected
points are then used as the starting points to find the intersection points between the line and the MLS
surface.

When multiple intersection points exist, different initial points are needed to find all intersection
points of a line l with the MLS surface S. We use the following strategy to generate these initial points:

Computer-Aided Design & Applications, 6(1-4), 2009, xxx-yyy

 6

• Find all points of the input point data inside a query range, i.e., having a distance to the line l
within a prescribed distance 0ε (e.g., blue circles shown in Fig. 2). The assumption here is that each

projected point on the MLS surface is maximally at 0ε distance away from its closest sample in the

point cloud.

• Then project all these points onto the line l . These projected points will be chosen as initial points
(e.g., blue solid circles shown in Fig. 2). Note that it is possible that the Brent’s algorithm started at
several different initial points may converge to the same point, e.g., in Fig. 2, the left two initial
points converged to the left intersection point (represented by a red star) and the right three initial
points converged to the right intersection point. In this case, we need further check the resulting
intersection points and remove the redundant points.

4.2 Curvature-adaptive Plane/MLS Surface Intersection
In this paper, we adopt a marching approach to computing the plane/MLS surface intersection. In this
marching approach, the intersection curve(s) is defined in the following way: first find a starting point
on the intersection curve and then adaptively march along this curve to get successive intersection
points. The line/MLS surface intersection approach described in the previous section is used to
determine both the starting points for marching and the intersection points between successive
marching lines and the MLS surface. The separation distances between successive lines are adaptive to
the curvature in the planar curve on the MLS surface so that the process produces the intersection
contour with bounded error. Such curvature-adaptive step length in the marching process circumvents
the tradeoff between the intersection accuracy which requires smaller step length and the algorithm
efficiency which requires larger step length. This marching algorithm can be summarized as the
following steps:
STEP 1: Given an input point set Q , an input plane H, and an initial line defined by a starting point

 and a direction vector . Let ;
0l

0p 0n 0=i
STEP 2: Determine a new line on the plane H, based on a computed step length adaptive to the local

curvature on the planar curve on the MLS surface;
1+il

STEP 3: Calculate the intersection point of the MLS surface S and the line ; 1+ip 1+il
STEP 4: Check the stop condition. If true, stop this process and output },,,{ 110 += ipppP K as the

resulting 2D contour. Else let 1+= ii and go back to STEP 2.

In STEP 1, the point is the starting point computed in the previous section and the initial line is

the line used to compute .
0p 0l

0p

a b ca b c
Fig. 3: Illustration of adaptive marching in plane/MLS surface intersection. (a) Iso-view of a point data
with resulting 2D contour on a slicing plane. (b) Top view of the slice at 0.1=z . (c) Zoom-in.

Computer-Aided Design & Applications, 6(1-4), 2009, xxx-yyy

 7

Fig. 4: Computing error-bounded step length pΔ based on an osculating circle.

In STEP 2, to determine a new line , we first set up a Frenet frame at point as shown in 1+il ip Fig. 3,

where denotes the direction vector of . Then we can get a point by translating along the

direction perpendicular to : ,where is the unit vector perpendicular , is the

step length. To compute the step length , we first approximate the planar section of the MLS surface

S at point as an osculating circle, as shown in

in il 1+ic ip

in iii p tpc ⋅Δ+=+1 it in pΔ
pΔ

ip Fig. 4. Then, from Fig. 4, we can derive the following

formula to calculate the step length : pΔ

222 22)(2 sss rrrp δδδ −⋅⋅⋅=−−⋅=Δ (4.9)

where sδ is a prescribed approximation error bound for the intersection curve, kr /1= is the radius of

the osculating circle at and k is the curvature computed at of the planar curve that lies on both

the plane H, and the MLS surface S . Additionally, a minimum radius and a maximum radius

can be given to limit the permissible radius

ip ip

minr maxr
r to ensure the robustness of the formula in some special

cases. For example, setting sr δ=min would avoid the potential negative value inside the square root in

Eqn. (4.9); setting a value for could prevent an over-sized step length since overly un-even

distribution of intersection points may cripple many curve interpolation and approximation algorithms
when a smooth intersection curve is desired. Finally, by estimating the normal at , we can

determine the line with and , i.e.,

maxr

1+in 1+ic

1+il 1+ic 1+in
11 ,1 =+li ++ ii

l nc
.

In STEP 3, the intersection point is generated by applying the line/MLS surface intersection

algorithm.
ip

4.3 Plane/MLS Surface Intersection
With the above plane/MLS surface intersection algorithm, we can extend it to the intersection between
a triangular mesh and an MLS surface with some minor changes. It involves two main steps:
a) Intersect each individual triangle with the MLS surface defined by the input point cloud to get all

the intersection curve segments in a discrete form (polyline);
b) Sort and link the discrete curve segments to construct polylines defining the intersection curve.

In the following sections, we will focus on the first step, where a triangle can be treated as a bounded
plane. Due to the existence of the three boundary edges, the intersection curves of a triangle and an
MLS surface can be categorized into two main types: (1) internal loops and (2) open branches, as shown
in Fig. 5. However, there is only one type of intersection curves for a plane and an MLS surface, which
is corresponding to the internal loops for triangle-MLS surface intersection.

Computer-Aided Design & Applications, 6(1-4), 2009, xxx-yyy

 8

Fig. 5: Types of intersection curves.

4.3.1 Finding starting points for open branches
For an open branch, a starting point is an intersection point between the triangle edges with the MLS
surface, which can be obtained by the line/MLS surface intersection algorithm. Notice any starting
points outside the range of the edges are omitted.

4.3.2 Finding starting points for internal loops
For an internal loop, we can inherit the strategy of finding starting points in plane/MLS surface
intersection algorithm. However, notice, 1) instead of finding all points of the input point data that
have a distance to the input plane within a prescribed distance ε , we find all points that have a
distance to the input triangle within ε ; 2) candidate starting points outside the triangle are omitted.

4.3.3 Curvature-adaptive intersection
The curvature-adaptive marching algorithm for plane/MLS surface intersection can be directly applied
to the triangle/MLS surface intersection once the starting points are identified. Fig. 6 shows examples
of curvature-adaptive triangle/MLS surface intersection, where the triangle is drawn in green, the point
cloud in yellow, and the red points represent the output contours of the adaptive marching algorithm.
We can see that the distribution of the points is curvature-adaptive. Fig. 7 shows a more complicated
example of the intersection between a triangle and an MLS surface, which results in three open
branches and three internal loops.

(a) (b)

Fig. 6: Curvature-adaptive triangle/MLS surface intersection. (a) Open branches. (b) Closed loop.

Fig. 7: Intersection between a triangle and an MLS surface resulting in multiple open branches and
internal loops.

Computer-Aided Design & Applications, 6(1-4), 2009, xxx-yyy

 9

Repeated use of the triangle/MLS surface intersection would then result in the intersection contours
between a triangular mesh and an MLS surface. Note, the connectivity of triangle edges in the mesh is
recorded to avoid the duplicate intersection between edges from adjacent triangles and the MLS
surface.

4.4 NURBS/MLS Surface Intersection
The intersection and Boolean operations between design geometry (NURBS surfaces) and acquired
point-sampled geometry (approximated by an MLS surface) is achieved by first adaptively subdividing
the designed geometry (e.g., NURBS surfaces) into a set of planar triangles and then applying the above
triangular mesh /MLS surface intersection algorithm, which ensures the generality of our intersection
algorithm for shape modeling from both design and acquired geometry. These are the steps of our
algorithm.
1. Adaptive subdivision of NURBS surfaces:

a) Generate an adaptive quad-tree structure for the input NURBS surfaces;
b) Create a triangular mesh for potentially intersecting regions based on this tree structure.

2. Adaptive intersection of a triangular mesh and an MLS surface.

4.4.1 Adaptive subdivision of NURBS surfaces for accurate and efficient intersection
Since our NURBS/MLS surface intersection is based on plane/MLS surface intersection, we first
subdivide the NURBS surfaces into a set of patches and then divide those patches that can potentially
intersect with the MLS surface into planar triangles. Two governing factors that affect the subdivision
process are accuracy and efficiency. In order to assure the accuracy of the intersection, the patch
subdivision continues until the subdivided triangle mesh represents the underlying NURBS accurately
within a bounded error. In order to improve the efficiency of NURBS/MLS surface intersection, we
adaptively subdivide the NURBS patches. That is, the NURBS patches are only subdivided when they
can potentially intersect with the MLS surface and triangles are only generated from those patches that
can potentially intersect with the MLS surface. Fig. 8 shows a triangle mesh (blue) generated from a
NURBS surface (green) by the adaptive subdivision algorithm. The resulting mesh encompasses the
intersection contour between the NURBS surface and a point-set surface (yellow). Gray curves represent
the boundary curves of all leaf surface patches of the quad-tree constructed on the input NURBS
surface. It can be seen that patches closer to the intersection contour are smaller and have gone
though more times of subdivision. Planar triangles are only generated from the leaf patches that can
potentially intersect with the MLS surface.

(a) (b)

Fig. 8: Adaptive subdivision of a NURBS surface ensuring accurate and efficient NURBS/MLS surface
intersection: patches closer to the intersection curves undergo more times of subdivision. Planar
triangles are only generated from the leaf patches that can potentially intersect with the MLS surface.
(a) Top-view. (b) Iso-view.

We now detail the adaptive subdivision process. We first construct a quad-tree based on the adaptive
NURBS surface subdivision algorithm. We start with one NURBS surface patch as the root node of the
quad-tree. This node is recursively split into four children in the parametrical domain until at least one
of the following two conditions is satisfied: 1) it deviates from a “best fit” plane within a given
tolerance; 2) it has no intersection with the input point-set surface. Meanwhile, all the leaf nodes of the

Computer-Aided Design & Applications, 6(1-4), 2009, xxx-yyy

 10

quad-tree are classified into two types, i.e., non-intersection patches and intersection candidate patches
according to the testing result of the second criterion, where non-intersection denotes a patch has no
intersection with the input point-set surface and intersection candidate denotes a patch may intersect
with the input point-set surface. Through this classification, the amount of actual intersection
operation is reduced and it makes our algorithm more efficient in terms of both time and memory
space.

After the construction of the quad-tree structure, the final triangle mesh can be easily generated by
dividing each of the intersection candidate patches into two triangles, where the two triangles share
two diagonal points of the patch.

Now we will explain the two criteria of quad-tree construction in details. For clarity, ideas presented
here are illustrated in 2D, but they are easily extendable to 3D. Both conditions need to utilize a
bounding volume of the input NURBS surface. In this paper, instead of an axis aligned bounding box
for the input NURBS surface, we use a tight parallelepiped (parallelogram for 2D cases) as the bounding
volume (as shown in Fig. 9), because the axis aligned bounding box generally overestimate the enclosed
patches, thus leading to unnecessary subdivisions and intersection tests. Such a parallelepiped is
constructed with the help of intervals of the partial derivatives and the mean value theorem of
differential calculus [7].

The first condition is used to control the maximum deviation between the final triangle mesh and the
underlying NURBS surface. To simplify the computing of such deviation, we turn to control the
smallest distance between all pairs of parallel planar faces of the bounding parallelepiped of the

testing patch (parallel edges of the bounding parallelogram for 2D cases as shown in
sd

Fig. 9(a) and Fig.
9(b). If is larger than a specified error boundsd 0δ , the testing patch will be divided into four sub-

patches; otherwise, this testing patch will be kept as a leaf node of the quad-tree.

0δ<sd

(a) (b)

0ε

(c) (d)

Fig. 9: Two criteria for leaf node identification in quad-tree construction. (a) The patch needs to be
further subdivided due to the larger planar distance of the bounding volume according to the 1st
condition. (b) The patch is identified as a leaf patch due to the smaller planar distance of the bounding
volume according to the 1st condition. (c) The patch needs to be further subdivided according to the
2nd condition. (d) A patch is identified as a leaf patch according to the 2nd condition.

The second condition is used to classify the leaf patches of the quad-tree structure. Here is an easy
way for leaf patch classification: first set-up a bounding parallelepiped for the testing patch, then
check if there is at least one point of the point-set surface inside an enlarged bounding parallelepiped.

Computer-Aided Design & Applications, 6(1-4), 2009, xxx-yyy

 11

If yes, this patch is classified as an intersection candidate patch; Otherwise it is classified as a non-
intersection patch. Note, the bounding volume is enlarged by a threshold value 0ε on each side to

improve the robustness of the algorithm. A 2D example of such classification is shown in Fig. 9(c) and
Fig. 9(d). Fig. 9(c) also illustrates potential false classification without the threshold 0ε due to a

relatively low sampling density of the input point data.

4.4.2 Adaptive intersection between the triangular mesh and the MLS surface
With the above obtained triangular mesh, the algorithm for mesh and MLS surface intersection
described in Section 5 is then applied to obtain the intersection contours between the triangular mesh
and the MLS surface. When needed, the intersection points can be mapped precisely onto the
parametric domain. For details, please refer to [18].

5. D3M APPLICATIONS
We present below the applications of the above differential geometric analysis and MLS surface based
intersection algorithms in digital design and manufacturing from one set of point-cloud data.

5.1 Surface Curvature
 Fig. 10 presents the example of applying the curvature formula derived in Section 3 on an input data
cloud (consisting of 30, 246 points). The resulting principal curvatures are displayed in the Figure.
Curvatures for planar curves can also be computed, which are used in the adaptive slicing and NC path
generation in the following subsections.

maximum principal curvatures minimal principal curvaturesInput data point maximum principal curvatures minimal principal curvaturesInput data point
 Fig. 10: Principal curvatures computed analytically from the MLS surface approximation of the input
data points: (a) 30,246 data points, (b) maximum principal cuvatures; (c) minimal principal curvatures.

5.2 Boolean Intersection with NURBS Surfaces
The above point-cloud data can now be directly intersected with objects bounded by NURBS surfaces.
Fig. 11 presents the result from the Boolean intersection between the input data set and a flower-like
object represented by NURBS surfaces. In Fig. 11(d) and Fig. 11(e), the red curve represents the
intersection curve. The grey triangles are those away from the intersection curve and thus are
discarded much earlier then the blue triangles.

5.3 Slicing in Rapid Prototyping
The plane/MLS surface intersection algorithm can be applied for slicing for rapid prototyping [17]. Fig.
12 shows the adaptive slicing result from the same point-cloud data as shown in Fig. 10 and Fig. 11. By
computing the curvature of the planar curve for each slice, we can obtain curvature-adaptive
intersection points for each slice, as shown in Fig. 12(c). That is, in corner regions, intersection points
are denser. By computing the normal curvature along the build direction, we can adaptively determine
layer thickness to control the stair-case effect and thus the geometric accuracy. The resulting layer
thickness is adaptive to local geometric variation, as shown in Fig. 12(d). This adaptivity benefits both
build accuracy and build efficiency.

Computer-Aided Design & Applications, 6(1-4), 2009, xxx-yyy

 12

(a) Input data point (b) Input NURBS Surfaces

(c) Results of adaptive intersection (d) Zoon-in view (e) Zoon-in view

(a) Input data point (b) Input NURBS Surfaces

(c) Results of adaptive intersection (d) Zoon-in view (e) Zoon-in view
Fig. 11: Boolean intersection between point-cloud data and NURBS surfaces

(c) Slice profile (d) Layer thickness(a) Sliced model (b) Shaded slices (c) Slice profile (d) Layer thickness(a) Sliced model (b) Shaded slices
Fig. 12: Adaptive slicing from point-cloud data: (a) sliced model, (b) shaded slices, (c) profile of the
highlighted slice in (a), (d) the adaptive distribution of layer thickness.

5.4. NC path generation
The curvature-adaptive plane/MLS surface intersection algorithm can be directly applied to NC path
generation. Although, research has been done in the past to generate NC paths directly from data
points, this is the first reported approach that can generate curvature-adaptive NC paths from discrete
data points. This ensures the balance between the machining accuracy and efficiency since short step
intervals usually mean accurate machining results and long machining time. Fig. 13 shows the
curvature-adaptive NC paths generated directly from the point-cloud data. That is, in Y direction (feed
forward direction), the forward steps are adaptive according to the normal curvature in Y direction. In
X direction (side direction), the side steps are adaptive to the normal curvature in X direction. Physical
prototypes machined based on this approach has been demonstrated in [20].

Computer-Aided Design & Applications, 6(1-4), 2009, xxx-yyy

 13

(a) (b) (c)(a) (b) (c)
Fig. 13: Curvature-adaptive NC path generated directly from point-cloud data

6. D3M IN HEADMASK DEVELOPMENT
The section above presents the examples demonstrating basic capabilities of D3M from massive point-
cloud data. We now present the application of D3M on a specific custom product development:
developing a custom headmask which involves both designed geometry and custom face geometry
obtained as point-cloud data.

This example application is shown in Fig. 14 where a customer-specific headform for chemical masks
is to be developed for leak testing. In this example, the base template part is created in a CAD system.
The mask surface shape comes from customer-specific faces. Existing approach would involve a
lengthy point cloud cleaning process prior to the polygonal model reconstruction, and a laborious and
error-prone NURBS surface reconstruction before the reconstructed head model is imported into a CAD
system for Boolean operations with the designed template to produce the customer-specific headform.
The D3M approach allows direct Boolean intersection between the design model and the acquired point
cloud and it has led to substantial time reduction in design and prototyping. We now examine the
process efficiency and the resulting model accuracy.

6.1. Process Efficiency
Fig. 15 presents the development of the headmask for two scanned geometry. The designed model has
undergone parametric modification from Head A to Head B in the CAD system. In the existing

Acquired
geometry

Designed
geometryAcquired

geometry

Designed
geometry

Fig. 14: Designing and manufacturing of a customer-specific headform: (a) Physical mask, (b) Acquired
head model and the designed mask template.

Computer-Aided Design & Applications, 6(1-4), 2009, xxx-yyy

RP partSliced modelIntersection resultInput geometry

Head B

Head A

RP partSliced modelIntersection resultInput geometry

Head B

Head A

Fig. 15: D3M enabling mass customization: Row A and Row B are the Boolean intersection results,
sliced models and resulting RP parts of the same D3M process on different scanned head models.

Task
Step

Description
Task
Type

Required
Time

Iterations

1 Data Orientation Manual 5 min. 1
2 Create Design Geometry as NURBS Surfaces Manual 24 min. 34.64

sec.
1

3 NURBS Subdivision Automatic 2.851 sec. 1
4 Calculate Intersection of NURBS Surfaces and Point

Cloud
Automatic 16.203 sec. 1

5 Set Membership Classification for Boolean
Operations

Manual* 11.315 sec. 1

6 System Calculates Contours and Generates SLC Files Automatic 16.415 sec. 1
7 Create Manufacturing File from SLC Automatic 27 sec. 1

Total Time 30 min. 48 sec.
* Currently manual and its automation is being implemented.

Tab. 1: Time for D3M on the headform development

NURBS based modeling approach, it takes weeks of engineering times and due to practical logistical
constraints about one month for a senior engineer to create a NURBS surface model from the acquired
points. By applying the D3M approach, the above tedious model conversion processes are avoided and
the overall modeling time, involving the point-cloud data, is dramatically reduced to less than 1 minute.
Tab. 1 lists the specific time for each step involved in this process. As we can see, the initial creation of
design geometry in a CAD system takes up majority of the product development time. However, the
surface reconstruction from point-cloud data is bypassed.

6.2. Resulting Model Accuracy
The Gaussian parameter is the most important parameter in defining an MLS surface. Like parameters
in other surface fitting methods (e.g., the number of control points in NURBS surface approximation),
the Gaussian parameter affects smoothness and accuracy of the MLS surface. Fig. 16, depicting half of
the scanned face corresponding to Column 3 in Fig. 15 shows the error distribution of each data point
against the MLS surface under different Gaussian parameters. As one would expect, at large Gaussian
parameter h, there is large smoothing effect and the resulting surface is smoother but with substantial
and systematic bias. When h is too small, the resulting surface interpolates the data. In the middle, the

Computer-Aided Design & Applications, 5(1-4), 2008, xxx-yyy

 15

error approaches random and has the effect of smoothing the data noise. Hence a good choice of h can
be determined by examining the distribution of data error.

h = 5 h = .5 h = .05h = 5 h = .5 h = .05
Fig. 16: Influence of Gaussian width on the MLS surface accuracy: larger h leading to biased surface (h =
5), smaller h leading to data interpolation and good choice of h smoothing out the noise (h = 0.05) and
yielding near-random error distribution (h = 0.5).

7. CONCLUSIONS
In this paper, a direct digital design manufacturing (D3M) approach has been introduced for product
development involving scanned point-cloud data. Due to the use of the moving least-squares (MLS)
surface as the underlying surface representation for acquired point-sampled geometry, it affords us
many desirable properties, including projection-based line/MLS surface intersection, closed formula
for computing curvature for planar curves, which enables curvature-adaptive intersection between MLS
surface and CAD geometry. Examples demonstrate D3M offers an effective and efficient means for
rapid development of custom products where scanned geometry is directly used in product
development without CAD model reconstruction.

8. ACKNOWLEDGMENTS
This work was supported by the U.S. National Science Foundation Award #0529165 and Award
#0800912, and Air Force Office of Scientific Research Award #FA9550-07-1-0241. We also acknowledge
the help from Dongdong Zhang for generating NC paths for this paper.

9. REFERENCES
[1] Amenta N, Kil YJ. Defining point-set surfaces. ACM Trans. Graph. 2004; 23(3): 264-270.
[2] Amenta N, Kil YJ. The domain of a point set surface. In: Eurographics Workshop on Point-based

Graphics 2004; p. 139-147.
[3] Azariadis, P. N. and Sapidis, N. S., “Drawing curves on a cloud of points for point-based modeling,”

Computer-Aided Design, Vol. 37, pp. 109 – 122, 2005.
[4] Cripps, R. J., “Algorithms to support point-based CADCAM,” International Journal of Machine Tools

& Manufacture, Vol. 43, pp. 425 – 432, 2003.
[5] Feng, H. Y. and Teng, Z., “Iso-planar piecewise linear NC tool path generation from discrete

measured data points,” Computer-Aided Design, Volume 37, Issue 1, January 2005, Pages 55-64
[6] Goldman R. Curvature formulas for implicit curves and surfaces. Computer Aided Geometric

Design 2005; 22(7): 632-658.
[7] Huber, E. and Barth, W., “Surface-to-surface Intersection with Complete and Guaranteed Results,” In

Developments in Reliable Computing, T. Csendes (ed.), Kluwer, pp. 185-198, 1999.
[8] Kumar, S., Kalra, G., and Dhande, S. G., “Direct Layered Manufacturing of Point Sampled Geometry,”

Int. J. Manufacturing Technology & Management, Vol. 6(6), pp. 534-549, 2004.
[9] Levin D. Mesh-independent surface interpolation. In: Brunnett G, Hamann B, Muller H, Linsen L,

editiors. Geometric modelling for scientific visualization, Springer-Verlag; 2003, p. 37-49.
[10] Levin D. The approximation power of moving least-squares. Mathematics of Computation 1998; 67:

1517-1531.
[11] Lin, A. and Liu, H. T., “Automatic generation of NC cutter path from massive data points,”

Computer-Aided Design, Vol. 30, pp. 77 – 90, 1998.

Computer-Aided Design & Applications, 6(1-4), 2009, xxx-yyy

 16

[12] Liu, G. H., Wong, Y. S., Zhang, Y. F. and Loh, H. T., “Error Based Segmentation of Cloud Data for
Direct Rapid Prototyping”, Computer-Aided Design, Vol. 35(7), pp.633-645, 2003.

[13] Park, S. and Chung, Y. C., “Tool path generation from measured data,” Computer-Aided Design, Vol.
35, pp. 467 – 475, 2003.

[14] Press W, Flannery B, Teukolsky S, Vetterling W. Numerical recipes in C. 2nd ed. Cambridge
University Press; 1992.

[15] Shin, H., Park, S. and Park, E., “Direct Slicing of a Point Set Model for Rapid Prototyping,”
Proceedings of CAD’04, Pattaya, Thailand, May 2004.

[16] Wu, Y. F., Wong, Y. S., Loh, H. T. and Zhang, Y. F., “Modelling Cloud Data Using an Adaptive Slicing
Approach,” Computer-Aided Design, Vol. 36(3), pp. 231-240, 2004.

[17] Yang, P. and Qian, X., "Adaptive Slicing of Moving Least Squares Surfaces: Toward Direct
Manufacturing from Point Cloud Data," ASME Transactions Journal of Computing and Information
Science in Engineering, Vol. 8, No. 3, Sep 2008.

[18] Yang, P. and Qian, X., "Direct Boolean Intersection between Acquired and Designed Geometry",
Computer-Aided Design, accepted.

[19] Yang, P. and Qian, X., “Direct computing of surface curvatures for point-set surfaces,” Proceedings
of 2007 IEEE/Eurographics Symposium on Point-based Graphics (PBG), Prague, Czech Republic, Sep
2007.

[20] Zhang, D., Yang, P., and Qian, X., "Adaptive NC Path Generation from Massive Point Data with
Bounded Error," ASME Transactions Journal of Manufacturing Science and Engineering, Vol. 131,
011001-113, Feb 2009.

Computer-Aided Design & Applications, 6(1-4), 2009, xxx-yyy

	

